Bundesnetzagentur		CTC advanced
s.T.a	TEST R	
BNetzA-CAB-02/21-102	Test report no.:	1-7415/18-02-03-B
Testing	laboratory	Applicant
CTC advanced GmbH Untertuerkheimer Strasse 66117 Saarbruecken / Ge Phone: + 49 681 5 98 - Fax: + 49 681 5 98 - Internet: <u>http://www.ctca</u> e-mail: <u>mail@ctcadvar</u>	rmany · 0 · 9075 idvanced.com	Environics Oy Sammonkatu 12 50100 Mikkeli / FINLAND Phone: -/- Contact: Mr. Jussi Miettunen e-mail: jussi.miettunen@environics.fi Phone: +35 84 08 20 36 70
according to DIN EN IS Deutsche Akkreditierungs The accreditation is va	area of testing) is accredited SO/IEC 17025 (2005) by the stelle GmbH (DAkkS) lid for the scope of testing the accreditation certificate with	Manufacturer Environics Oy Sammonkatu 12 50100 Mikkeli / FINLAND
	Test sta	andard/s
FCC - Title 47 CFR Part 15	FCC - Title 47 of the Code of frequency devices	f Federal Regulations; Chapter I; Part 15 - Radio
RSS - 247 Issue 2	Digital Transmission System Licence - Exempt Local Area	s (DTSs), Frequency Hopping Systems (FHSs) and a Network (LE-LAN) Devices
RSS - Gen Issue 5	Spectrum Management and	Telecommunications Radio Standards Specification

- General Requirements for Compliance of Radio Apparatus

For further applied test standards please refer to section 3 of this test report.

Test Item							
Kind of test item: Model name: FCC ID: IC:	Handheld gas detector ChemProX 2ATAB-CHMPRX 25121-CHMPRX	RP-76/37					
Frequency: Technology tested: Antenna: Power supply:	DTS band 2400 MHz to 2483.5 MHz WLAN Integrated antenna 115 V AC by mains adapter						
Temperature range:	-32°C to +55°C	E					

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Mihail Dorongovskij Lab Manager Radio Communications & EMC

Test performed:

Marco Bertolino Lab Manager Radio Communications & EMC

1 Table of contents

1	Table	of contents	2
2	Gener	al information	3
	2.2	Notes and disclaimer Application details Test laboratories sub-contracted	3
3	Test s	tandard/s and references	4
4	Test e	nvironment	5
5	Test it	em	5
		General description Additional information	
6	Descr	iption of the test setup	6
	6.2 6.3 6.4 6.5	Shielded semi anechoic chamber Shielded fully anechoic chamber Radiated measurements > 18 GHz AC conducted Conducted measurements with peak power meter & spectrum analyzer	8 10 11 12
7	•	nce of testing	
	7.2 7.3	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 18 GHz Sequence of testing radiated spurious above 18 GHz	14 15
8	Measu	irement uncertainty	17
9	Summ	ary of measurement results	18
10	Add	itional comments	19
11	Add	itional EUT parameter	20
12	Mea	surement results	21
	12.1 12.2 12.3 12.4 12.5 12.6 12.7	Antenna gain Maximum output power Band edge compliance radiated Spurious emissions radiated below 30 MHz Spurious emissions radiated 30 MHz to 1 GHz Spurious emissions radiated above 1 GHz Spurious emissions conducted below 30 MHz (AC conducted)	24 26 30 37 48
13	Obs	ervations	63
Anr	nex A	Glossary	64
Anr	nex B	Document history	65
Anr	nex C	Accreditation Certificate – D-PL-12076-01-04	65
Anr	nex D	Accreditation Certificate – D-PL-12076-01-05	66

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-7415/18-02-03-A and dated 2019-06-14.

2.2 Application details

Date of receipt of order:	2019-05-14
Date of receipt of test item:	2019-05-20
Start of test:	2019-05-21
End of test:	2019-05-24
Person(s) present during the test:	-/-

2.3 Test laboratories sub-contracted

None

3 Test standard/s and references

Test standard	Date	Description
FCC - Title 47 CFR Part 15	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices
RSS - Gen Issue 5	April 2018	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus
Guidance	Version	Description
DTS: KDB 558074 D01	v05r02	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES American National Standard for Methods of Measurement of
ANSI C63.4-2014	-/-	Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

Temperature	:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests No tests under extreme temperature conditions required. No tests under extreme temperature conditions required.
Relative humidity content	:		42 %
Barometric pressure	:		1016 hpa
Power supply	:	V _{nom} V _{max} V _{min}	 115 V AC by mains adapter No tests under extreme voltage conditions required. No tests under extreme voltage conditions required.

5 Test item

5.1 General description

Kind of test item :	Handheld gas detector
Type identification :	ChemProX
HMN :	-/-
PMN :	ChemProX
HVIN :	ChemProX
FVIN :	-/-
S/N serial number :	Radiated: CPX10000068
Hardware status :	-/-
Software status :	0.6.0.5
Firmware status :	-/-
Frequency band :	DTS band 2400 MHz to 2483.5 MHz
Type of radio transmission : Use of frequency spectrum :	DSSS, OFDM
Type of modulation :	(D)BPSK, (D)QPSK, 16 – QAM, 64 – QAM
Number of channels :	11 with 20 MHz channel bandwidth & 9 with 40 MHz channel bandwidth
Antenna :	Integrated antenna
Power supply :	115 V AC by mains adapter
Temperature range :	-32°C to +55°C

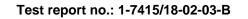
5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report:

1-7415/18-02-01_AnnexA 1-7415/18-02-01_AnnexB 1-7415/18-02-01_AnnexD

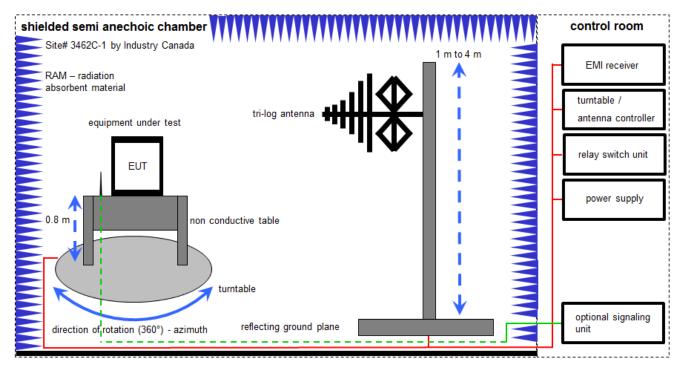
6 Description of the test setup


Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

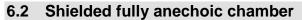

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

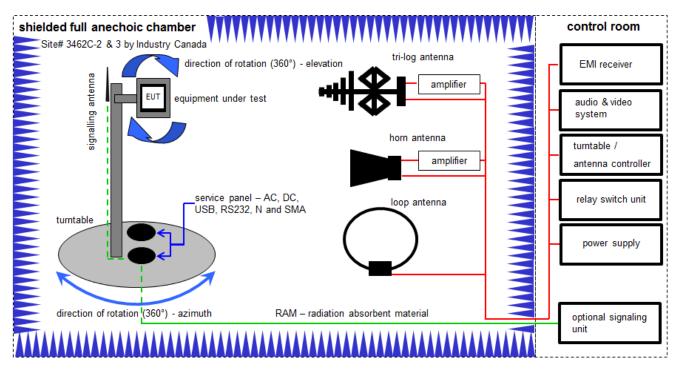
6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

CTC I advanced

Measurement distance: tri-log antenna 10 meter; EMC32 software version: 10.30.0


FS = UR + CL + AF


(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

<u>Example calculation:</u> FS [dBµV/m] = 12.35 [dBµV/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dBµV/m] (35.69 µV/m)

Equipment table:

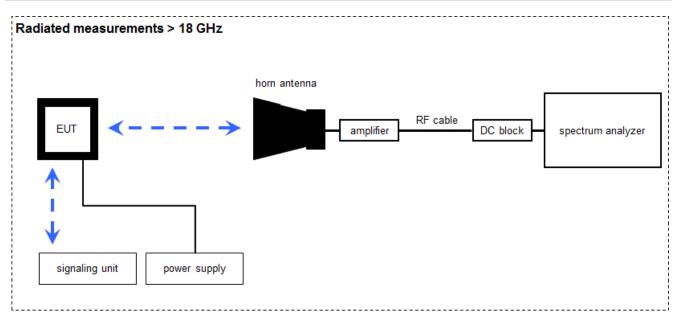
No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023	-/-	300000551	ne	-/-	-/-
3	A	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	12.12.2018	11.12.2019
4	А	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vIKI!	15.01.2018	14.01.2020
5	A	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
6	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
7	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
8	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	371	300003854	vIKI!	24.11.2017	23.11.2020

Measurement distance: tri-log antenna and horn antenna 3 meter; loop antenna 3 meter

 $\begin{array}{l} FS = UR + CA + AF \\ (FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor) \\ \underline{Example \ calculation:} \\ FS \ [dB\mu V/m] = 40.0 \ [dB\mu V/m] + (-35.8) \ [dB] + 32.9 \ [dB/m] = 37.1 \ [dB\mu V/m] \ (71.61 \ \mu V/m) \end{array}$

OP = AV + D - G + CA (OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path) <u>Example calculation:</u> OP [dBm] = -65.0 [dBm] + 50 [dB] - 20 [dBi] + 5 [dB] = -30 [dBm] (1 μW)

CTC I advanced


member of RWTÜV group

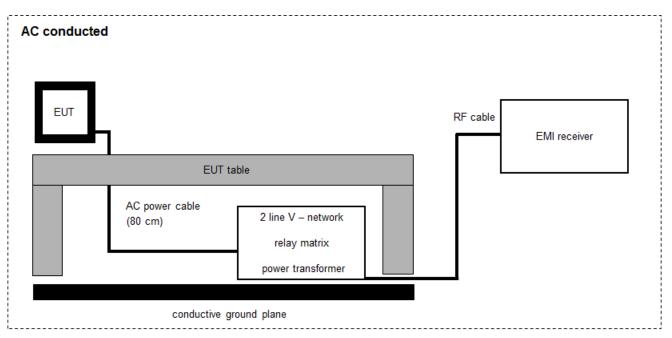
Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A, B, C	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
2	A, B, C	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
3	А, В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3089	300000307	vIKI!	07.07.2017	06.07.2019
4	С	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	viKi!	11.04.2019	10.04.2021
5	А	Band Reject filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	11	300003351	ev	-/-	-/-
6	A, B, C	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	14.09.2018	13.12.2019
7	A	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
8	Α	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
9	A	High Pass Filter	VHF-3500+	Mini Circuits	-/-	400000193	ne	-/-	-/-
10	А	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
11	A	Broadband Amplifier 5-13 GHz	CBLU5135235	CERNEX	22010	300004491	ev	-/-	-/-
12	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
13	A, B, C	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO	-/-	300004682	ne	-/-	-/-
14	A, B, C	PC	ExOne	F+W	-/-	300004703	ne	-/-	-/-
15	A, B, C	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-

6.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

FS = UR + CA + AF

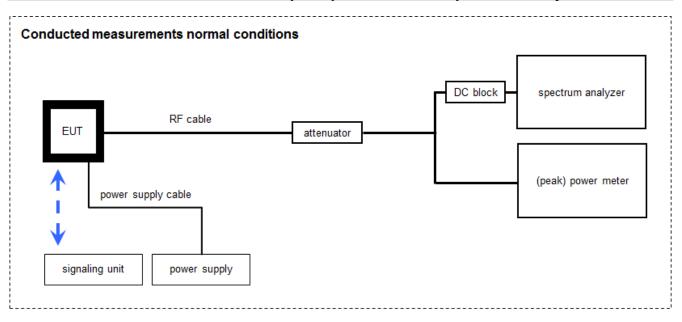

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor) <u>Example calculation</u>:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Microwave System Amplifier, 0.5-26.5 GHz	83017A	HP	00419	300002268	ev	-/-	-/-
2	A	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	01096	300000486	viKi!	13.12.2017	12.12.2019
3	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	17.12.2018	16.12.2019
4	А	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
5	А	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
6	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-

FS = UR + CF + VC


(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	892475/017	300002209	vIKI!	13.12.2017	12.12.2019
2	A	RF-Filter-section	85420E	HP	3427A00162	300002214	NK!	-/-	-/-
3	A	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	-/-	-/-
4	А	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	12.12.2018	11.12.2019

CTC I advanced

6.5 Conducted measurements with peak power meter & spectrum analyzer

WLAN tester version: 1.1.13; LabView2015

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А, В	Hygro-Thermometer	-/-, 5-45°C, 20- 100%rF	Thies Clima	-/-	400000108	ev	11.05.2018	10.05.2020
2	A, B	PC Tester R005	Intel Core i3 3220/3,3 GHz, Prozessor	-/-	2V2403033A45 23	300004589	ne	-/-	-/-
3	А, В	Teststand	Teststand Custom Sequence Editor	National Instruments GmbH	-/-	300004590	ne	-/-	-/-
4	В	Power Sensor	NRP-Z81	R&S	100010	300003780	vlKI!	11.12.2018	10.12.2020
5	А, В	RF-Cable	ST18/SMAm/SMAm/ 60	Huber & Suhner	Batch no. 606844	400001181	ev	-/-	-/-
6	А, В	Coax Attenuator 10 dB 2W 0-40 GHz	MCL BW-K10- 2W44+	Mini Circuits	-/-	400001186	ev	-/-	-/-
7	Α, Β	Synchron Power Meter	SPM-4	СТС	1	300005580	ev	-/-	-/-
8	Α, Β	DC-Blocker	WA7046	Weinschel Associates	-/-	400001310	ev	-/-	-/-
9	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	17.12.2018	16.12.2019

CTC I advanced

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

8 Measurement uncertainty

Measurement uncertainty									
Test case	Uncertainty								
Antenna gain	± 3	3 dB							
Power spectral density	± 1.1	15 dB							
DTS bandwidth	± 100 kHz (depend	s on the used RBW)							
Occupied bandwidth	± 100 kHz (depend	s on the used RBW)							
Maximum output power conducted	± 1.15 dB								
Detailed spurious emissions @ the band edge - conducted	± 1.15 dB								
Band edge compliance radiated	± 3	3 dB							
	> 3.6 GHz	± 1.15 dB							
Spurious emissions conducted	> 7 GHz	± 1.15 dB							
	> 18 GHz	± 1.89 dB							
	≥ 40 GHz	± 3.12 dB							
Spurious emissions radiated below 30 MHz	± 3	3 dB							
Spurious emissions radiated 30 MHz to 1 GHz ± 3 dB									
Spurious emissions radiated 1 GHz to 12.75 GHz ± 3.7 dB									
Spurious emissions radiated above 12.75 GHz	± 4.5 dB								
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.	6 dB							

9 Summary of measurement results

TC Identifier	The content and verdict of the performed test cases are listed below.								
	This test report is only a partial test repor								
	There were deviations from the technical specifications ascertained								
	No deviations from the technical specifications were ascertained								

CTC I advanced

RF-Testing		R Part 15 247, Issue 2 See table!			e table!	2019-08-26			Delta tests accordin customer demand		
Test specification clause	Test case	Guideline	Tempe condi		Power source voltages	Mode	с	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (f)(ii)	Antenna gain	-/-	Nom	inal	Nominal	DSSS		-,	/-		-/-
§15.35	Duty cycle	-/-	Nom	inal	Nominal	DSSS OFDM		-,	/-		-/-
§15.247(e) RSS - 247 / 5.2 (b)	Power spectral density	KDB 558074 DTS clause: 8.4	Nom	inal	Nominal	DSSS OFDM				\boxtimes	-/-
§15.247(a)(2) RSS - 247 / 5.2 (a)	DTS bandwidth	KDB 558074 DTS clause: 8.2	Nom	inal	Nominal	DSSS OFDM				\boxtimes	-/-
RSS Gen clause 4.6.1	Occupied bandwidth	-/-	Nom	inal	Nominal	DSSS OFDM				\boxtimes	-/-
§15.247(b)(3) RSS - 247 / 5.4 (d)	Maximum output power	KDB 558074 DTS clause: 8.3.1.3	Nom	inal	Nominal	DSSS OFDM	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge – cond.	-/-	Nominal		Nominal	DSSS OFDM					-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance rad.	KDB 558074 DTS clause: 8.7.3	Nom	inal	Nominal	DSSS OFDM	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5	TX spurious emissions cond.	KDB 558074 DTS clause: 8.5	Nom	inal	Nominal	DSSS OFDM					-/-
§15.209(a) RSS-Gen	TX spurious emissions rad. below 30 MHz	-/-	Nom	inal	Nominal	DSSS OFDM	X				-/-
§15.247(d) RSS - 247 / 5.5 RSS-Gen	TX spurious emissions rad. 30 MHz to 1 GHz	-/-	Nom	inal	Nominal	DSSS OFDM	X				-/-
§15.247(d) RSS - 247 / 5.5 RSS-Gen	TX spurious emissions rad. above 1 GHz	-/-	Nom	inal	Nominal	DSSS OFDM	\boxtimes				-/-
§15.109 RSS-Gen	RX spurious emissions rad. 30 MHz to 1 GHz	-/-	Nominal		Nominal	RX / idle	\boxtimes				-/-
§15.109 RSS-Gen	RX spurious emissions rad. above 1 GHz	-/-	Nom	inal	Nominal	RX / idle	X				-/-
§15.107(a) §15.207	Conducted emissions < 30 MHz	-/-	Nom	inal	Nominal	DSSS OFDM	X				-/-

Notes:

С	Compliant	NC	Not compliant	NA	Not applicable	NP	Not performed
---	-----------	----	---------------	----	----------------	----	---------------

10 Additional comments

Reference documents:	Test instructions
	Module test report: 1-3116_16-01-17 CTC advanced
Special test descriptions:	None

Configuration descriptions: Used power settings for all measurements (according module report)!

	Channel 1	Channel 6	Channel 11
b-mode	16	16	16
g-mode	15	15	15
nHT20-mode	14	14	14
	Channel 3	Channel 7	Channel 9
nHT40-mode	10	10	10

Provided channels:

Channels with 20 MHz channel bandwidth:

channel number & center frequency													
channel	1	2	3	4	5	6	7	8	9	10	11	12	13
f _c / MHz	2412	2417	2422	2427	2432	2437	2442	2447	2452	2457	2462	2467	2472

Channels with 40 MHz channel bandwidth:

channel number & center frequency													
channel	-/-	-/-	3	4	5	6	7	8	9	10	11	-/-	-/-
fc / MHz	-/-	-/-	2422	2427	2432	2437	2442	2447	2452	2457	2462	-/-	-/-

Note: The channels used for the tests are marked in bold in the list.

11 Additional EUT parameter

Test mode:		No test mode available Iperf was used to ping another device with the largest support packet size
	\boxtimes	Test mode available Special software is used. EUT is transmitting pseudo random data by itself
Modulation types:	\boxtimes	Wide Band Modulation (None Hopping – e.g. DSSS, OFDM)
		Frequency Hopping Spread Spectrum (FHSS)
Antennas and transmit operating modes:		 Operating mode 1 (single antenna) Equipment with 1 antenna, Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)
		 Operating mode 2 (multiple antennas, no beamforming) Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.
		 Operating mode 3 (multiple antennas, with beamforming) Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements.

12 Measurement results

12.1 Antenna gain

Description:

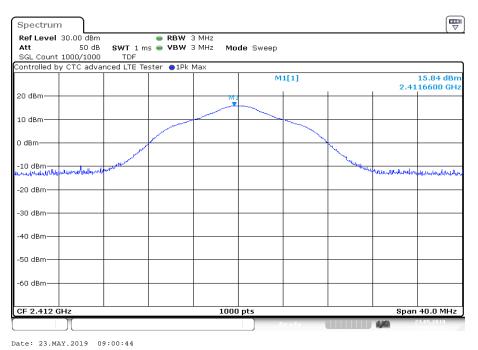
The antenna gain of the complete system is calculated by the difference of radiated power (@ 3 MHz) in EIRP and the conducted power (@ 3 MHz) of the module.

Measurement:

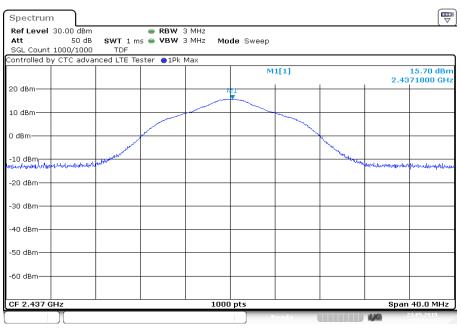
Measurement parameter						
Detector	Peak					
Sweep time	Auto					
Resolution bandwidth	3 MHz					
Video bandwidth	3 MHz / 10 MHz					
Trace mode	Max hold					
Test setup	See chapter 6.5 A (conducted) See chapter 6.2 B (radiated)					
Measurement uncertainty	See chapter 8					

Limits:

FCC	IC
6 dBi / > 6 dBi output power and	power density reduction required

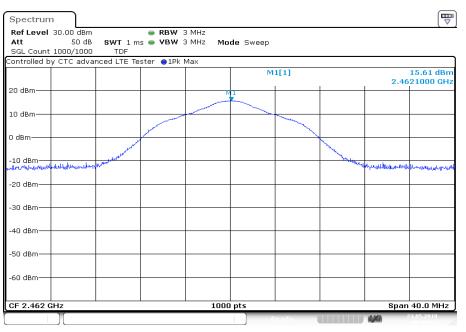

Results:

	lowest channel	middle channel	highest channel
Conducted power / dBm Measured with DSSS modulation	15.8	15.7	15.6
Radiated power / dBm Measured with DSSS modulation	17.0	17.5	17.0
Gain [dBi] / Calculated	+1.2	+1.8	+1.4



Plots: DSSS / b - mode

Plot 1: Lowest channel


Plot 2: Middle channel

Date: 23.MAY.2019 09:07:44

Plot 3: Highest channel

Date: 23.MAY.2019 09:09:51

12.2 Maximum output power

Description:

Measurement of the maximum conducted peak output power. The measurements are performed using the data rate identified in the previous chapter.

Measurement:

Measurement parameter		
According to DTS clause: 8.3.1.3		
Peak power meter		
Test setup See chapter 6.5 B		
Measurement uncertainty	See chapter 8	

Limits:

FCC	IC	
Conducted 1.0 W / 30 dBm with an antenna gain of max. 6 dBi		
Conducted limit with an gain of XX dBi = XX dBm		

Results:

	maximum output power / dBm		
	lowest channel	middle channel	highest channel
Output power conducted DSSS / b – mode	18.0	17.7	17.7
Output power conducted OFDM / g – mode	20.8	20.6	20.8
Output power conducted OFDM / n HT20 – mode	20.1	19.9	19.9
Output power conducted OFDM / n HT40 – mode	16.7	17.0	17.3

Results: output power added from module report 1-3116_16-01-17 (CTC advanced)

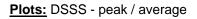
	Maximum Output Power [dBm]		
Frequency	2412 MHz	2437 MHz	2462 MHz
Output power conducted DSSS / b – mode	18.0	18.4	18.6
Output power conducted OFDM / g – mode	20.8	20.8	21.3
Output power conducted OFDM / n HT20 – mode	20.3	20.3	20.8
Frequency	2422 MHz	2437 MHz	2452 MHz
Output power conducted OFDM / n HT40 – mode	16.9	17.6	17.7

12.3 Band edge compliance radiated

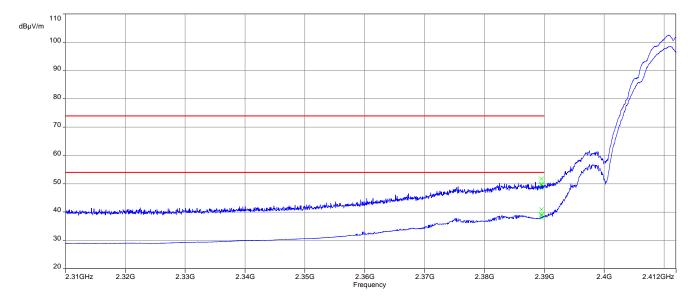
Description:

Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to the lowest channel for the lower restricted band and to the highest channel for the upper restricted band. The measurement is repeated for all modulations. Measurement distance is 3 meter.

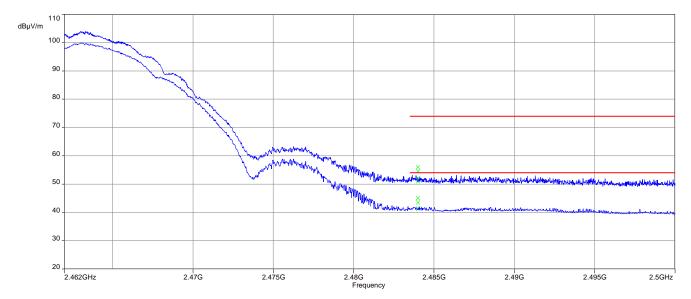
Measurement:

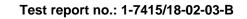

	Measurement parameter for peak measurements	Measurement parameter for average measurements	
	measurements	According to DTS clause: 8.7.3	
Detector	Peak	RMS	
Sweep time	Auto	Auto	
Resolution bandwidth	1 MHz	100 kHz	
Video bandwidth	1 MHz	300 kHz	
Span	See plot	2 MHz	
Trace mode	Max. hold	RMS Average over 101 sweeps	
Analyzer function	-/-	Band power function (Compute the power by integrating the spectrum over 1 MHz)	
Test setup	See chapter 6.2 B		
Measurement uncertainty	See chapter 8		

Limits:

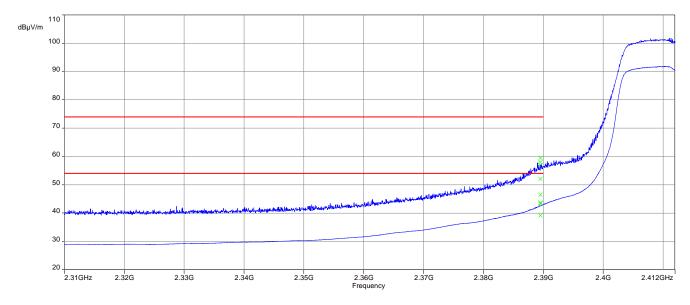

FCC	IC
	@ 3 m (Peak) @ 3 m (AVG)

Results:

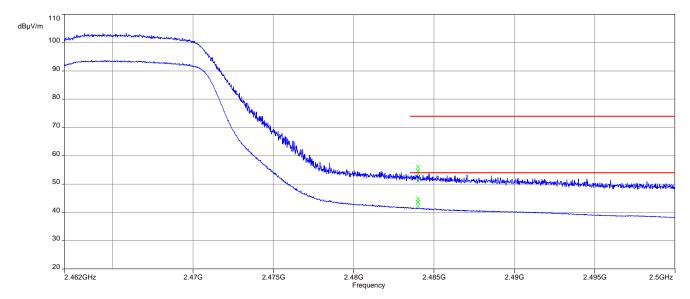

band edge compliance radiated / (dBμV / m) @ 3 m			
DSSS OFDM OFDM (40 MHz nominal channel bandwidth)			
Lower	51.7 (Peak)	59.4 (Peak)	57.9 (Peak)
band edge	41.0 (AVG)	46.4 (AVG)	45.7 (AVG)
Upper	56.0 (Peak)	56.0 (Peak)	56.3 (Peak)
band edge	45.1 (AVG)	44.8 (AVG)	44.4 (AVG)


Plot 1: TX mode, lower band edge, vertical & horizontal polarization

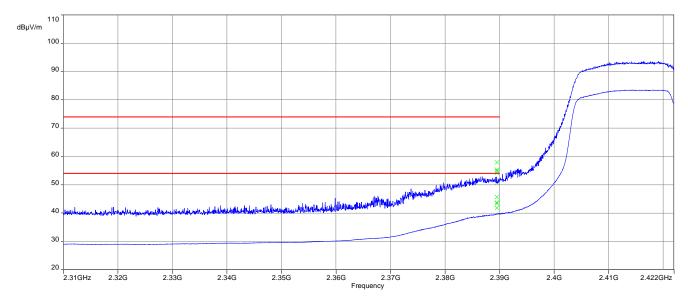
Plot 2: TX mode, upper band edge, vertical & horizontal polarization

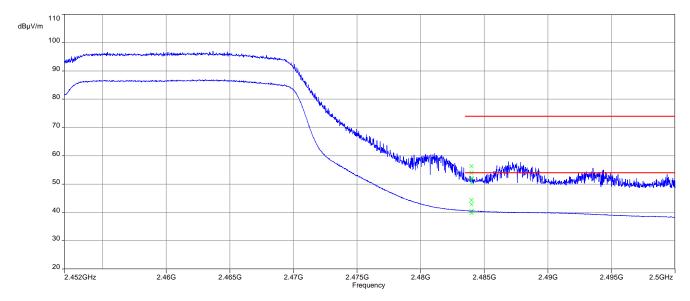


CTC I advanced



Plot 1: TX mode, lower band edge, vertical & horizontal polarization


Plot 2: TX mode, upper band edge, vertical & horizontal polarization


CTC I advanced

Plots: OFDM (40 MHz bandwidth) - mode peak / average

Plot 1: TX mode, lower band edge, vertical & horizontal polarization

Plot 2: TX mode, upper band edge, vertical & horizontal polarization

12.4 Spurious emissions radiated below 30 MHz

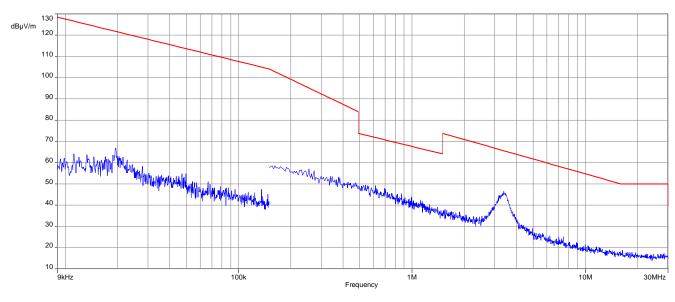
Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The limits are recalculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

Measurement:

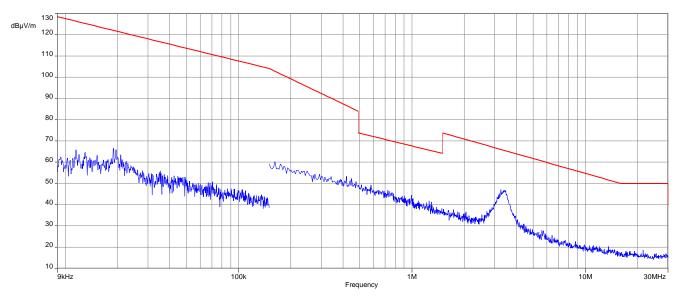
Measurement parameter			
Detector	Peak / Quasi Peak		
Sweep time	Auto		
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz		
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz		
Span	9 kHz to 30 MHz		
Trace mode	Max Hold		
Measured modulation	 DSSS b – mode OFDM g – mode OFDM n HT20 – mode OFDM n HT40 – mode 		
Test setup	See chapter 6.2 C		
Measurement uncertainty	See chapter 8		

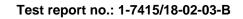
Limits:


FCC			IC
Frequency / MHz	Field Strength / (dBµV / m)		Measurement distance / m
0.009 - 0.490	2400/F(kHz)		300
0.490 – 1.705	24000/F(kHz)		30
1.705 - 30.0	30		30

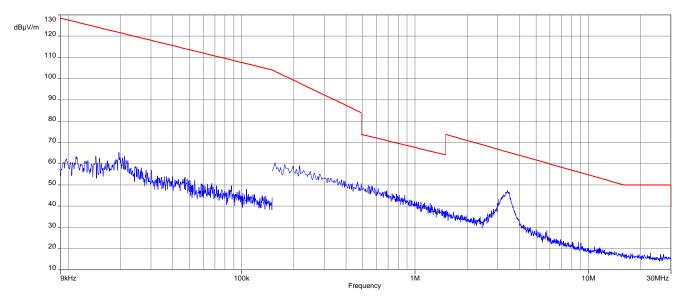
Results:

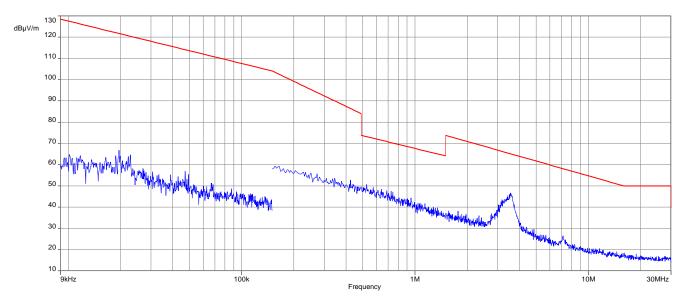
TX spurious emissions radiated < 30 MHz / (dB μ V / m) @ 3 m					
Frequency / MHz Detector Level / (dBµV / m)					
All detected peaks are more than 20 dB below the limit.					

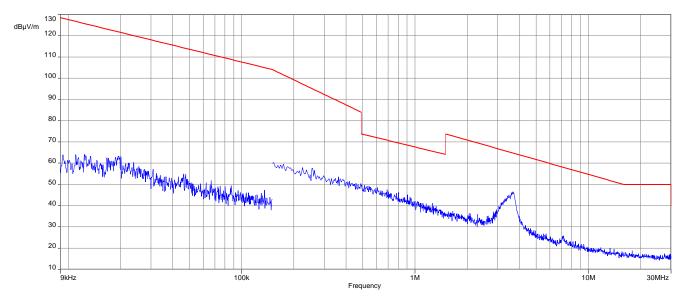


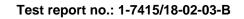

Plots: DSSS

Plot 1: 9 kHz to 30 MHz, lowest channel

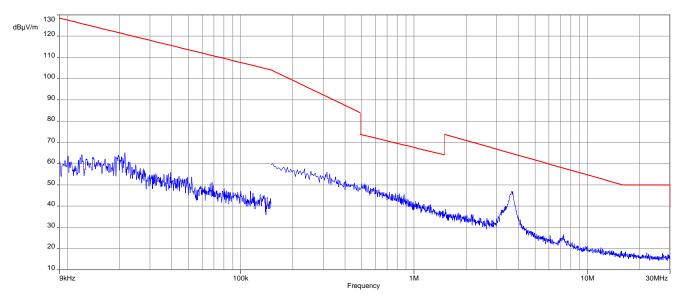



Plot 3: 9 kHz to 30 MHz, highest channel

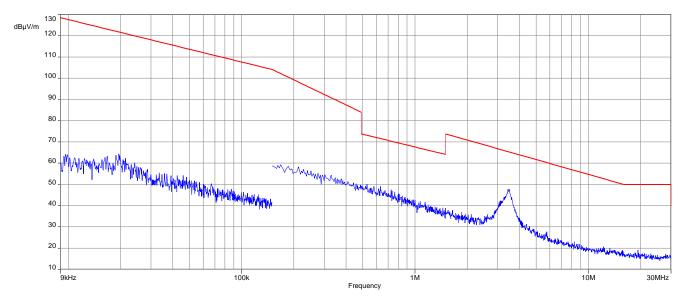


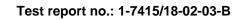

Plots: OFDM (20 MHz nominal channel bandwidth)

Plot 1: 9 kHz to 30 MHz, lowest channel


Plot 2: 9 kHz to 30 MHz, middle channel

Plot 3: 9 kHz to 30 MHz, highest channel




Plots: OFDM (40 MHz nominal channel bandwidth)

Plot 1: 9 kHz to 30 MHz, lowest channel

Plot 2: 9 kHz to 30 MHz, middle channel

Plot 3: 9 kHz to 30 MHz, highest channel

12.5 Spurious emissions radiated 30 MHz to 1 GHz

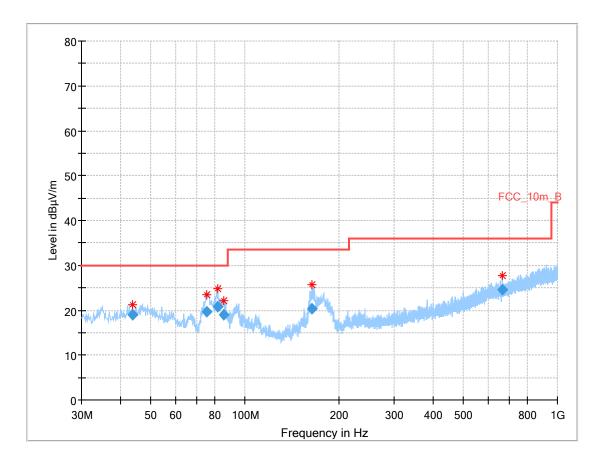
Description:

Measurement of the radiated spurious emissions and cabinet radiations below 1 GHz.

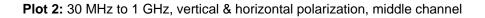
Measurement:

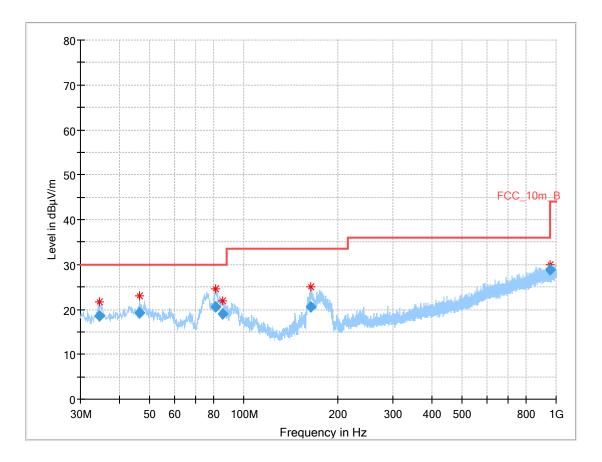
Measureme	nt parameter
Detector	Peak / Quasi Peak
Sweep time	Auto
Resolution bandwidth	120 kHz
Video bandwidth	3 x RBW
Span	30 MHz to 1 GHz
Trace mode	Max Hold
Measured modulation	 ☑ DSSS b – mode □ OFDM g – mode ☑ OFDM n HT20 – mode ☑ OFDM n HT40 – mode ☑ RX / Idle – mode
Test setup	See chapter 6.1 A
Measurement uncertainty	See chapter 8

Limits:

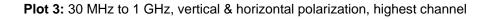

FCC			IC
intentional radiator is operating, the at least 20 dB below that in the 100 k power, based on either an RF com specified in Section 15.209(a) is not	radio frequency po Hz bandwidth with ducted or a radiate required. In additic	wer that is produce n the band that cor d measurement. A n, radiated emissio	ead spectrum or digitally modulated ed by the intentional radiator shall be ntains the highest level of the desired Attenuation below the general limits ons which fall in the restricted bands, a limits specified in §15.209(a) (see
Frequency / MHz	Field Strenat	n / (dBuV / m)	Measurement distance / m

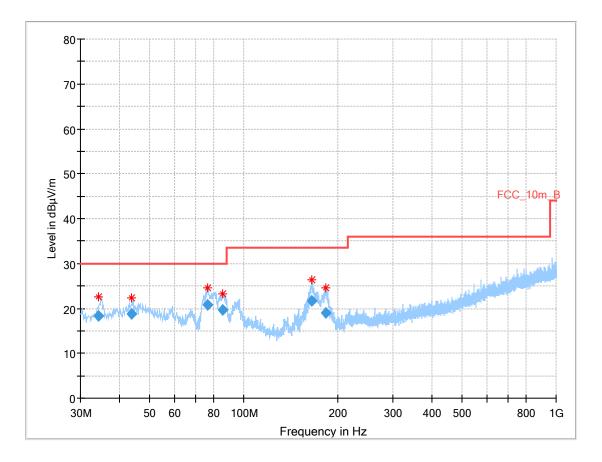
Frequency / MHz	Field Strength / (dBµV / m)	Measurement distance / m
30 – 88	30.0	10
88 – 216	33.5	10
216 - 960	36.0	10

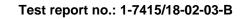

Plot: DSSS

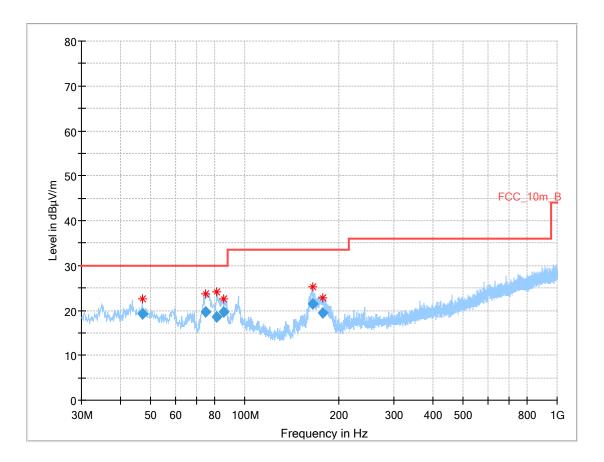

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, lowest channel

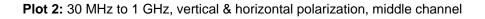
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
43.576	19.01	30.0	10.99	1000	120	101.0	v	298.0	15
75.721	19.75	30.0	10.25	1000	120	160.0	v	323.0	11
81.798	20.68	30.0	9.32	1000	120	160.0	v	332.0	11
85.745	19.02	30.0	10.98	1000	120	160.0	v	285.0	11
163.643	20.35	33.5	13.15	1000	120	98.0	v	163.0	11
665.080	24.68	36.0	11.32	1000	120	160.0	Н	330.0	21

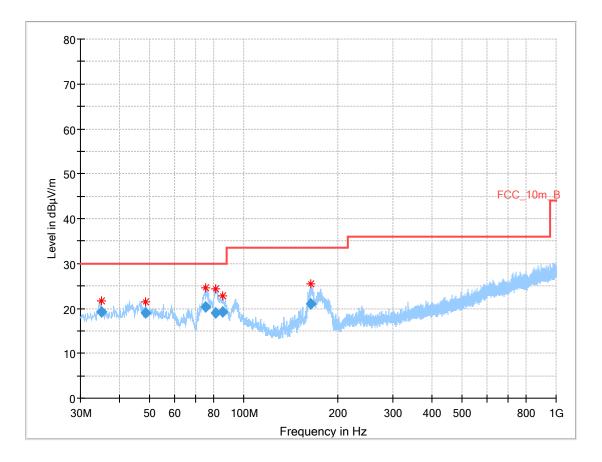




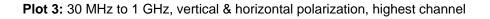

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.557	18.65	30.0	11.35	1000	120	101.0	v	259.0	14
46.257	19.24	30.0	10.76	1000	120	98.0	v	252.0	15
81.325	20.67	30.0	9.33	1000	120	160.0	v	305.0	11
85.574	19.07	30.0	10.93	1000	120	160.0	v	314.0	11
164.471	20.46	33.5	13.04	1000	120	98.0	v	146.0	11
957.685	28.83	36.0	7.17	1000	120	160.0	v	351.0	24

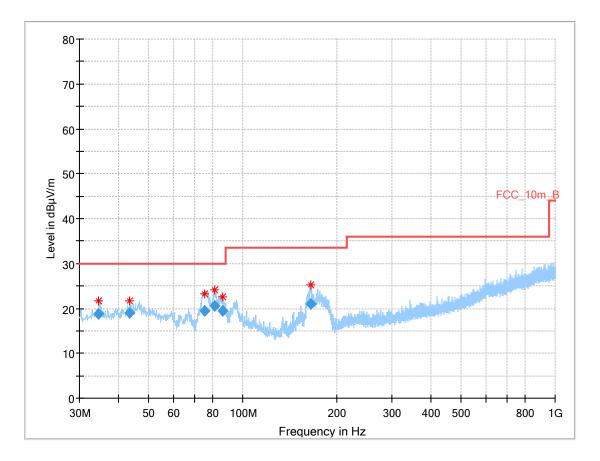

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.357	18.41	30.0	11.59	1000	120	101.0	v	248.0	14
43.876	18.82	30.0	11.18	1000	120	160.0	v	0.0	15
76.352	20.71	30.0	9.29	1000	120	160.0	v	345.0	11
85.607	19.61	30.0	10.39	1000	120	160.0	v	355.0	11
165.410	21.67	33.5	11.83	1000	120	98.0	v	219.0	11
183.433	18.92	33.5	14.58	1000	120	160.0	v	337.0	12

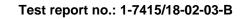

Plot: OFDM (20 MHz nominal channel bandwidth)

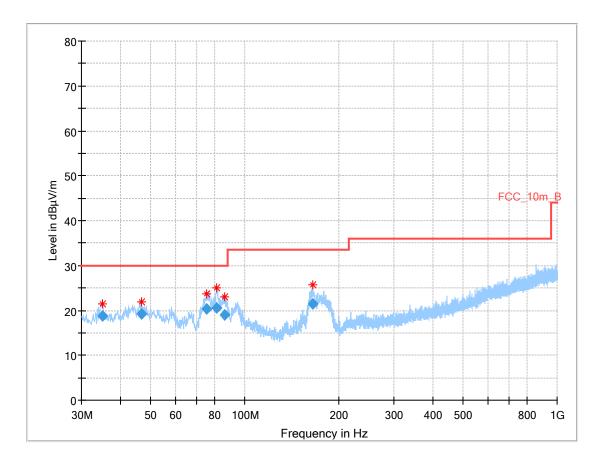

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, lowest channel

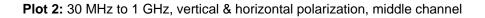
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
47.177	19.27	30.0	10.73	1000	120	98.0	v	354.0	15
74.795	19.68	30.0	10.32	1000	120	160.0	v	21.0	11
81.427	18.56	30.0	11.44	1000	120	101.0	v	213.0	11
85.710	19.59	30.0	10.41	1000	120	160.0	v	325.0	11
164.579	21.46	33.5	12.04	1000	120	98.0	v	213.0	11
178.117	19.54	33.5	13.96	1000	120	160.0	v	354.0	11

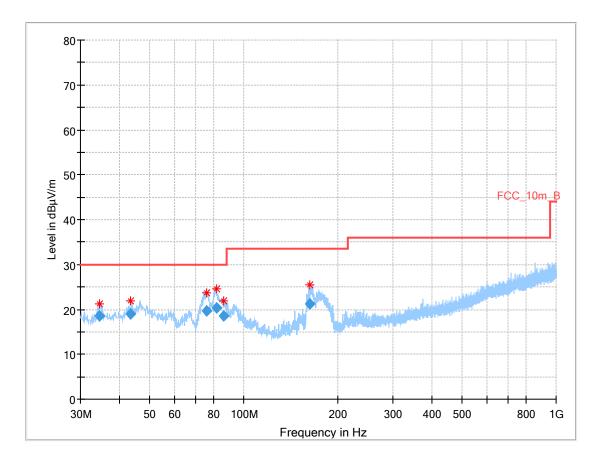




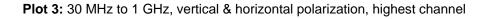

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
35.032	19.21	30.0	10.79	1000	120	101.0	v	345.0	14
48.604	18.92	30.0	11.08	1000	120	160.0	v	207.0	15
75.658	20.36	30.0	9.64	1000	120	160.0	v	293.0	11
81.093	18.90	30.0	11.10	1000	120	101.0	v	355.0	11
85.835	19.16	30.0	10.84	1000	120	160.0	v	0.0	11
164.104	21.11	33.5	12.39	1000	120	98.0	v	218.0	11


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.543	18.68	30.0	11.32	1000	120	101.0	v	0.0	14
43.532	19.09	30.0	10.91	1000	120	98.0	v	22.0	15
75.343	19.38	30.0	10.62	1000	120	101.0	v	355.0	11
81.225	20.51	30.0	9.49	1000	120	160.0	v	268.0	11
85.946	19.37	30.0	10.63	1000	120	160.0	v	266.0	11
165.565	20.93	33.5	12.57	1000	120	98.0	v	256.0	11

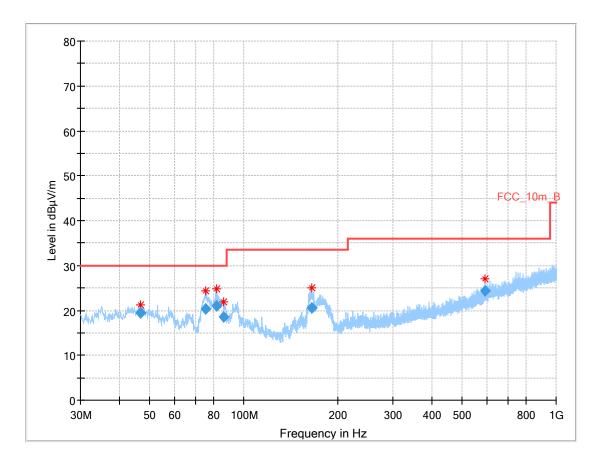

Plot: OFDM (40 MHz nominal channel bandwidth)


Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, lowest channel

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
35.040	18.82	30.0	11.18	1000	120	101.0	v	113.0	14
46.563	19.26	30.0	10.74	1000	120	160.0	v	103.0	15
75.588	20.40	30.0	9.60	1000	120	160.0	v	282.0	11
81.389	20.58	30.0	9.42	1000	120	160.0	v	355.0	11
86.411	18.89	30.0	11.11	1000	120	160.0	v	355.0	11
165.583	21.35	33.5	12.15	1000	120	101.0	v	191.0	11



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.594	18.50	30.0	11.50	1000	120	105.0	v	192.0	14
43.425	19.07	30.0	10.93	1000	120	160.0	v	233.0	15
76.058	19.61	30.0	10.39	1000	120	101.0	v	350.0	11
81.598	20.31	30.0	9.69	1000	120	160.0	v	18.0	11
86.321	18.52	30.0	11.48	1000	120	160.0	v	263.0	11
163.148	21.22	33.5	12.28	1000	120	101.0	v	208.0	11



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.697	19.70	30.0	10.30	1000	120	102.0	v	346.0	14
42.920	19.28	30.0	10.72	1000	120	101.0	v	148.0	15
77.050	19.79	30.0	10.21	1000	120	160.0	v	264.0	11
81.282	18.70	30.0	11.30	1000	120	160.0	v	12.0	11
87.147	19.03	30.0	10.97	1000	120	160.0	v	300.0	11
165.581	20.49	33.5	13.01	1000	120	98.0	v	277.0	11

Plot: RX / Idle mode

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
46.838	19.40	30.0	10.60	1000	120	100.0	v	196.0	15
75.421	20.28	30.0	9.72	1000	120	160.0	v	322.0	11
81.712	21.09	30.0	8.91	1000	120	160.0	v	330.0	11
86.305	18.54	30.0	11.46	1000	120	160.0	v	330.0	11
164.644	20.55	33.5	12.95	1000	120	98.0	v	238.0	11
592.289	24.31	36.0	11.69	1000	120	98.0	Н	304.0	20

12.6 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions above 1 GHz in transmit mode and receiver / idle mode.

Measurement:

Measurement parameter				
Detector	Peak / RMS			
Sweep time	Auto			
Resolution bandwidth	1 MHz			
Video bandwidth	3 x RBW			
Span	1 GHz to 26 GHz			
Trace mode	Max Hold			
Measured modulation	 DSSS b - mode OFDM g - mode OFDM n HT20 - mode OFDM n HT40 - mode RX / Idle - mode 			
Test setup	See sub clause 6.2 A (1 GHz - 18 GHz) See sub clause 6.3 A (18 GHz - 26 GHz)			
Measurement uncertainty	See chapter 8			

Limits:

FCC			IC
intentional radiator is operating, the at least 30 dB below that in the 100 k power, based on either an RF con specified in Section 15.209(a) is not	radio frequency po Hz bandwidth with ducted or a radiate required. In additio	wer that is produce in the band that cor ed measurement. A on, radiated emissio	ead spectrum or digitally modulated ad by the intentional radiator shall be nations the highest level of the desired Attenuation below the general limits ons which fall in the restricted bands, limits specified in §15.209(a) (see
Erequency / MHz	Field Strengt	a/(dBu)//m)	Measurement distance / m

Frequency / MHz	Field Strength / (dBµV / m)	Measurement distance / m	
Above 960	54.0 (AVG)	2	
	74.0 (peak)	3	

Results: DSSS

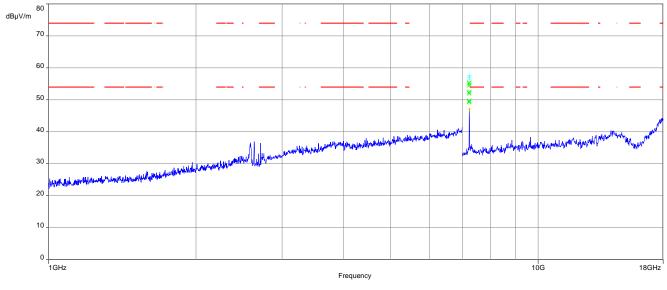
TX spurious emissions radiated / dBµV/m @ 3 m									
l	owest chann	el	m	niddle channe	el	h	ighest chanr	nel	
f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m	
7236	Peak	57.5	4874	Peak	52.0		Peak	51.9	
NO RB	AVG	52.5	4874	AVG	44.0		AVG	44.8	
-/-	Peak	-/-	7311	Peak	55.2	7386	Peak	> 20 dB below limit	
	AVG			AVG	49.0		AVG	-/-	
1	Peak	-/-	9748	Peak	-/-	9848	Peak	-/-	
-/-	AVG	-/-	NO RB	AVG	-/-	NO RB	AVG	-/-	

Results: OFDM (20 MHz nominal channel bandwidth)

TX spurious emissions radiated / dBµV/m @ 3 m									
lo	owest chann	el	m	iddle channe	el	h	ighest chann	iel	
f / MHz	Detector	Level / dBµV/m	f / MHz	f / MHz Detector Level / dBµV/m			Detector	Level / dBµV/m	
	All detected emissions are more than 20 dB below the limit.			All detected emissions are more than 20 dB below the limit.			All detected emissions are more than 20 dB below the limit.		
-/-	Peak	-/-	-/-	Peak	-/-	1	Peak	-/-	
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-	
-/-	Peak	-/-	-/-	Peak	-/-	/-	Peak	-/-	
-/-	AVG	-/-	-/-	AVG	-/-		AVG	-/-	

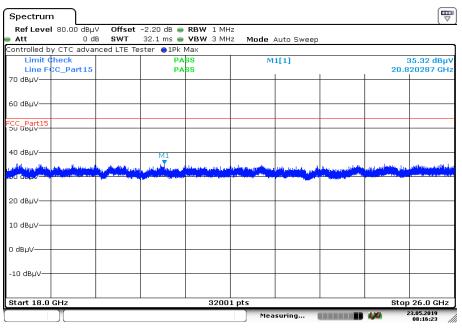
Results: OFDM (40 MHz nominal channel bandwidth)

TX spurious emissions radiated / dBµV/m @ 3 m									
lo	lowest channel			hiddle channe	el	h	ighest chann	nel	
f / MHz	Detector	Level / dBµV/m	f / MHz	f / MHz Detector Level / dBµV/m f / MHz			Detector	Level / dBµV/m	
	All detected emissions are more than 20 dB below the limit.			All detected emissions are more than 20 dB below the limit.			All detected emissions are more than 20 dB below the limit.		
-/-	Peak	-/-	1	Peak	-/-	1	Peak	-/-	
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-	
-/-	Peak	-/-	1	Peak	-/-	/-	Peak	-/-	
-/-	AVG	-/-	-/-	AVG	-/-		AVG	-/-	

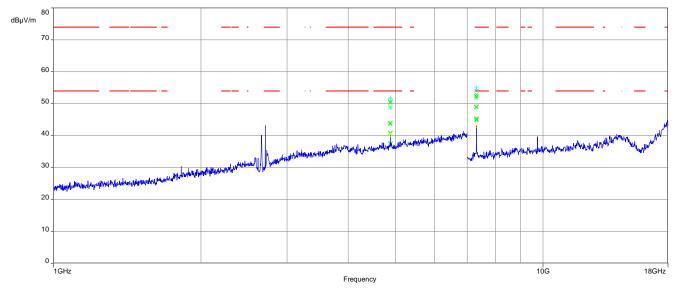


Results: RX / idle - mode

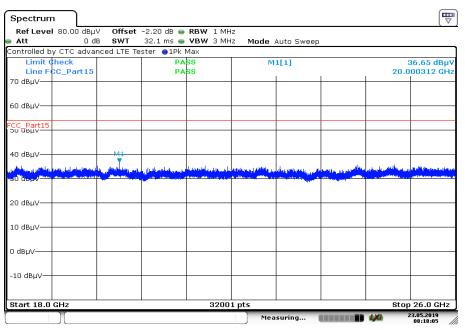
TX spurious emissions radiated / dBµV/m @ 3 m							
f / MHz Detector Level / dBµV/m							
All detecte	All detected emissions are more than 20 dB below the limit.						
1	Peak	-/-					
-/-	AVG	-/-					
	Peak	-/-					
-/-	AVG	-/-					

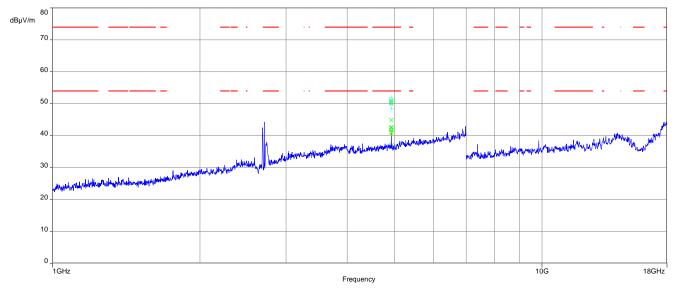

Plots: DSSS

Plot 1: Lowest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

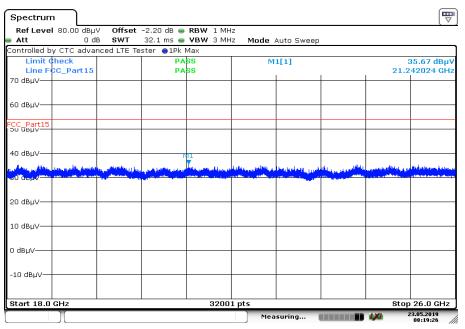

The carrier signal is notched with a 2.4 GHz band rejection filter.

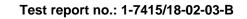
Plot 2: Lowest channel, 18 GHz to 26 GHz, vertical & horizontal polarization


Date: 23.MAY.2019 08:16:22


Plot 3: Middle channel, 1 GHz to 18 GHz, vertical & horizontal polarization

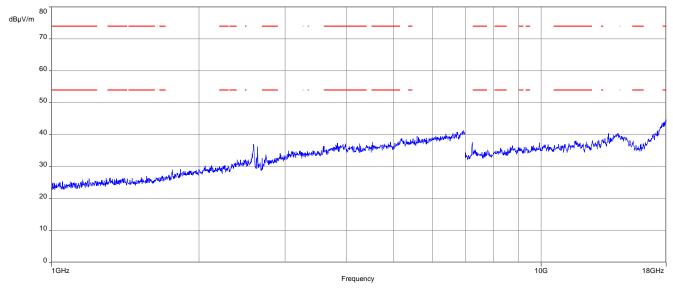
Plot 4: Middle channel, 18 GHz to 26 GHz, vertical & horizontal polarization

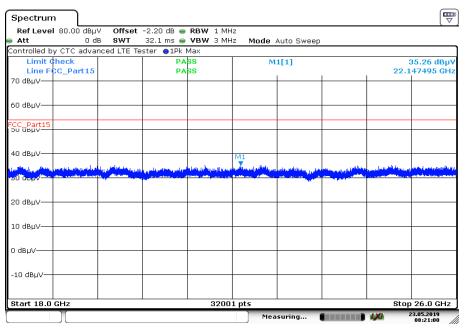

Date: 23.MAY.2019 08:18:05

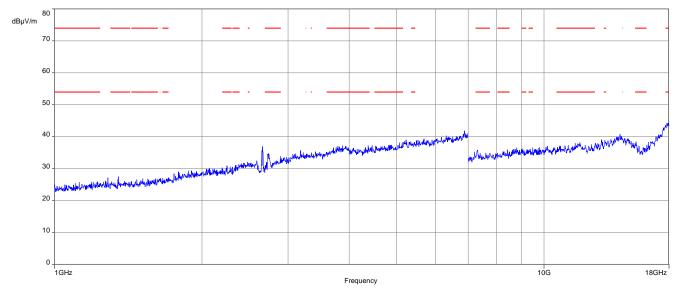


Plot 5: Highest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

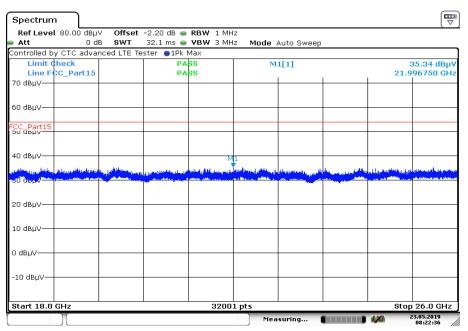
Plot 6: Highest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

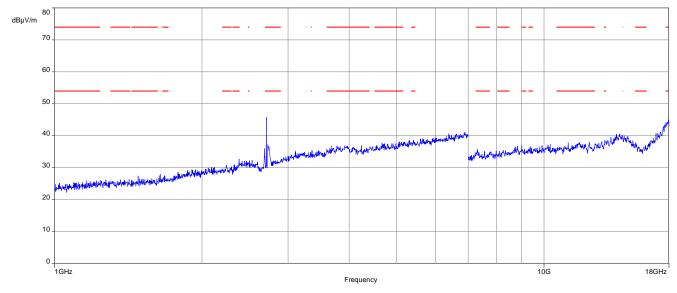

Date: 23.MAY.2019 08:19:26


Plots: OFDM (20 MHz bandwidth)

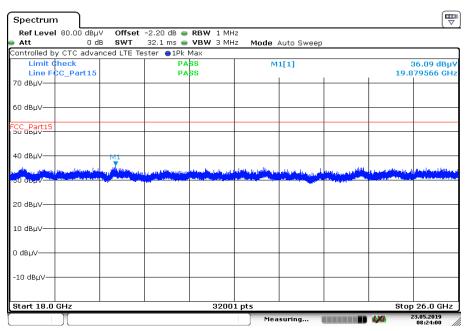

The carrier signal is notched with a 2.4 GHz band rejection filter.

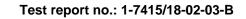
Plot 2: Lowest channel, 18 GHz to 26 GHz, vertical & horizontal polarization


Date: 23.MAY.2019 08:21:00


Plot 3: Middle channel, 1 GHz to 18 GHz, vertical & horizontal polarization

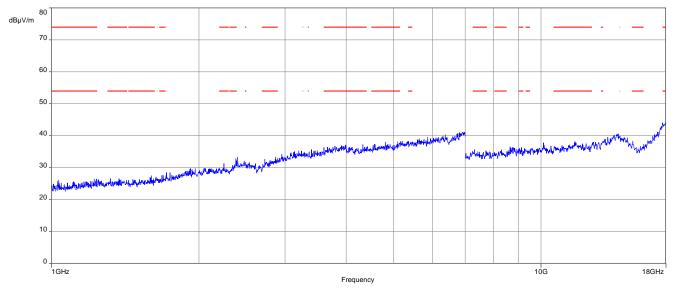
Plot 4: Middle channel, 18 GHz to 26 GHz, vertical & horizontal polarization


Date: 23.MAY.2019 08:22:36

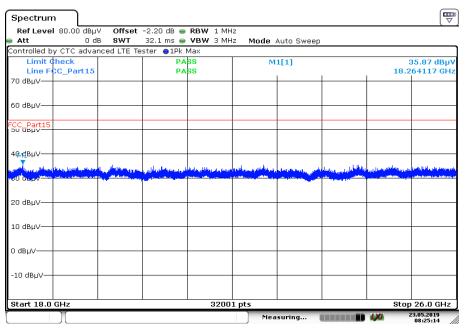


Plot 5: Highest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

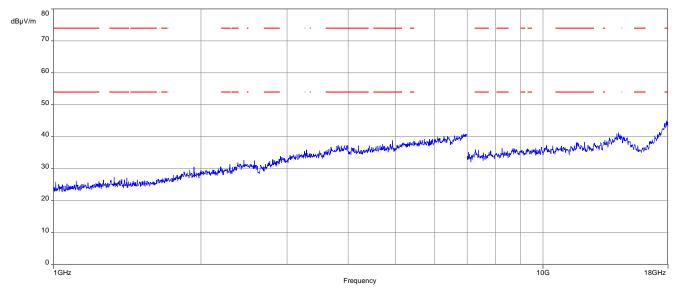
Plot 6: Highest channel, 18 GHz to 26 GHz, vertical & horizontal polarization



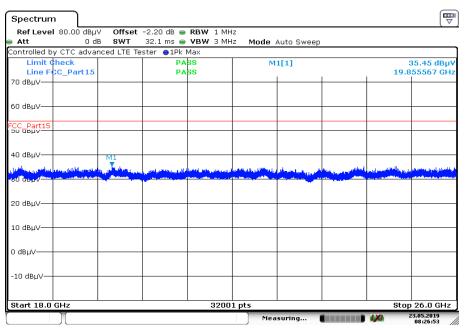
Date: 23.MAY.2019 08:24:00

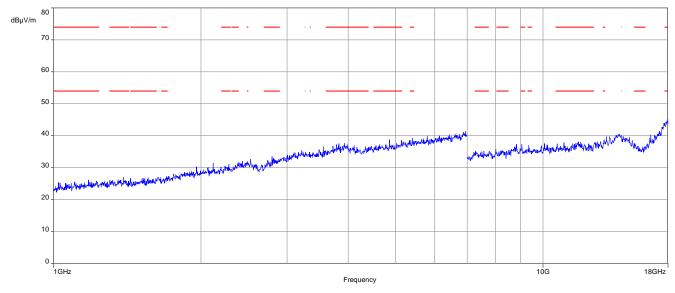

Plots: OFDM (40 MHz bandwidth)

Plot 1: Lowest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

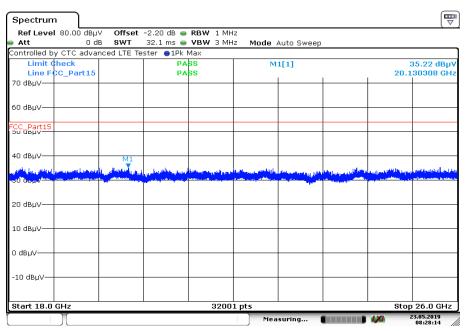

The carrier signal is notched with a 2.4 GHz band rejection filter.

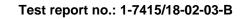
Plot 2: Lowest channel, 18 GHz to 26 GHz, vertical & horizontal polarization


Date: 23.MAY.2019 08:25:14


Plot 3: Middle channel, 1 GHz to 18 GHz, vertical & horizontal polarization

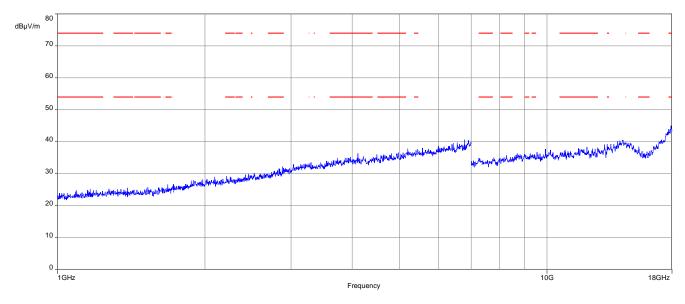
Plot 4: Middle channel, 18 GHz to 26 GHz, vertical & horizontal polarization


Date: 23.MAY.2019 08:26:53

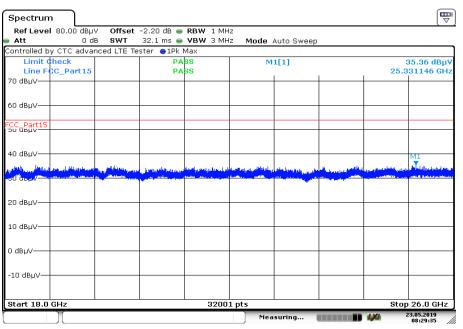


Plot 5: Highest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

Plot 6: Highest channel, 18 GHz to 26 GHz, vertical & horizontal polarization



Date: 23.MAY.2019 08:28:14



Plots: RX / idle mode

Plot 2: 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 23.MAY.2019 08:29:35

12.7 Spurious emissions conducted below 30 MHz (AC conducted)

Description:

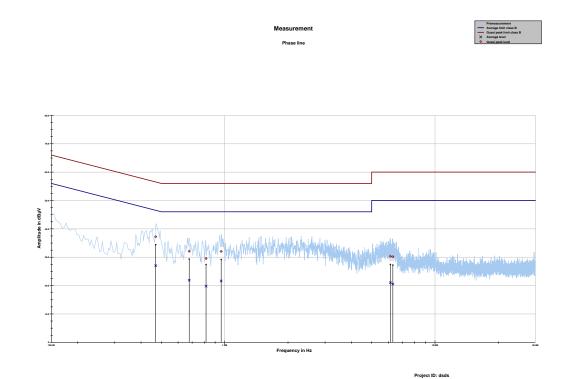
Measurement of the conducted spurious emissions in transmit mode below 30 MHz. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

Measurement:

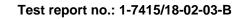
Measurement parameter					
Detector	Peak - Quasi Peak / Average				
Sweep time	Auto				
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz				
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz				
Span	9 kHz to 30 MHz				
Trace mode	Max. hold				
Test setup	See chapter 6.4 A				
Measurement uncertainty	See chapter 8				

Limits:

FCC			IC
Frequency / MHz)	Quasi-Peak	/ (dBµV / m)	Average / (dBµV / m)
0.15 – 0.5	66 to	o 56*	56 to 46*
0.5 – 5	56		46
5 - 30.0	6	0	50

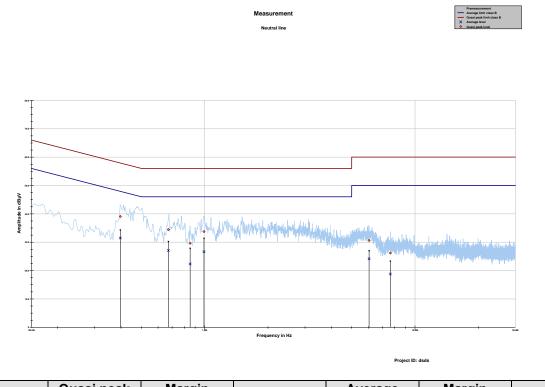

*Decreases with the logarithm of the frequency

Results:


TX spurious emissions conducted < 30 MHz / (dBµV / m) @ 3m								
f / MHz Detector Level / dBµV/m								
All detected peaks are more than 20 dB below the limit.								

Plots:

Plot 1: 150 kHz to 30 MHz, phase line



Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
0.469428	37.20	19.32	56.524	27.00	19.88	46.873
0.677778	32.11	23.89	56.000	21.90	24.10	46.000
0.815202	29.55	26.45	56.000	19.80	26.20	46.000
0.961912	32.06	23.94	56.000	21.62	24.38	46.000
6.131592	30.32	29.68	60.000	21.01	28.99	50.000
6.302507	30.17	29.83	60.000	20.56	29.44	50.000

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
0.396883	39.07	18.85	57.918	31.48	17.47	48.946
0.671492	34.46	21.54	56.000	27.11	18.89	46.000
0.852586	29.62	26.38	56.000	22.32	23.68	46.000
0.991604	33.75	22.25	56.000	26.62	19.38	46.000
6.048505	30.62	29.38	60.000	24.16	25.84	50.000
7.634666	26.18	33.82	60.000	18.77	31.23	50.000

13 Observations

No observations except those reported with the single test cases have been made.

Annex A Glossary

EUT	Equipment under test				
DUT	Device under test				
UUT	Unit under test				
GUE					
ETSI	GNSS User Equipment				
ETSI	European Telecommunications Standards Institute				
FCC	European Standard				
	Federal Communications Commission				
FCC ID	Company Identifier at FCC				
IC	Industry Canada				
PMN	Product marketing name				
HMN HVIN	Host marketing name Hardware version identification number				
FVIN	Firmware version identification number				
EMC	Electromagnetic Compatibility				
HW	Hardware				
SW	Software				
Inv. No.	Inventory number				
S/N or SN	Serial number				
C	Compliant				
NC	Not compliant				
NA	Not applicable				
NP	Not performed				
PP	Positive peak				
QP	Quasi peak				
AVG	Average				
OC	Operating channel				
OCW	Operating channel bandwidth				
OBW	Occupied bandwidth				
OOB	Out of band				
DFS	Dynamic frequency selection				
CAC	Channel availability check				
OP	Occupancy period				
NOP	Non occupancy period				
DC	Duty cycle				
PER	Packet error rate				
CW	Clean wave				
MC	Modulated carrier				
WLAN	Wireless local area network				
RLAN	Radio local area network				
DSSS	Dynamic sequence spread spectrum				
OFDM	Orthogonal frequency division multiplexing				
FHSS	Frequency hopping spread spectrum				
GNSS	Global Navigation Satellite System				
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz				

Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2019-06-11
A	New contact person, kind of test item and model name	2019-06-14
В	New HVIN	2019-08-26

Annex C Accreditation Certificate – D-PL-12076-01-04

first page	last page
Deutsche Abvedtierungsstelle Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation	Office Berlin Spittelmarkt 10 Spittelmarkt 10
The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025-2005 to carry out tests in the following fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediterungsstelle GmbH (DAkkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also entereds to fields beyond the scope of
The accreditation certificate shall only apply in connection with the notice of accreditation of 11.01.2019 with the accreditation number 0-PI-12076-01 and is valid until 21.04.2021. It comprises the cover sheet and the following annex with a total of 7 pages. Registration number of the certificate: D-PI-12076-01-04 Frankfurt am Main, 11.01.2019 Frankfurt am Main, 11.01.2019 Head of Division	accreditation attested by DAIAS. The accreditation was granted pursuant to the Act on the Accreditation Body (AIASStelleG) of 31 July 2009 (Federal Law Gazette 1, 2-253) and the Regulation (EC) No 765/2008 of the European In Parliament and of the Council of 9 Auly 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (DRIAL July 2008) setting out the European Union 2.128 of 9 July 2008, p. 30), DAIAS is a signatory to the Multilateral Agreements for Mutual Recognition of the European One operation for Accreditation IEA, International Accreditation Form (IAF) and International Laboratory Accreditation Cooperation (IAA). The signatories to these agreements recognise each other's accreditations. The up-to-date state of memotynehysic parts he retrieved from the following websites: EX: www.european-accreditation.org EIAC: www.iat.nov

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-04.pdf

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05.pdf