

Report No.: SHEM201100968701

Page: 1 of 23

TEST REPORT

 Application No.:
 SHEM2011009687CR

 FCC ID:
 2ATCK-TMSS6A4

 IC:
 25126-TMSS6A4

Applicant: Baolong Huf Shanghai Electronics Co.,Ltd.

Address of Applicant: 1st Floor, Building 5,5500 Shenzhuan Rd, Songjiang, Shanghai

Manufacturer: Baolong Huf Shanghai Electronics Co.,Ltd.

Address of Manufacturer: 1st Floor, Building 5,5500 Shenzhuan Rd, Songjiang, Shanghai

Factory: Baolong Huf Shanghai Electronics Co.,Ltd.

Address of Factory: 1st Floor, Building 5,5500 Shenzhuan Rd, Songjiang, Shanghai

Equipment Under Test (EUT):

EUT Name: TPMS SENSOR

Model No.: TMSS6A4
Trade mark: BH SENS

Standard(s): 47 CFR Part 15, Subpart C 15.231

RSS-210 Issue 10 December 2019

RSS-Gen Issue 5 Amendment 2 (February 2021)

Date of Receipt: 2020-11-18

Date of Test: 2020-11-20 to 2020-12-04

Date of Issue: 2021-4-25

Test Result: Pass*

varlan 2han

Parlam Zhan E&E Section Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

を受ける。 Technical Services Ser

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN Doceaches and such sample (SN Doceaches and SN Doceach

NO.588 West Jindu Road, Songjiang District, Shanghai, China 201612 t(86-21) 61915666 f(86-21) 61915678 www.sgsgroup.com.cn 中国・上海・松江区金都西路588号 邮编: 201612 t(86-21) 61915666 f(86-21) 61915678 e sgs.china@sgs.com

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: SHEM201100968701 Page: 2 of 23

Revision Record					
Version Description Date Remark					
00	Original	2021-4-25	/		

Authorized for issue by:	
	hichael Mil
	Micheal Niu / Project Engineer
	Parlam Zhan
	Parlam Zhan / Reviewer

Report No.: SHEM201100968701

Page: 3 of 23

2 Test Summary

Radio Spectrum Technical Requirement				
Item FCC Requirement IC Requirement Method F				Result
Antenna Requirement	47 CFR Part 15, Subpart C 15.203	RSS-Gen Section 8.1.3	N/A	Pass

N/A: Not applicable

Radio Spectrum Matter Part					
Item	Requirement	IC Requirement	Method	Result	
20dB Bandwidth	47 CFR Part 15, Subpart C 15.231	RSS-210 A1.3	ANSI C63.10 (2013) Section 6.9	Pass	
Dwell Time	47 CFR Part 15, Subpart C 15.231(e)	RSS-210 A.1.4(b)	ANSI C63.10 (2013) Section 7.8.4	Pass	
Field Strength of the Fundamental Signal	47 CFR Part 15, Subpart C 15.231(e)	RSS-210 A.1.4(d)	ANSI C63.10 (2013) Section 6.5	Pass	
Radiated Emissions	47 CFR Part 15, Subpart C 15.231	RSS-210 A.1.4(d) & RSS Gen issue 5 Section 8.9	ANSI C63.10 (2013) Section 6.4&6.5&6.6	Pass	
99% Bandwidth	N/A	RSS-210 A1.3	RSS-Gen Section 6.7	Pass	

Note 1: Sensors related to the report and attachments have two similar kinds of appearance. They have the same electrical and electronic characters. The only difference is the material of valve stem (One valve is mainly made of aluminum, and the other one is mainly cooper and rubber). We tested the metal samples and pre scanned the rubber samples to confirm that the different materials will not affect the test results of EMC

Report No.: SHEM201100968701 Page: 4 of 23

Contents

			Page
1	CO	VER PAGE	1
2	TES	ST SUMMARY	3
3	CO	NTENTS	4
Ŭ			
4	GE	NERAL INFORMATION	5
	4.1	DETAILS OF E.U.T.	5
	4.2	DESCRIPTION OF SUPPORT UNITS	
	4.3	MEASUREMENT UNCERTAINTY	-
	4.4	TEST LOCATION	
	4.5	TEST FACILITY	
	4.6	DEVIATION FROM STANDARDS	
	4.7	ABNORMALITIES FROM STANDARD CONDITIONS	
5	EQ	UIPMENT LIST	7
6	RA	DIO SPECTRUM TECHNICAL REQUIREMENT	8
	6.1	Antenna Requirement	8
7	RA	DIO SPECTRUM MATTER TEST RESULTS	g
	7.1	20dB Bandwidth	ç
	7.2	DWELL TIME (15.231(E))	
	7.3	FIELD STRENGTH OF THE FUNDAMENTAL SIGNAL (15.231(E))	13
	7.4	RADIATED EMISSIONS	
	7.5	99% BANDWIDTH	21
8	TES	ST SETUP PHOTOGRAPHS	23
a	EII.	T CONSTRUCTIONAL DETAILS	23

Report No.: SHEM201100968701

Page: 5 of 23

4 General Information

4.1 Details of E.U.T.

Power supply: DC 3.0V by Battery

Serial Number: 91010A08

Firmware Version: N/A

Operation Frequency 433.92MHz

Modulation Technique: FSK

Antenna Gain: -25dBi (Provided by manufacturer)

Antenna Type: Monopole Antenna

Number of Channel: 1

4.2 Description of Support Units

Description	Manufacturer	Model No.	Serial No.
Smart Tool	Baolong Huf Shanghai Electronics Co., Ltd.	GJ006	/

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Duty Cycle	0.37%
2	Occupied Bandwidth	3%
3	RF Radiated Power	5.1dB (Below 1GHz)
3	RF Radiated Power	4.9dB (Above 1GHz)
		4.2dB (Below 30MHz)
4	Radiated Spurious Emission Test	4.5dB (30MHz-1GHz)
		5.1dB (1GHz-18GHz)
5	Temperature Test	1°C
6	Humidity Test	3%
7	Supply Voltages	1.5%
8	Time	3%

Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: SHEM201100968701

Page: 6 of 23

4.4 Test Location

All tests were performed at:

Compliance Certification Services (Kunshan) Inc.

No.10 Weiye Rd, Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China.

Tel: +86 512 5735 5888 Fax: +86 512 5737 0818

No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L4354)

CNAS has accredited Compliance Certification Services (Kunshan) Inc. to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 2541.01)

Compliance Certification Services (Kunshan) Inc. is accredited by the American Association for Laboratory Accreditation (A2LA). Certificate No. 2541.01.

• FCC (Designation Number: CN1172)

Compliance Certification Services Inc. has been recognized as an accredited testing laboratory.

Designation Number: CN1172.

• ISED (CAB identifier: CN0072)

Compliance Certification Services (Kunshan) Inc. has been recognized by Innovation, Science and Economic Development Canada (ISED) as an accredited testing laboratory.

CAB Identifier: CN0072.

• VCCI (Member No.: 1938)

The 3m and 10m Semi-anechoic chamber and Shielded Room of Compliance Certification Services (Kunshan) Inc. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-1600, C-1707, T-1499, G-10216 respectively.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

Report No.: SHEM201100968701 Page: 7 of 23

Equipment List 5

Item	Equipment	Manufacturer	Model	Serial Number	Cal Date	Cal. Due Date
	nducted Emission at Mains Terminals					
1	Test Software	Farad	EZ-EMC	CCS-03A1	N.C.R	N.C.R
2	EMI Test Receive	R&S	ESCI	100781	02/24/2020	02/23/2021
3	LISN	R&S	ENV216	101604	10/19/2020	10/18/2021
4	LISN	Schwarzbeck	NNLK 8129	8129-143	10/19/2020	10/18/2021
5	Pulse Limiter	R&S	ESH3-Z2	100609	02/24/2020	02/23/2021
6	CE test Cable	Thermax		14	02/24/2020	02/23/2021
	F Conducted Test	ВОТ	TOT D400		N 0 D	1100
1	Test Software	BST	TST PASS	V 1.1.0	N.C.R	N.C.R
3	Spectrum Analyzer	Agilent	E4446A N9020A	MY44020154	04/22/2020	04/21/2021
4	Spectrum Analyzer Spectrum Analyzer	Keysight	N9020A N9020A	MY53420174 MY55370209	09/25/2020 10/19/2020	09/24/2021 10/18/2021
5	Signal Generator	Keysight	E8257C	MY43321570	10/19/2020	10/18/2021
6	MXG Vector Signal Generator	Agilent Agilent	N5182A	MY50142015	09/25/2020	09/24/2021
7	Universal Radio Communication Tester	R&S	CMU200	109525	10/19/2020	10/18/2021
8	Universal Radio Communication Tester	R&S	CMW500	159275	10/19/2020	10/18/2021
9	Power Meter	Anritsu	ML2495A	1445010	04/21/2020	04/20/2021
10	Switcher	CCSRF	FY562	KS301219	10/19/2020	10/18/2021
11	AC Power Source	EXTECH	6605	1570106	N.C.R	N.C.R
12	DC Power Supply	Aglient	E3632A	MY50340053	N.C.R	N.C.R
13	6dB Attenuator	Mini-Circuits	NAT-6-2W	15542-1	N.C.R	N.C.R
14	Power Divider	AISI	IOWOPE2068	PE2068	N.C.R	N.C.R
15	Filter	MICRO-TRONICS	BRM50701	5	N.C.R	N.C.R
16	Conducted test cable	/	RF01-RF04	/	04/21/2020	04/22/2021
17	Temp. / Humidity Chamber	TERCHY	MHK-120AK	X30109	04/21/2020	04/20/2021
RF F	Radiated Test		1			
1	Test Software	Farad	EZ-EMC	CCS-03A1	N/A	N/A
2	Spectrum Analyzer	R&S	FSV40	101493	01/08/2020	01/07/2021
3	Signal Generator	Agilent	E8257C	MY43321570	10/10/2020	10/18/2021
4	Loop Antenna	COM-POWER	AL-130R	10160008	04/29/2019	04/28/2021
5	Bilog Antenna	TESEQ	CBL 6112D	35403	06/22/2019	06/21/2021
6	Bilog Antenna	SCHWARZBECK	VULB9160	9160-3342	04/29/2019	04/28/2021
7	Horn-antenna(1-18GHz)	Schwarzbeck	BBHA9120D	267	10/26/2020	10/25/2022
8	Horn-antenna(1-18GHz)	ETS-LINDGREN	3117	00143290	02/25/2019	02/24/2021
9	Horn Antenna(18-40GHz)	Schwarzbeck	BBHA9170	BBHA9170171	02/27/2018	02/26/2021
10	Pre-Amplifier(30MHz~18GHz)	CCSRF	AMP1277	1	10/19/2020	10/18/2021
12	Pre-Amplifier(0.1~26.5GHz)	EMCI	EMC012645	980060	04/21/2020	04/20/2021
13	Low Pass Filter	MICRO-TRONICS	VLFX-950	RV142900829	N.C.R	N.C.R
14	High Pass Filter	Mini-Circuits	VHF-1200	15542	N.C.R	N.C.R
15	Filter (5450MHz~5770 MHz)	MICRO-TRONICS	BRC50704-01	2	N.C.R	N.C.R
	Filter (5690 MHz~5930 MHz)	MICRO-TRONICS	BRC50705-01	4	N.C.R	N.C.R
16	Filter (5150 MHz~5350 MHz)	MICRO-TRONICS	BRC50703-01	2	N.C.R	N.C.R
17	Filter (885 MHz~915 MHz)	MICRO-TRONICS	BRM14698	1	N.C.R	N.C.R
18	Filter (815 MHz~860 MHz)	MICRO-TRONICS	BRM14697	1	N.C.R	N.C.R
19	Filter (1745 MHz~1910 MHz)	MICRO-TRONICS	BRM14700	1	N.C.R	N.C.R
20	Filter (1922 MHz \sim 1977 MHz)	MICRO-TRONICS	BRM50715	1	N.C.R	N.C.R
21	Filter (2550 MHz)	MICRO-TRONICS	HPM13362	5	N.C.R	N.C.R
22	Filter (1532 MHz~1845 MHz)	MICRO-TRONICS	BRM50713	1	N.C.R	N.C.R
23	Filter (2.4GHz)	MICRO-TRONICS	BRM50701	5	N.C.R	N.C.R
24	RE test cable	/	RE01-RE04	/	04/21/2020	04/22/2021

NO.588 West Jindu Road,Songjiang District,Shanghai,China 201612 中国・上海・松江区金都西路588号 邮编: 201612

t(86-21)61915666 f(86-21)61915678 www.sgsgroup.com.cn t(86-21)61915666 f(86-21)61915678 e sgs.china@sgs.com

Report No.: SHEM201100968701

Page: 8 of 23

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is Monopole antenna and no consideration of replacement.

Antenna location: Refer to Appendix (Internal Photos)

Report No.: SHEM201100968701

Page: 9 of 23

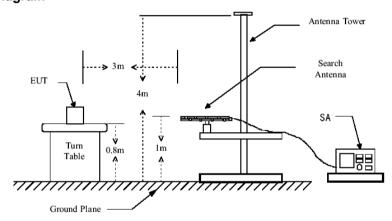
7 Radio Spectrum Matter Test Results

7.1 20dB Bandwidth

Test Requirement 47 CFR Part 15, Subpart C 15.231(c)
Test Method: ANSI C63.10 (2013) Section 6.9

Limit:

Frequency range(MHz)	Limit
70-900	No wider than 0.25% of the center frequency
Above 900	No wider than 0.5% of the center frequency


7.1.1 E.U.T. Operation

Operating Environment:

Temperature: 20 °C Humidity: 50 % RH Atmospheric Pressure: 1010 mbar

Test mode a:TX mode_Keep the EUT in transmitting with modulation mode.

7.1.2 Test Setup Diagram

7.1.3 Measurement Procedure and Data

Report No.: SHEM201100968701

Page: 10 of 23

Frequency(MHz) 20dB bandwidth (kHz)		Limit (kHz)	Results
433.92	115.8	1084.8	Pass

Test plot as follows:

Report No.: SHEM201100968701

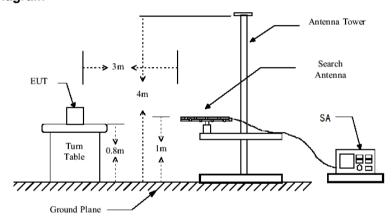
Page: 11 of 23

7.2 Dwell Time (15.231(e))

Test Requirement 47 CFR Part 15, Subpart C 15.231(e)
Test Method: ANSI C63.10 (2013) Section 7.8.4

Limit:

Device type	Limit
Intentional radiators may operate at a periodic rate	The duration of each transmission ≤1S
exceeding that specified in paragraph (a) 15.231 and may be employed for any type of operation, including operation prohibited in paragraph (a) 15.231	Silent period >30 times the duration of the transmission and ≥10S


7.2.1 E.U.T. Operation

Operating Environment:

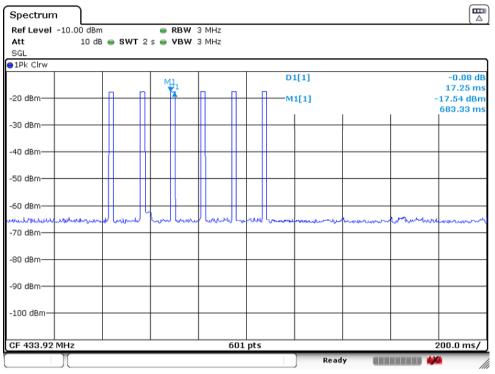
Temperature: 20 °C Humidity: 50 % RH Atmospheric Pressure: 1010 mbar

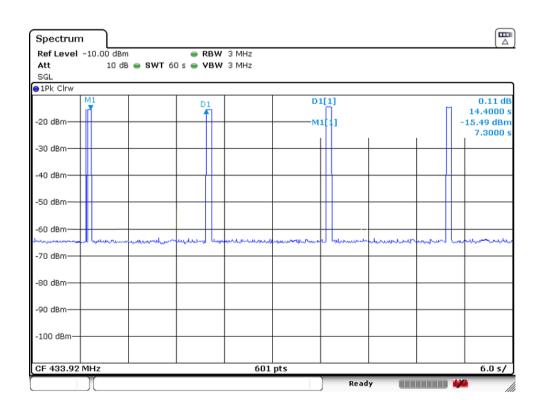
Test mode a:TX mode_Keep the EUT in transmitting with modulation mode.

7.2.2 Test Setup Diagram

7.2.3 Measurement Procedure and Data

Test mode	Frequency(MHz)	Duration of each Transmission Time(s)	Limit: not more than 1 seconds(s)	Results
Mode a	433.92	0.1035	1	Pass


Test mode	Frequency(MHz)	The silent period (s)	Limit: At least 30 times the duration of the transmission but in no case less than 10s	Results
Mode a	433.92	14.40	>10s	Pass



Report No.: SHEM201100968701

Page: 12 of 23

Test plot as follows:

Report No.: SHEM201100968701

Page: 13 of 23

7.3 Field Strength of the Fundamental Signal (15.231(e))

Test Requirement 47 CFR Part 15, Subpart C 15.231(e)
Test Method: ANSI C63.10 (2013) Section 6.5

Limit:

Fundamental frequency(MHz)	Field strength of fundamental(microvolts/meter)	Field strength of spurious emissions(microvolts/meter)
40.66-40.70	1000	100
70-130	500	50
130-174	500 to 1500	50 to 150
174-260	1500	150
260-470	1500 to 5000	150 to 500
Above 470	5000	500

Remark: the emission limit is based on measurement instrumentation employing an average detector at a distance of 3 meters. The frequencies above 1000MHz are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

7.3.1 E.U.T. Operation

Operating Environment:

Temperature: 20 °C Humidity: 50 % RH Atmospheric Pressure: 1010 mbar

Test mode a:TX mode_Keep the EUT in transmitting with modulation mode.

7.3.2 Test Setup Diagram

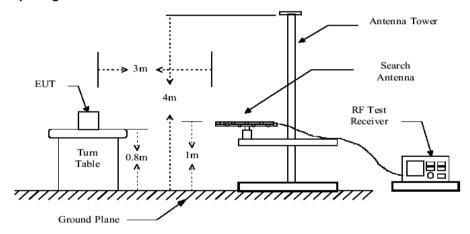


Figure 1. 30MHz to 1GHz radiated emissions test configuration

Report No.: SHEM201100968701

Page: 14 of 23

7.3.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Test channel	Freq. (MHz)	Result Level (dBµV/m)	AV Limit Line (dBµV/m)	Over Limit (dB)	Detector	Polarization	
Channel 1	433.92	80.47	92.87	-0.36	Peak	Vertical	
		400.00	65.21	72.87	-7.66	Average	Vertical
		80.21	80.83	-0.62	Peak	Horizontal	
		64.95	72.87	-7.92	Average	Horizontal	

Remark:

- Average level=Peak level-Duty Cycle Factor
- 2. Duty Cycle Factor= 20log(Duty Cycle)= -15.26dB

Report No.: SHEM201100968701

Page: 15 of 23

7.4 Radiated Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.231(e)
Test Method: ANSI C63.10 (2013) Section 6.4&6.5&6.6

Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

7.4.1 E.U.T. Operation

Operating Environment:

Temperature: 20 °C Humidity: 50 % RH Atmospheric Pressure: 1010 mbar

Test mode a:TX mode_Keep the EUT in transmitting with modulation mode.

Report No.: SHEM201100968701 Page: 16 of 23

7.4.2 Test Setup Diagram

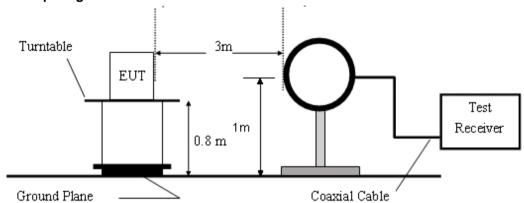


Figure 1. Blow 30MHz radiated emissions test configuration

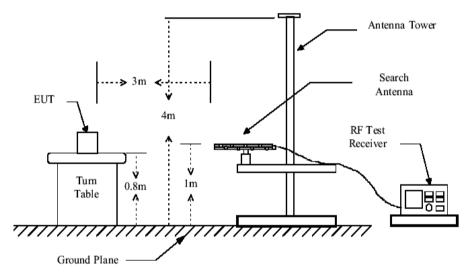


Figure 2. 30MHz to 1GHz radiated emissions test configuration

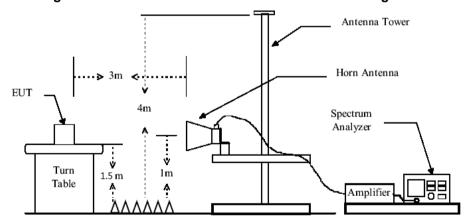


Figure 3. Above 1GHz radiated emissions test configuration

Report No.: SHEM201100968701

Page: 17 of 23

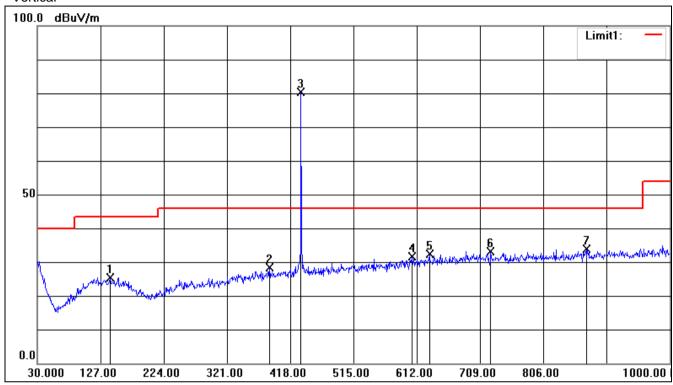
7.4.3 Measurement Procedure and Data

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark:

- 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

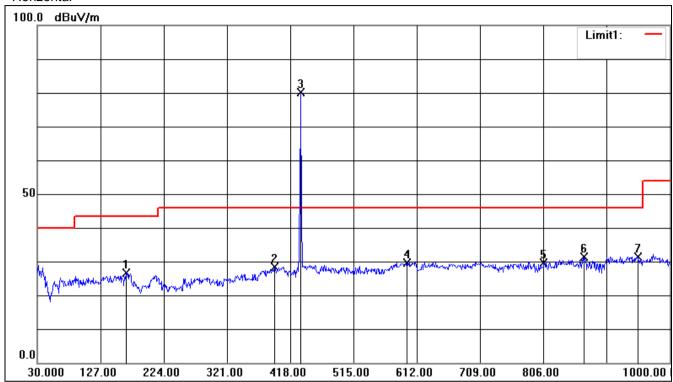
Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor


- 3) Scan from 9kHz to 6GHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown
- 5) This test item be test using two power supply (AC 120V for adapter & AC 120V for POE) and only record the worst data of DC 12V by adapter in the report.

Report No.: SHEM201100968701 Page: 18 of 23

30MHz-1GHz

Vertical



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	141.5500	5.55	19.93	25.48	43.50	-18.02	QP
2	385.9900	4.82	23.54	28.36	46.00	-17.64	QP
3	433.9200	56.18	24.29	80.47	Fu	ndamental sigr	nal
4	604.2400	4.88	26.64	31.52	46.00	-14.48	QP
5	631.4000	5.35	26.93	32.28	46.00	-13.72	QP
6	725.4900	5.20	27.82	33.02	46.00	-12.98	QP
7	871.9600	5.29	28.59	33.88	46.00	-12.12	QP

Report No.: SHEM201100968701 Page: 19 of 23

Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	165.8000	7.65	18.91	26.56	43.50	-16.94	QP
2	393.7500	4.87	23.43	28.30	46.00	-17.70	QP
3	433.9200	56.13	24.08	80.21	Fundamental signal		nal
4	597.4500	3.23	26.48	29.71	46.00	-16.29	QP
5	806.9700	1.84	27.86	29.70	46.00	-16.30	QP
6	868.0800	3.17	28.29	31.46	46.00	-14.54	QP
7	951.5000	2.08	29.30	31.38	46.00	-14.62	QP

Report No.: SHEM201100968701

Page: 20 of 23

Above 1GHz

Mark	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	polarization
1	1755.000	58.14	-17.12	41.02	54.00	-12.98	peak	Vertical
2	2200.000	55.57	-15.87	39.70	54.00	-14.30	peak	Vertical
3	2860.000	54.78	-13.82	40.96	54.00	-13.04	peak	Vertical
4	1630.000	53.44	-17.33	36.11	54.00	-17.89	peak	Horizontal
5	2075.000	55.14	-16.39	38.75	54.00	-15.25	peak	Horizontal
6	2430.000	52.97	-14.90	38.07	54.00	-15.93	peak	Horizontal

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading Level +Factor

Factor = Antenna Factor + Cable Factor - Preamplifier Factor

2) No any other emissions level which are attenuated less than 20dB below the limit. According to 15.31(o), the amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part. Hence there no other emissions have been reported.

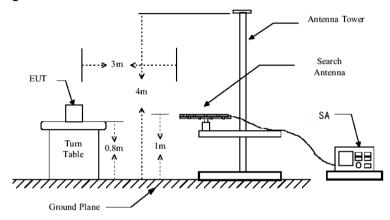
Report No.: SHEM201100968701

Page: 21 of 23

7.5 99% Bandwidth

Test Requirement RSS-210 A1.3

Test Method: RSS-Gen Section 6.7

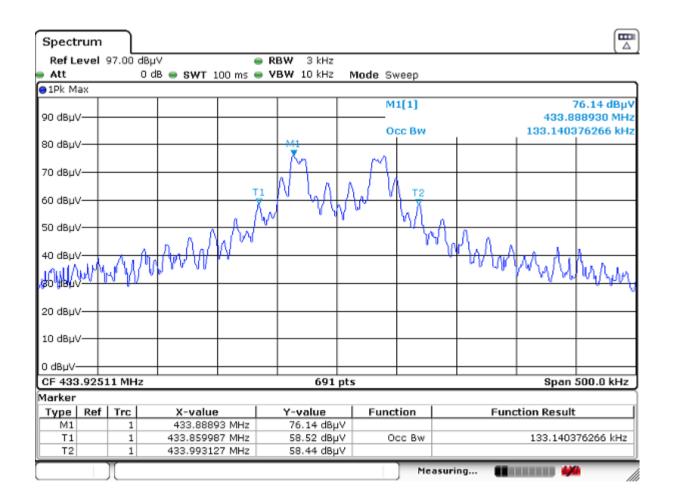

7.5.1 E.U.T. Operation

Operating Environment:

Temperature: 20 °C Humidity: 50 % RH Atmospheric Pressure: 1010 mbar

Test mode a:TX mode_Keep the EUT in transmitting with modulation mode.

7.5.2 Test Setup Diagram


7.5.3 Measurement Procedure and Data

Report No.: SHEM201100968701

Page: 22 of 23

Frequency (MHz)	Bandwidth (MHz)	Limit(MHz)	Result
433.9	0.133	1.085	PASS

Report No.: SHEM201100968701

Page: 23 of 23

8 Test Setup Photographs

Refer to the < Test Setup photos-FCC>.

9 EUT Constructional Details

Refer to the < External Photos > & < Internal Photos >.

- End of the Report -