

Test Report

Report No.: MTi240110001-06E1

Date of issue: 2024-03-26

Applicant: ALOGIC Corporation Pty Ltd.

Product: AXIE 10500mAh GLOBAL CHARGER & POWER BANK

Model(s): JUT10WH, JUT10XX (XX represents color)

FCC ID: 2ATCA-JUT10

Shenzhen Microtest Co., Ltd.

http://www.mtitest.com

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: www.mtitest.com E-mail: mti@51mti.com

Table of contents

1	Gen	eral Description	5
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	
2	Sum	mary of Test Result	7
3	Test	Facilities and accreditations	8
	3.1	Test laboratory	8
4	List	of test equipment	9
5	Eval	uation Results (Evaluation)	10
	5.1	Antenna requirement	10
6	Radi	io Spectrum Matter Test Results (RF)	11
	6.1 6.2 6.3 6.4	Conducted Emission at AC power line 20dB Occupied Bandwidth Emissions in frequency bands (below 30MHz) Emissions in frequency bands (30MHz - 1GHz)	16 19
Ph	otogr	aphs of the test setup	25
Ph	otogr	aphs of the EUT	26

Test Result Certification				
Applicant:	ALOGIC Corporation Pty Ltd.			
Address:	Level 40,140 William Street, Melbourne VIC, 3000 Australia			
Manufacturer:	ALOGIC Corporation Pty Ltd.			
Address:	Level 40,140 William Street, Melbourne VIC, 3000 Australia			
Product description				
Product name:	AXIE 10500mAh GLOBAL CHARGER & POWER BANK			
Trademark:	Journey, JRNY, JR-NY			
Model name:	JUT10WH			
Series Model(s):	JUT10XX (XX represents color)			
Standards:	47 CFR Part 15C			
Test Method:	ANSI C63.10-2013			
Date of Test				
Date of test:	2024-02-20 to 2024-03-01			
Test result:	Pass			

Test Engineer	:	Morteer Teny
		(Maleah Deng)
Reviewed By	••	leon chen
		(Leon Chen)
Approved By	•	Tom Xue
		(Tom Xue)

1 General Description

1.1 Description of the EUT

Product name:	AXIE 10500mAh GLOBAL CHARGER & POWER BANK			
Model name:	JUT10WH			
Series Model(s):	JUT10XX (XX represents color)			
Model difference:	All the models are the same circuit and module, except the model name and color.			
Electrical rating:	Input: TYPE-C1: DC 5V3A, 9V3A, 12V2.92A, 15V/2.33A, 20V1.75, 35W max Output: TYPE-C1: DC 5V3A, 9V3A, 12V2.92A, 15V/2.33A, 20V1.75, 35W max TYPE-C2: DC 5V3A, 9V3A, 12V2.92A, 15V/2.33A, 20V1.75, 35W max Wireless Output: 15W max TYPE-C1+ TYPE-C2+WPT: 15W+15W, 30W max TYPE-C1+ TYPE-C2: 15Wmax TYPE-C1/ TYPE-C2+WPT: 20+15W, 35W max Input: 100Vac-240Vac 50Hz /60Hz, 0.8A max Output: TYPE-C1: DC 5V3A, 9V3A, 12V2.5A, 15V2A, 20V1.5A, 30W max TYPE-C2: DC 5V3A, 9V3A, 12V2.5A, 15V2A, 20V1.5A, 30W max TYPE-C1+TYPE-C2: 15W max Battery: DC 3.635V 10500mAh			
Accessories:	N/A			
Hardware version:	V1.0			
Software version:	V1.0			
Test sample(s) number:	MTi240110001-06S1001			
RF specification	,			
Operating frequency range:	115-205KHz			
Modulation type:	ASK			
Antenna(s) type:	Coil Antenna			
	·			

1.2 Description of test modes

No.	Emission test modes	
Mode1	Charging(USB-C1)+Wireless Output(5W)	
Mode2	Charging(USB-C1)+Wireless Output(7.5W)	
Mode3	Charging(USB-C1)+Wireless Output(10W)	
Mode4	Charging(USB-C1)+Wireless Output(15W)	
Mode5	Wireless Output(5W)	
Mode6	Wireless Output(7.5W)	
Mode7	Wireless Output(10W)	
Mode8	Wireless Output(15W)	
Mode9	Stand by(USB-C1)	
Mode10	Stand by(AC IN)	

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Support equipment list						
Description	Model	Serial No.	Manufacturer			
wireless charging load	YBZ1.1	1	YBZ			
HUAWEI QUICK CHARGE(65W) HW-200200ZP1		JN67LSN7N03451 HUAWEI				
Support cable list						
Description	Length (m)	From	То			
1	1	1	1			

1.5 Measurement uncertainty

Measurement	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	±3.1dB
Occupied channel bandwidth	±3 %
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Standard	Requirement	Result
1	Antenna requirement	47 CFR Part 15C	47 CFR Part 15.203	Pass
2	Conducted Emission at AC power line	47 CFR Part 15C	47 CFR Part 15.207(a)	Pass
3	20dB Occupied Bandwidth	47 CFR Part 15C	47 CFR Part 15.215(c)	Pass
4	Emissions in frequency bands (below 30MHz)	47 CFR Part 15C	47 CFR Part 15.209	Pass
5	Emissions in frequency bands (30MHz - 1GHz)	47 CFR Part 15C	47 CFR Part 15.209	Pass

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.			
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China			
Telephone:	(86-755)88850135			
Fax:	(86-755)88850136			
CNAS Registration No.:	CNAS L5868			
FCC Registration No.:	448573			
IC Registration No.:	21760			
CABID:	CN0093			

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
Conducted Emission at AC power line						
1	EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2023-04-26	2024-04-25
2	Artificial mains network	Schwarzbeck	NSLK 8127	183	2023-05-05	2024-05-04
3	Artificial Mains Network	Rohde & Schwarz	ESH2-Z5	100263	2023-06-03	2024-06-02
		20dB Od	ccupied Bandwid	th		
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2023-04-26	2024-04-25
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2023-04-25	2024-04-24
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2023-04-25	2024-04-24
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2023-04-25	2024-04-24
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2023-04-26	2024-04-25
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2023-04-26	2024-04-25
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2023-05-05	2024-05-04
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2023-04-25	2024-04-24
9	DC Power Supply	Agilent	E3632A	MY40027695	2023-05-05	2024-05-04
		Emissions in frequ	iency bands (bel	low 30MHz)		
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2023-04-26	2024-04-25
2	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2023-06-11	2025-06-10
3	Amplifier	Hewlett-Packard	8447F	3113A06184	2023-04-25	2024-04-24
		Emissions in freque	ency bands (30N	ЛHz - 1GHz)		
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2023-04-26	2024-04-25
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2023-06-11	2025-06-10
4	Amplifier	Hewlett-Packard	8447F	3113A06184	2023-04-25	2024-04-24
5	Multi-device Controller	TuoPu	TPMDC	1	2023-05-04	2024-05-03

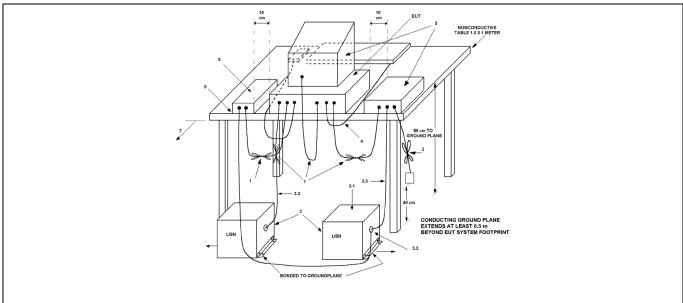
5 Evaluation Results (Evaluation)

5.1 Antenna requirement

5.1.1 Conclusion:

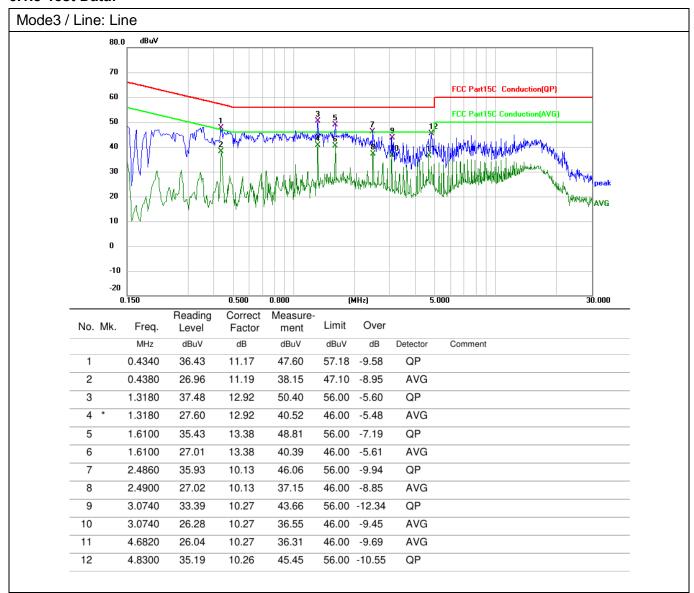
The antenna of the EUT is permanently attached.
The EUT complies with the requirement of FCC PART 15.203.

6 Radio Spectrum Matter Test Results (RF)


6.1 Conducted Emission at AC power line

Test Requirement:	Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).						
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)					
		Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	*Decreases with the logarithm of	the frequency.		_			
Test Method:	ANSI C63.10-2013 section 6.2						
Procedure:	Refer to ANSI C63.10-2013 secti line conducted emissions from u			ver-			

6.1.1 E.U.T. Operation:


Operating Environment:									
Temperature:	25.9 °C		Humidity:	44 %	Atmospheric Pressure:	101 kPa			
Pre test mode: Mode1, Mode2, Mode3, Mode4, Mode9, Mode10									
Final test mode	Final test mode: All of the listed pre-test mode were tested, only the data of the worst mode (Mode3, Mode10) is recorded in the report								

6.1.2 Test Setup Diagram:

6.1.3 Test Data:

10

11

12

2.4860

3.0740

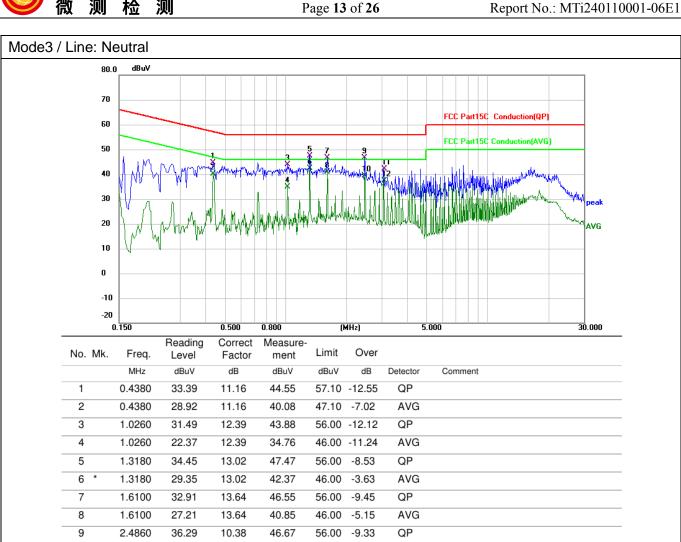
3.0740

28.88

31.89

27.15

10.38


10.29

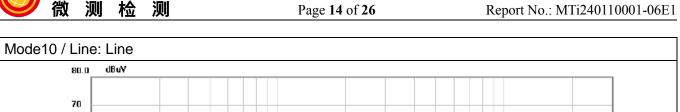
10.29

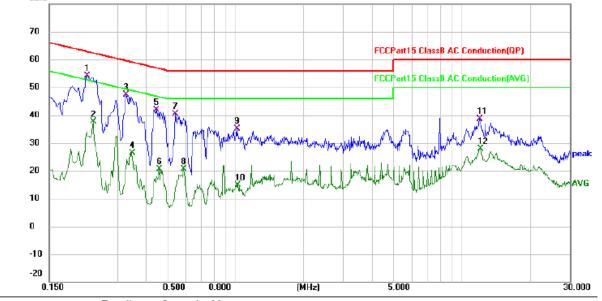
39.26

42.18

37.44

46.00 -6.74


56.00 -13.82


46.00 -8.56

AVG

AVG

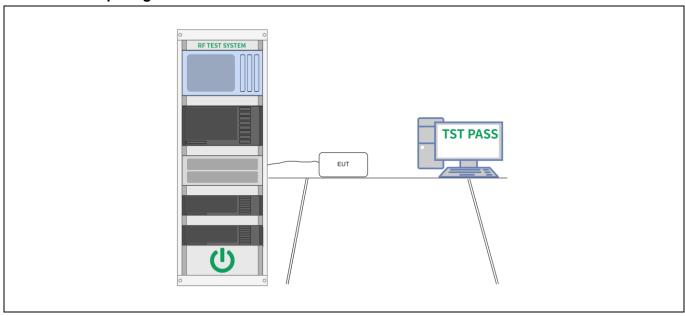
QP

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.2180	43.47	10.72	54.19	62.89	-8.70	QP	
2		0.2340	26.88	10.73	37.61	52.31	-14.70	AVG	
3		0.3260	36.36	10.94	47.30	59.55	-12.25	QP	
4		0.3460	15.35	10.98	26.33	49.06	-22.73	AVG	
5		0.4460	30.72	11.21	41.93	56.95	-15.02	QP	
6		0.4580	9.45	11.24	20.69	46.73	-26.04	AVG	
7		0.5420	28.85	11.41	40.26	56.00	-15.74	QP	
8		0.5899	9.10	11.52	20.62	46.00	-25.38	AVG	
9		1.0140	22.65	12.42	35.07	56.00	-20.93	QP	
10		1.0220	2.56	12.44	15.00	46.00	-31.00	AVG	
11		11.9580	28.11	10.45	38.56	60.00	-21.44	QP	
12		12.0140	17.52	10.45	27.97	50.00	-22.03	AVG	

70								
60							FCCPart15 ClassB AC Conduction(QP)	
50		1	3				FCCPart15 ClassB AC Conduction(AVG)	
40		MÅ.	404	5	7 10 1 *	11 *		
30	<u> </u>			₩W.	/*\ <i> </i> *\ _# #*\#####	Ny matripologian de la company	HATCH HE WE WAS TO MAKE A MAKE	,M.
20	4/\0.	1 / V	<u> </u>	, wy v		12 Andredonalina	March Carlot Mark Color	H _{HLM} /III peak
10	LA MAN	$V \setminus$	1 N N	A A	1 A A		VILIA V	AVG
0								
-10								
-20								
0.	150		0.500	0.800		MHz)	5.000	30.000
No. Mk.		ading evel	Correc		sure- ent Limit	Over		

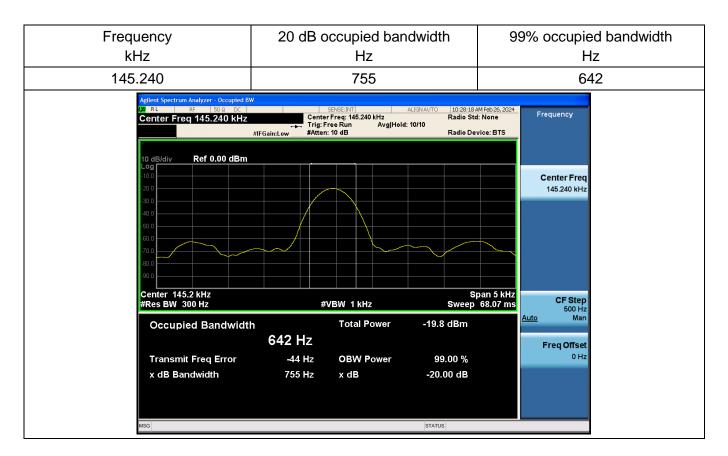
No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.3780	34.19	11.00	45.19	58.32	-13.13	QP	
2	0.3780	22.51	11.00	33.51	48.32	-14.81	AVG	
3 *	0.5700	34.26	11.49	45.75	56.00	-10.25	QP	
4	0.5700	18.99	11.49	30.48	46.00	-15.52	AVG	
5	0.8020	29.06	11.96	41.02	56.00	-14.98	QP	
6	0.8500	9.55	12.06	21.61	46.00	-24.39	AVG	
7	1.0060	28.71	12.35	41.06	56.00	-14.94	QP	
8	1.0339	8.95	12.40	21.35	46.00	-24.65	AVG	
9	1.1780	8.21	12.71	20.92	46.00	-25.08	AVG	
10	1.2500	26.02	12.86	38.88	56.00	-17.12	QP	
11	2.0300	28.20	10.47	38.67	56.00	-17.33	QP	
12	2.0579	9.93	10.46	20.39	46.00	-25.61	AVG	

6.2 20dB Occupied Bandwidth


Test Requirement:	47 CFR Part 15.215(c)
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Method:	ANSI C63.10-2013, section 6.9.2
Test Method: Procedure:	a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument. i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j). j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB do

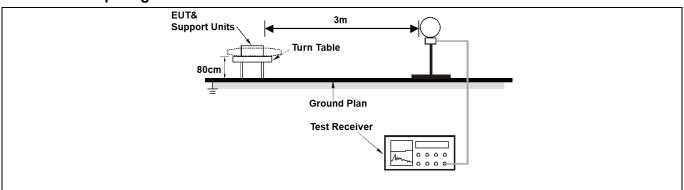
6.2.1 E.U.T. Operation:

Operating Environment:									
Temperature:	25.3 °C		Humidity:	47.8 %	Atmospheric Pressure:	99 kPa			
Pre test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6, Mode7, Mode8, M						Mode8, Mode9			
Final test mode: All of the listed pre-test mode were tested, only the data of the worst mod (Mode4) is recorded in the report						of the worst mode			


6.2.2 Test Setup Diagram:

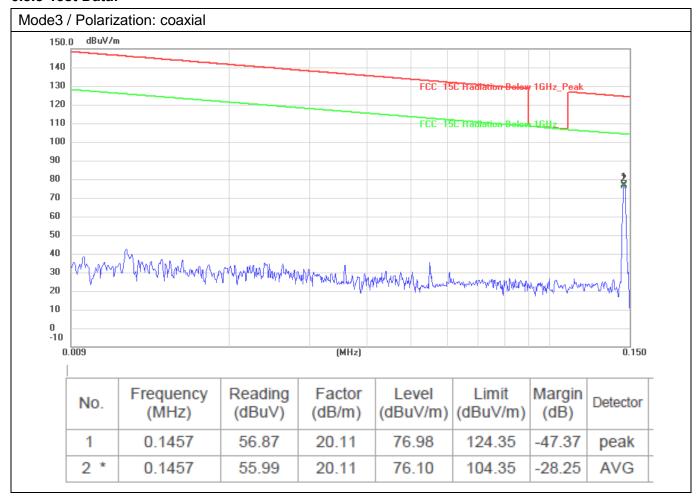
6.2.3 Test Data:

Note: Because the measured signal is CW-like, adjusting the RBW per C63.10 would not be practical since measurement bandwidth will always follow the RBW. The RBW is set to 300 Hz to perform the occupied bandwidth test.


6.3 Emissions in frequency bands (below 30MHz)

Test Requirement:	47 CFR Part 15.209					
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurement employing a CISPR quasi-peak detector except for the frequency bands of kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector As shown in § 15.35(b), for frequencies above 1000 MHz, the field strengt limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB u any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.					
Test Method:	ANSI C63.10-2013 sec					
Procedure:	ANSI C63.10-2013 sec	tion 6.4				

6.3.1 E.U.T. Operation:


Operating Environment:									
Temperature:	26 °C		Humidity:	54 %	Atmospheric Pressure:	101 kPa			
Pre test mode:		Mode	e1, Mode2, I	Mode3, Mode4	, Mode5, Mode6, Mode7,	Mode8, Mode9			
Final test mode	e:			re-test mode v	vere tested, only the data ort	of the worst mode			

6.3.2 Test Setup Diagram:

6.3.3 Test Data:

8

9

0.7273

0.9684

15.18

9.88

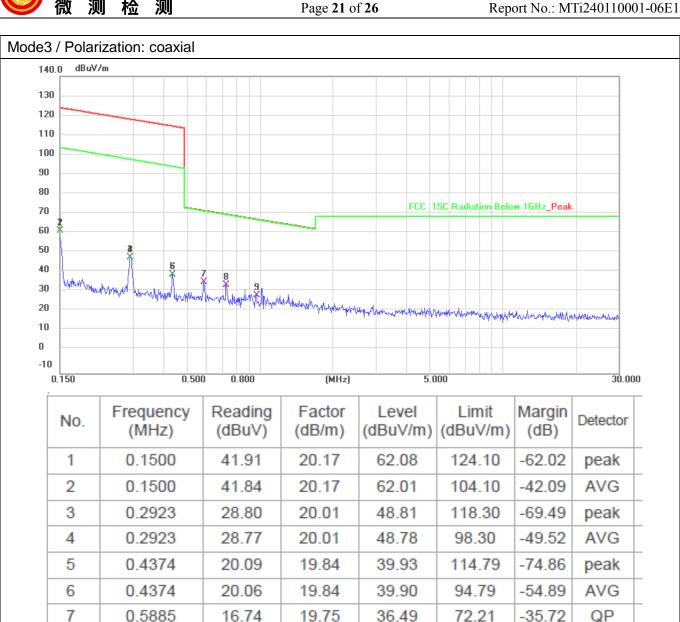
19.72

19.68

34.90

29.56

70.38

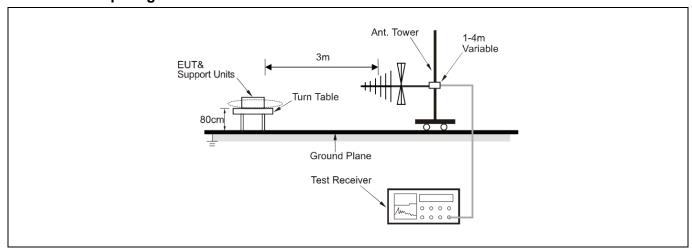

67.90

-35.48

-38.34

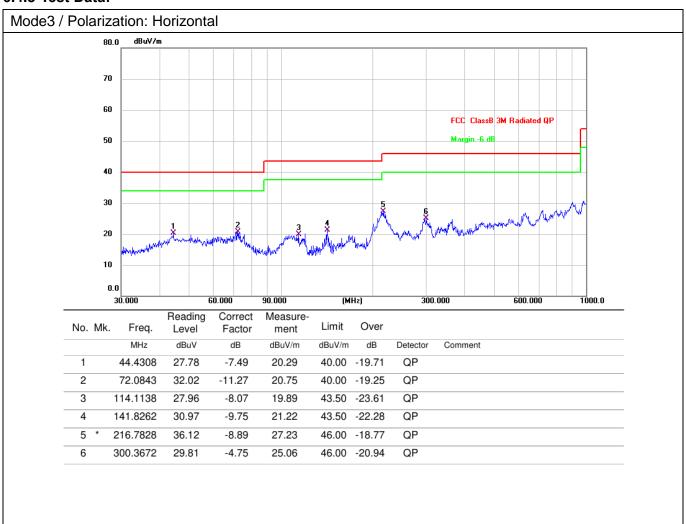
QP

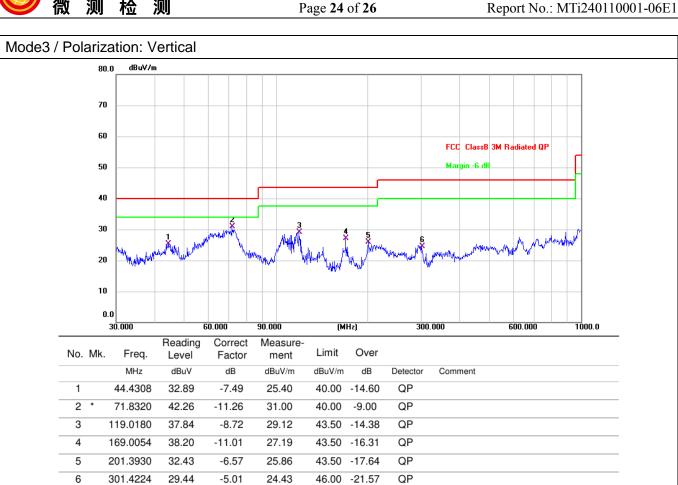
QP


6.4 Emissions in frequency bands (30MHz - 1GHz)

Test Requirement:	47 CFR Part 15.209					
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. As shown in § 15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a)and (b)of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB un any condition of modulation. For point-to-point operation under paragraph (b)of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.					
Test Method:	ANSI C63.10-2013 secti	on 6.5				
Procedure:	ANSI C63.10-2013 secti	on 6.5				

6.4.1 E.U.T. Operation:


Operating Environment:									
Temperature:	26 °C		Humidity:	54 %	Atmospheric Pressure:	101 kPa			
Pre test mode:		Mode	e1, Mode2, I	Mode3, Mode4	, Mode5, Mode6, Mode7,	Mode8, Mode9			
Final test mode	e:			re-test mode v	vere tested, only the data ort	of the worst mode			


6.4.2 Test Setup Diagram:

6.4.3 Test Data:

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Photographs of the EUT

Refer to Appendix - EUT Photos

----End of Report----