

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR230900158601

Page: 1 of 27

TEST REPORT

 Application No.:
 KSCR2309001586AT

 FCC ID:
 2ATCK-TMSS6D4

 IC:
 25126-TMSS6D4

Applicant: Baolong Huf Shanghai Electronics Co., Ltd.

Address of Applicant: 1st Floor, Building 5, 5500 Shenzhuan Rd, Songjiang, Shanghai

Manufacturer: Baolong Huf Shanghai Electronics Co., Ltd.

Address of Manufacturer: 1st Floor, Building 5, 5500 Shenzhuan Rd, Songjiang, Shanghai

Factory: Baolong Huf Shanghai Electronics Co., Ltd.

Address of Factory: 1st Floor, Building 5, 5500 Shenzhuan Rd, Songjiang, Shanghai

Equipment Under Test (EUT):

EUT Name: TPMS SENSOR

Model No.: TMSS6D4
Trade Mark: BH SENS

Standard(s): 47 CFR Part 15, Subpart C 15.231

RSS-210 issue 10 Amendment 1

RSS-Gen Issue5 Amendment 2 (February 2021)

Date of Receipt: 2023-09-11

Date of Test: 2023-10-12 to 2023-10-12

Date of Issue: 2023-10-17

Test Result: Pass*

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR230900158601

Page: 2 of 27

	Revision Record		
Version	Description	Date	Remark
00	Original	2023-10-17	/

Authorized for issue by:		
Tested By	Damon zhou	
	Damon_Zhou/Project Engineer	
Approved By	Verry Hon	
	Terry Hou /Reviewer	

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR230900158601

Page: 3 of 27

2 Test Summary

Radio Spectrum Technical Requirement				
Item	FCC Requirement	IC Requirement	Method	Result
Antenna Requirement	47 CFR Part 15, Subpart C 15.203	RSS-Gen Section 8.1.3	N/A	Pass

N/A: Not applicable

Radio Spectrum Matter Part				
Item	FCC Requirement	IC Requirement	Method	Result
20dB Bandwidth	47 CFR Part 15, Subpart C 15.231(c)	RSS-210 A1.3	ANSI C63.10 (2020) Section 6.9	Pass
Dwell Time (15.231(e))	47 CFR Part 15, Subpart C 15.231(e)	RSS-210 A1.4.	ANSI C63.10 (2020) Section 7.8.4	Pass
Field Strength of the Fundamental Signal (15.231(e))	47 CFR Part 15, Subpart C 15.231(e)	RSS-210 A1.4	ANSI C63.10 (2020) Section 6.5	Pass
Radiated Emissions below 1GHz	47 CFR Part 15, Subpart C 15.231(e) and 15.209	RSS-210 A1.4	ANSI C63.10 (2020) Section 6.4&6.5&6.6	Pass
Radiated Emissions above 1GHz	47 CFR Part 15, Subpart C 15.231(e) and 15.209	RSS-210 A1.4	ANSI C63.10 (2020) Section 6.6	Pass
99% Bandwidth	N/A	RSS-210 A1.3	RSS-Gen Section 6.7	Pass
Frequency Stability	N/A	RSS-Gen Section 8.11	RSS-Gen Section 6.11	Note 1

Note 1: Frequency stability requested in RSS GEN S8.11 has been complied since the result of occupied bandwidth can demonstrate.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR230900158601

Page: 4 of 27

3 Contents

			Page	
1	COV	ER PAGE	1	
2	Toct	Summary	•	
_				
3	Con	tents	4	
4	Gen	eral Information		
	4.1	Details of E.U.T.	5	
	4.2	Description of Support Units		
	4.3	Measurement Uncertainty		
	4.4	Test Location	7	
	4.5	Test Facility		
	4.6	Deviation from Standards		
	4.7	Abnormalities from Standard Conditions	7	
5	Equi	pment List	8	
6	Radi	Equipment List		
•	6.1	Antenna Requirement		
		·		
7	Radi	io Spectrum Matter Test Results	10	
	7.1	20dB Bandwidth	10	
	7.2	Dwell Time (15.231(e))		
	7.3	Field Strength of the Fundamental Signal (15.231(e))		
	7.4	Radiated Emissions below 1GHz		
	7.5	Radiated Emissions above 1GHz		
	7.6	99% Bandwidth		
8	Test	Setup Photo	20	
9	EUT	Constructional Details (EUT Photos)	20	
		·		
1(и Арр	endix		
	10.1	Field Strength of the Fundamental Signal		
	10.2	Spurious Emissions		
	10.3	20dB Bandwidth		
	10.4	99% Bandwidth		
	11116	1 11476311 1 177763	·) (

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR230900158601

Page: 5 of 27

4 General Information

4.1 Details of E.U.T.

Power supply:	DC 3V By Battery
	Battery model:CR2032HT
	Output:DC 3V
Operation Frequency	433.92MHz
Channel Numbers:	1
Modulation Type:	FSK
Antenna Type:	Monopole antenna
Test Voltage:	DC 3V
Software version:	V1.1
Firmware version:	V02
Serial Number:	F0010999

4.2 Description of Support Units

Description	Manufacturer	Model No.	Serial No.
The EUT has been tested as an independent unit.			

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR230900158601

Page: 6 of 27

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	8.4 x 10 ⁻⁸
2	Timeout	2s
3	Duty Cycle	0.37%
4	Occupied Bandwidth	3%
5	RF Conducted Power	0.6dB
6	RF Power Density	2.9dB
7	Conducted Spurious Emissions	0.75dB
0	DE Dodieted Dower	5.2dB (Below 1GHz)
8	,	5.9dB (Above 1GHz)
		4.2dB (Below 30MHz)
	Dadiated Churiana Emission Test	4.5dB (30MHz-1GHz)
9	Radiated Spurious Emission Test	5.1dB (1GHz-18GHz)
		5.4dB (Above 18GHz)
10	Temperature Test	1°C
11	Humidity Test	3%
12	Supply Voltages	1.5%
13	Time	3%

Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR230900158601

Page: 7 of 27

4.4 Test Location

All tests were performed at:

Compliance Certification Services (Kunshan) Inc.

No.10 Weiye Rd, Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China.

Tel: +86 512 5735 5888 Fax: +86 512 5737 0818

No tests were sub-contracted.

Note:

- 1. SGS is not responsible for wrong test results due to incorrect information (e.g., max. internal working frequency, antenna gain, cable loss, etc) is provided by the applicant. (If applicable).
- 2. SGS is not responsible for the authenticity, integrity and the validity of the conclusion based on results of the data provided by applicant. (If applicable).
- 3. Sample source: sent by customer.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

A2LA

Compliance Certification Services (Kunshan) Inc. is accredited by the American Association for Laboratory Accreditation (A2LA). Certificate No. 2541.01.

• FCC

Compliance Certification Services (Kunshan) Inc. has been recognized as an accredited testing laboratory. Designation Number: CN1172.

• ISED

Compliance Certification Services (Kunshan) Inc. has been recognized by Innovation, Science and Economic Development Canada (ISED) as an accredited testing laboratory. Company Number: 2324E

• VCCI

The 3m and 10m Semi-anechoic chamber and Shielded Room of Compliance Certification Services (Kunshan) Inc. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-20134, R-11600, C-11707, T-11499, G-10216 respectively.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR230900158601

Page: 8 of 27

5 Equipment List

Item	Equipment	Manufacturer	Model	Inventory No	Cal Date	Cal. Due Date	
RF Con	RF Conducted Test						
1	Spectrum Analyzer	Keysight	N9020A	KUS1911E004-2	08/24/2023	08/23/2024	
2 Spectrum Analyzer		Keysight	N9020A	KUS2001M001-2	08/24/2023	08/23/2024	
3	Spectrum Analyzer	Keysight	N9030B	KSEM021-1	02/03/2023	02/02/2024	
4	Signal Generator	R&S	SMBV100B	KSEM032	03/16/2023	03/15/2024	
5	Signal Generator	R&S	SMW200A	KSEM020-1	08/24/2023	08/23/2024	
6	Signal Generator	Agilent	N5182A	KUS2001M001-1	08/24/2023	08/23/2024	
7	Radio Communication Test Station	Anritsu	MT8000A	KSEM001-1	08/24/2023	08/23/2024	
8	Radio Communication Analyzer	Anritsu	MT8821C	KSEM002-1	03/16/2023	03/15/2024	
9	Universal Radio Communication Tester	R&S	CMW500	KUS1911E004-1	08/24/2023	08/23/2024	
10	Switcher	CCSRF	FY562	KUS2001M001-3	08/24/2023	08/23/2024	
11	AC Power Source	EXTECH	6605	KS301178	N.C.R	N.C.R	
12	DC Power Supply	Aglient	E3632A	KS301180	N.C.R	N.C.R	
13	Conducted Test Cable	Thermax	RF01-RF04	CZ301111- CZ301120	02/03/2023	02/02/2024	
14	Temp. / Humidity Chamber	TERCHY	MHK-120AK	KS301190	08/24/2023	08/23/2024	
15	Temperature & Humidity Recorder	Renke Control	RS-WS-N01- 6J	KSEM024-5	03/22/2023	03/21/2024	
16	Software	BST	TST-PASS	/	N/A	N/A	
RF Radi	ated Test						
1	Spectrum Analyzer	R&S	FSV40	KUS1806E003	08/24/2023	08/23/2024	
2	Universal Radio Communication Tester	R&S	CMW500	KSEM009-1	03/16/2023	03/15/2024	
3	Signal Generator	Agilent	E8257C	KS301066	08/24/2023	08/23/2024	
4	Loop Antenna	COM-POWER	AL-130R	KUS1806E001	03/18/2023	03/17/2025	
5	Bilog Antenna	TESEQ	CBL 6112D	KUS1806E005	06/29/2023	06/28/2025	
6	Bilog Antenna	SCHWARZBECK	VULB9160	CZ301016	04/13/2021	04/12/2024	
7	Horn-antenna(1-18GHz)	Schwarzbeck	BBHA9120D	KS301079	08/24/2023	08/23/2024	
8	Horn-antenna(1-18GHz)	ETS-LINDGREN	3117	KS301186	02/21/2023	02/20/2024	
9	Horn Antenna(18-40GHz)	Schwarzbeck	BBHA9170	CZ301058	02/26/2023	02/25/2024	
10	Amplifier(30MHz~18GHz)	PANSHAN TECHNOLOGY	LNA:1~18G	KSEM010-1	01/17/2023	01/16/2024	
11	Amplifier(18~40GHz)	COM-POWER	PAM-840A	KUS1710E001	01/21/2023	01/20/2024	
12	RE Test Cable	REBES MICROWAVE	/	CZ301097	08/24/2023	08/23/2024	
13	Temperature & Humidity Recorder	Renke Control	RS-WS-N01- 6J	KSEM024-4	03/22/2023	03/21/2024	
14	Software	Faratronic	EZ_EMC-v 3A1	/	N/A	N/A	

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR230900158601

Page: 9 of 27

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203

6.1.2 Conclusion

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is monopole antenna and no consideration of replacement.

Antenna location: Refer to Internal photos

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR230900158601

Page: 10 of 27

7 Radio Spectrum Matter Test Results

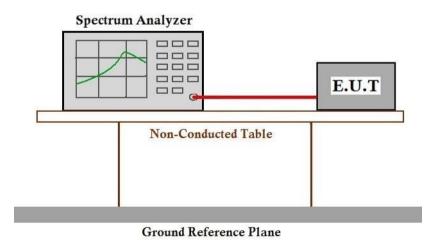
7.1 20dB Bandwidth

Test Requirement 47 CFR Part 15, Subpart C 15.231(c)
Test Method: ANSI C63.10 (2013) Section 6.9

Limit:

Frequency range(MHz)	Limit
70-900	No wider than 0.25% of the center frequency
Above 900	No wider than 0.5% of the center frequency

7.1.1 E.U.T. Operation


Operating Environment:

Temperature: 25.3 °C Humidity: 50.8 % RH Atmospheric Pressure: 1010 mbar

7.1.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	00	Tx mode: Keep the EUT in continous transmitting mode.

7.1.3 Test Setup Diagram

7.1.4 Measurement Procedure and Data

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR230900158601

Page: 11 of 27

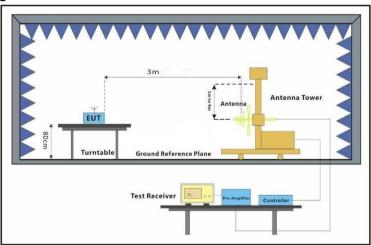
7.2 Dwell Time (15.231(e))

Test Requirement 47 CFR Part 15, Subpart C 15.231(e)
Test Method: ANSI C63.10 (2013) Section 7.8.4

Limit:

In addition, devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

7.2.1 E.U.T. Operation


Operating Environment:

Temperature: 25.3 °C Humidity: 50.8 % RH Atmospheric Pressure: 1010 mbar

7.2.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	00	Tx mode: Keep the EUT in continous transmitting mode.

7.2.3 Test Setup Diagram

7.2.4 Measurement Procedure and Data

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR230900158601

Page: 12 of 27

7.3 Field Strength of the Fundamental Signal (15.231(e))

Test Requirement Field Strength of the Fundamental Signal (15.231(e))

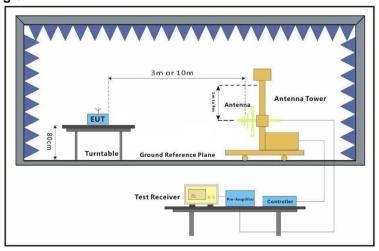
Test Method: ANSI C63.10 (2013) Section 6.5

Limit:

Fundamental frequency(MHz)	Field strength of fundamental(microvolts/meter)	Field strength of spurious emissions(microvolts/meter)
40.66-40.70	1000	100
70-130	500	50
130-174	500 to 1500	50 to 150
174-260	1500	150
260-470	1500 to 5000	150 to 500
Above 470	5000	500

Remark: the emission limit is based on measurement instrumentation employing an average detector at a distance of 3 meters. The frequencies above 1000MHz are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

7.3.1 E.U.T. Operation


Operating Environment:

Temperature: 25.3 °C Humidity: 50.8 % RH Atmospheric Pressure: 1010 mbar

7.3.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	00	Tx mode: Keep the EUT in continous transmitting mode.

7.3.3 Test Setup Diagram

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR230900158601

Page: 13 of 27

7.3.4 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR230900158601

Page: 14 of 27

7.4 Radiated Emissions below 1GHz

Test Requirement 47 CFR Part 15C Section 15.231(b) and 15.209

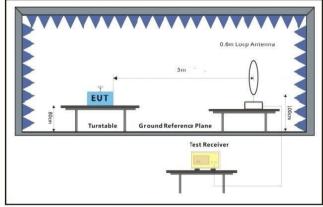
Test Method: ANSI C63.10 (2013) Section 6.4&6.5

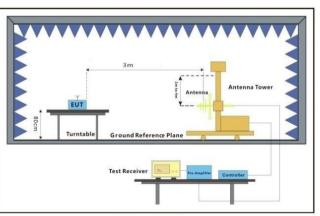
Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

7.4.1 E.U.T. Operation


Operating Environment:


Temperature: 25.8 °C Humidity: 50.3 % RH Atmospheric Pressure: 1010 mbar

7.4.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	00	Tx mode: Keep the EUT in continous transmitting mode.

7.4.3 Test Setup Diagram

Below 30MHz 30MHz-1GHz

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR230900158601

Page: 15 of 27

7.4.4 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

- b. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 1GHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR230900158601

Page: 16 of 27

7.5 Radiated Emissions above 1GHz

Test Requirement 47 CFR Part 15C Section 15.231(b) and 15.209

Test Method: ANSI C63.10 (2013) Section 6.6

Limit:

For Restricted bands

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

For Other bands

1 of Other barids	T	T			
Fundamental Frequency MHz	Field Strength of Fundamental (dBµV/m @ 3 m)	Field Strength of Hasrmonics and Spurious Emissions (dBµV/m @ 3 m)			
40.66 to 40.70	67.04	47.04			
70 to 130	61.94	41.94			
130 to 174	**61.94 to 71.48	41.94 to 51.48			
174 to 260	71.48	51.48			
260 to 470	**71.48 to 81.94	51.48 to 61.94			
Above 470	81.94	61.94			
Detector:	Peak for pre-scan				
	QP for 30MHz to1000 MHz:120 kHz resolution bandwidth				
	Peak for Above 1 GHz: 1 MHz resolution bandwidth				

^{**} linear interpolations

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

for the band 130-174 MHz, uV/m at 3 meters = 56.81818(F) - 6136.3636;

for the band 260-470 MHz, uV/m at 3 meters = 41.6667(F) - 7083.3333.

The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]

The fundamental frequency of the EUT is 433.92 MHz

The limit for average or QP field strength dBuv/m for the fundamental emission= 72.87 dBµV/m

No fundamental is allowed in the restricted bands.

The limit for average field strength dBuv/m for the spurious emission=52.87 dBuV/m. Spurious in the restricted bands must be less than 52.87 dBuV/m or 15.209, whichever limit permits a higher field

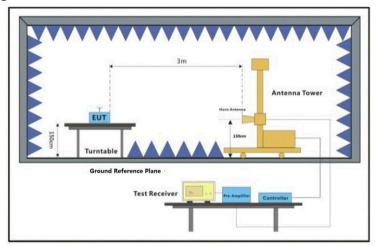
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR230900158601

Page: 17 of 27

strength.

7.5.1 E.U.T. Operation


Operating Environment:

Temperature: 25.8 °C Humidity: 50.3 % RH Atmospheric Pressure: 1010 mbar

7.5.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	00	Tx mode: Keep the EUT in continous transmitting mode.

7.5.3 Test Setup Diagram

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR230900158601

Page: 18 of 27

7.5.4 Measurement Procedure and Data

a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.
- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

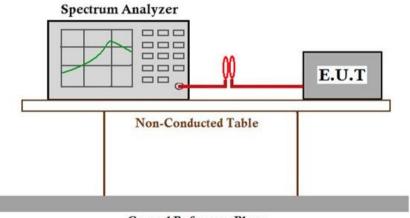
Report No.: KSCR230900158601

Page: 19 of 27

7.6 99% Bandwidth

Test Requirement RSS-Gen Section 6.7
Test Method: RSS-Gen Section 6.7

7.6.1 E.U.T. Operation


Operating Environment:

Temperature: 25.8 °C Humidity: 50.3 % RH Atmospheric Pressure: 1010 mbar

7.6.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	00	Tx mode: Keep the EUT in continous transmitting mode.

7.6.3 Test Setup Diagram

Ground Reference Plane

7.6.4 Measurement Procedure and Data

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR230900158601

Page: 20 of 27

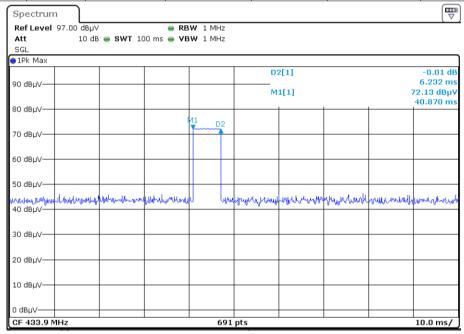
8 Test Setup Photo

Refer to Appendix - Test Setup Photo for KSCR2309001586AT

9 EUT Constructional Details (EUT Photos)

Refer to Appendix - Photographs of EUT Constructional Details for KSCR2309001586AT

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR230900158601

Page: 21 of 27

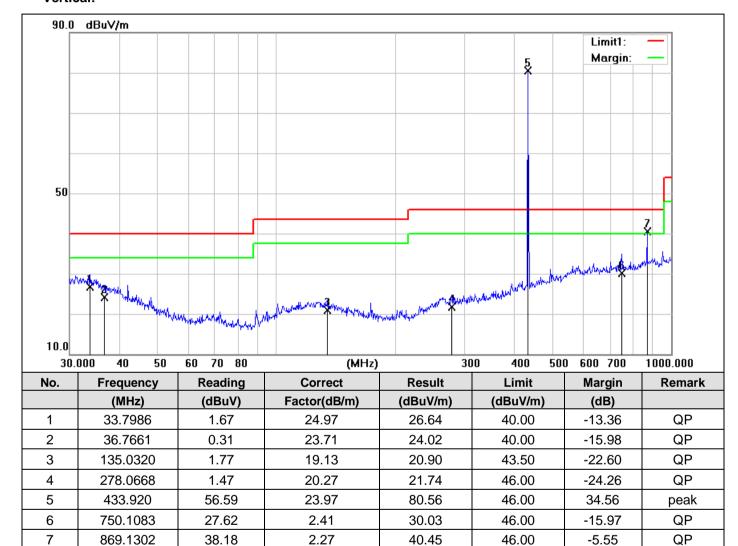
10 Appendix

10.1 Field Strength of the Fundamental Signal

Test channel	Freq. (MHz)	Result Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Detector	Polarization
	el 1 433.92	80.56	92.87	-12.31	Peak	Vertical
Channel 1		56.45	72.87	-16.42	Average	Vertical
		71.21	92.87	-21.66	Peak	Horizontal

Remark:

- 1. If the Peak value below the AV Limit, the AV test doesn't perform for this submission.
- 2. Average level=Peak level-Duty Cycle Factor
- 3. Duty Cycle Factor= 20log(Duty Cycle)= -24.107dB

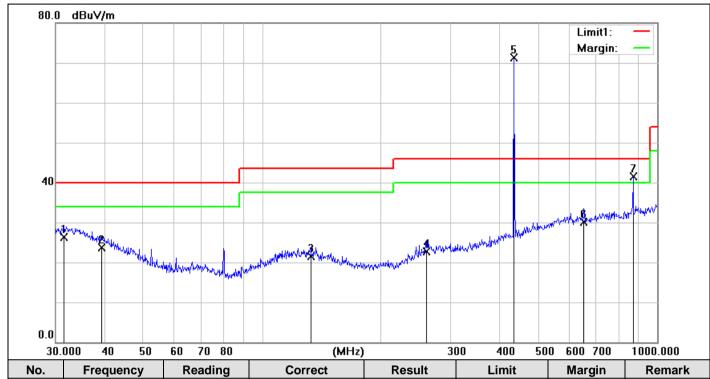

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR230900158601

Page: 22 of 27

10.2 Spurious Emissions Below 1GHz

Vertical:



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR230900158601

Page: 23 of 27

Horizontal:

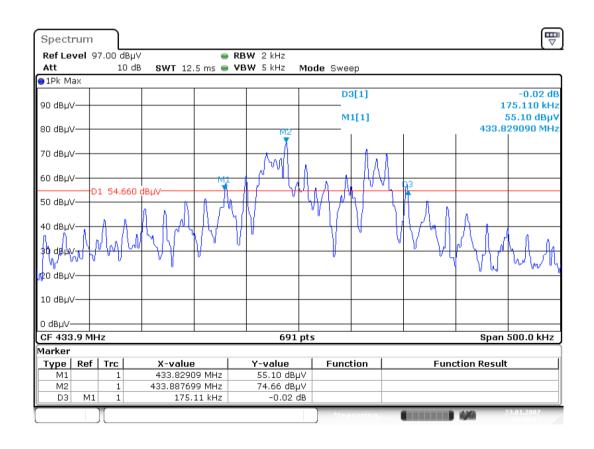
No.	Frequency	Reading	Correct Result		Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	31.5095	1.12	25.20	26.32	40.00	-13.68	QP
2	39.1615	1.14	22.60	23.74	40.00	-16.26	QP
3	132.6850	2.15	19.30	21.45	43.50	-22.05	QP
4	260.1444	1.75	20.88	22.63	46.00	-23.37	QP
5	434.0650	47.24	23.97	71.21	46.00	25.21	peak
6	651.9417	2.39	27.63	30.02	46.00	-15.98	QP
7	869.1302	39.17	2.27	41.44	46.00	-4.56	QP

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR230900158601

Page: 24 of 27

Above 1GHz 433.92MHz


Mark	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	polarization
1	1884.000	52.02	-15.35	36.67	54.00	-17.33	peak	Vertical
2	2532.000	47.44	-7.13	40.31	54.00	-13.69	peak	Vertical
3	3404.000	47.63	-5.16	42.47	54.00	-11.53	peak	Vertical
4	1868.000	54.48	-15.77	38.71	54.00	-15.29	peak	Horizontal
5	2436.000	48.59	-7.64	40.95	54.00	-13.05	peak	Horizontal
6	2704.000	48.19	-6.50	41.69	54.00	-12.31	peak	Horizontal

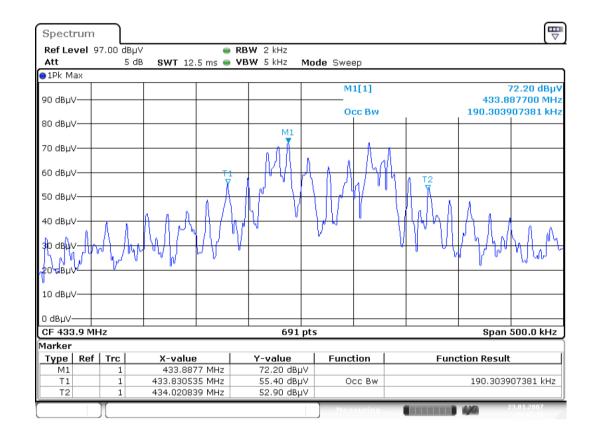
10.3 20dB Bandwidth

Measurement Data:

Frequency(MHz)	20dB bandwidth (kHz)	Limit (kHz)	Results
433.92	175.11	1085	Pass

Test plot as follows:

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR230900158601

Page: 25 of 27

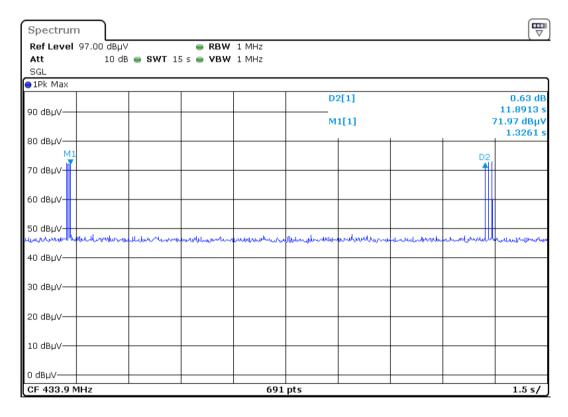
10.4 99% Bandwidth

99% bandwidth (kHz)	F _L (MHz)	Fн (MHz)	Limit(MHz)	Result
190.30	433.8305	434.0208	260-470	Pass

Test plot as follows:

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR230900158601

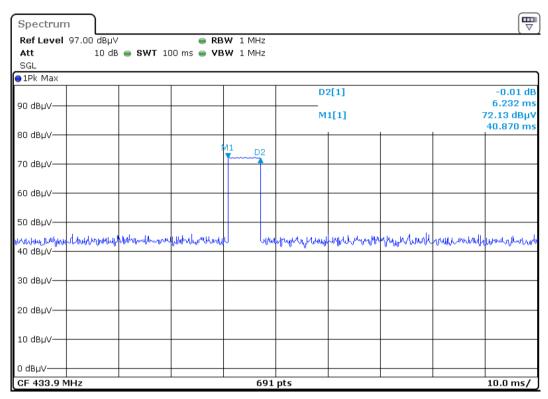

Page: 26 of 27

10.5 Dwell Time

Measurement Data:

Test item	Result	Limit (s)	Results
Transmission Duration	11.89s	≥10s	Pass
Ontime	18.69ms	≤1s	Pass

Test plot as follows:



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR230900158601

Page: 27 of 27

- End of the Report -