		CTC advanced			
Bundesnetzagentur BNetzA-CAB-02/21-102	TEST R Test report no.: 1	Deutsche Aktreditierungsstelle			
Testing	laboratory	Applicant			
CTC advanced GmbH Untertuerkheimer Strasse 6 66117 Saarbruecken / Gerr Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9 Internet: http://www.ctcad e-mail: mail@ctcadvanc Accredited Testing Labor The testing laboratory (a)	nany) 9075 <u>vanced.com</u> <u>ied.com</u>	Environics Oy Sammonkatu 12 50100 Mikkeli / FINLAND Phone: -/- Contact: Mr. Jussi Miettunen e-mail: jussi.miettunen@environics.fi Phone: +35 84 08 20 36 70			
according to DIN EN IS Deutsche Akkreditierungss The accreditation is vali	O/IEC 17025 (2005) by the telle GmbH (DAkkS) d for the scope of testing accreditation certificate with	Manufacturer Environics Oy Sammonkatu 12 50100 Mikkeli / FINLAND			
	Test sta	ndard/s			
FCC - Title 47 CFR Part 15		Federal Regulations; Chapter I; Part 15 - Radio			
RSS - 247 Issue 2	Digital Transmission Systems Licence - Exempt Local Area	(DTSs), Frequency Hopping Systems (FHSs) and Network (LE-LAN) Devices			
	Spectrum Management and T	elecommunications Radio Standards Specification			

RSS - Gen Issue 5 Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus

For further applied test standards please refer to section 3 of this test repor	t.
---	----

	Test Item						
Kind of test item:	Handheld gas detector						
Model name:	ChemProX	R.P76/17					
FCC ID:	2ATAB-CHMPRX	erinetin.					
IC:	25121-CHMPRX	Y See and Y					
Frequency:	DTS band 2400 MHz to 2483.5 MHz						
Technology tested:	Bluetooth [®] LE	and the second second					
Antenna:	Integrated antenna	Accel					
Power supply:	115 V AC by mains adapter	PLUCIN					
Temperature range:	-32°C to +55°C	7					

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Mihail Dorongovskij Lab Manager Radio Communications & EMC

Test performed:

Marco Bertolino Lab Manager Radio Communications & EMC

1 Table of contents

1	Table of	of contents	2
2	Genera	al information	3
	2.2	Notes and disclaimer Application details Test laboratories sub-contracted	3
3	Test st	andard/s and references	4
4	Test er	nvironment	5
5	Test it	em	5
		General description Additional information	
6	Descri	ption of the test setup	6
	6.2 6.3 6.4	Shielded semi anechoic chamber Shielded fully anechoic chamber Radiated measurements > 18 GHz AC conducted Conducted measurements Bluetooth system	8 10 11
7	Seque	nce of testing	13
	7.2 7.3	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 18 GHz Sequence of testing radiated spurious above 18 GHz	14 15
8	Measu	rement uncertainty	17
9	Summ	ary of measurement results	18
10	Addi	itional comments	19
11	Meas	surement results	20
	11.1 11.2 11.3 11.4 11.5 11.6 11.7	System gain Maximum output power Band edge compliance radiated Spurious emissions radiated below 30 MHz Spurious emissions radiated 30 MHz to 1 GHz Spurious emissions radiated above 1 GHz. Spurious emissions conducted below 30 MHz (AC conducted)	23 26 28 31 31 36
12	Obse	ervations	44
Anı	nex A	Glossary	45
Anı	nex B	Document history	
Anı	nex C	Accreditation Certificate – D-PL-12076-01-04	46
Anı	nex D	Accreditation Certificate – D-PL-12076-01-05	47

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-7415/18-02-10-A and dated 2019-06-14.

2.2 Application details

Date of receipt of order:	2019-05-14
Date of receipt of test item:	2019-05-20
Start of test:	2019-05-21
End of test:	2019-05-24
Person(s) present during the test:	-/-

2.3 Test laboratories sub-contracted

None

3 Test standard/s and references

Test standard	Date	Description
FCC - Title 47 CFR Part 15	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices
RSS - Gen Issue 5	April 2018	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus
Guidance	Version	Description
DTS: KDB 558074 D01	v05r02	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES Amorican National Standard for Mathada of Magaurament of
ANSI C63.4-2014	-/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

4 **Test environment**

Temperature	:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests No test under extreme temperature conditions required. No test under extreme temperature conditions required.
Relative humidity content	:		42 %
Barometric pressure	:		1019 hpa
Power supply	:	V _{nom} V _{max} V _{min}	115 V AC by mains adapterNo test under extreme voltage conditions required.No test under extreme voltage conditions required.

5 **Test item**

5.1 **General description**

Kind of test item :	Handheld gas detector
Type identification :	ChemProX
HMN :	-/-
PMN :	ChemProX
HVIN :	HW v1
FVIN :	-/-
S/N serial number :	Radiated: CPX1000068
Hardware status :	-/-
Software status :	0.6.0.5
Firmware status :	-/-
Frequency band :	DTS band 2400 MHz to 2483.5 MHz
Type of radio transmission : Use of frequency spectrum :	DSSS
Type of modulation :	GFSK
Number of channels :	40
Antenna :	Integrated antenna
Power supply :	115 V AC by mains adapter
Temperature range :	-32°C to +55°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report:

1-7415/18-02-01_AnnexA 1-7415/18-02-01_AnnexB 1-7415/18-02-01_AnnexD

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

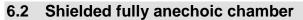

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

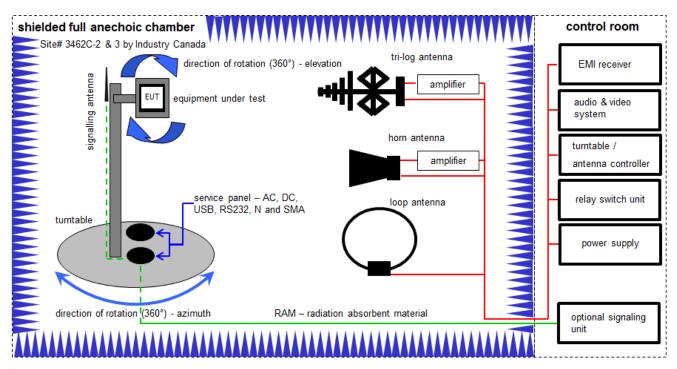
6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

CTC I advanced

Measurement distance: tri-log antenna 10 meter; EMC32 software version: 10.30.0


FS = UR + CL + AF


(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

<u>Example calculation:</u> FS [dBµV/m] = 12.35 [dBµV/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dBµV/m] (35.69 µV/m)

Equipment table:

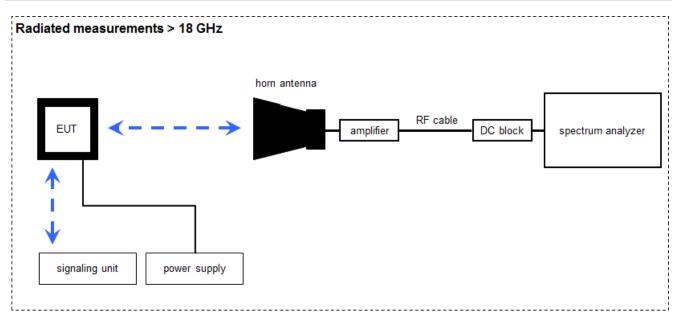
No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	А	Meßkabine 1	HF-Absorberhalle	MWB AG 300023	-/-	300000551	ne	-/-	-/-
3	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	12.12.2018	11.12.2019
4	A	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vIKI!	15.01.2018	14.01.2020
5	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
6	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
7	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
8	A	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	371	300003854	vIKI!	24.11.2017	23.11.2020

Measurement distance: tri-log antenna and horn antenna 3 meter; loop antenna 3 meter

 $\begin{array}{l} FS = UR + CA + AF \\ (FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor) \\ \underline{Example \ calculation:} \\ FS \ [dB\muV/m] = 40.0 \ [dB\muV/m] + (-35.8) \ [dB] + 32.9 \ [dB/m] = 37.1 \ [dB\muV/m] \ (71.61 \ \muV/m) \end{array}$

OP = AV + D - G + CA (OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path) <u>Example calculation:</u> OP [dBm] = -65.0 [dBm] + 50 [dB] - 20 [dBi] + 5 [dB] = -30 [dBm] (1 μW)

CTC I advanced


member of RWTÜV group

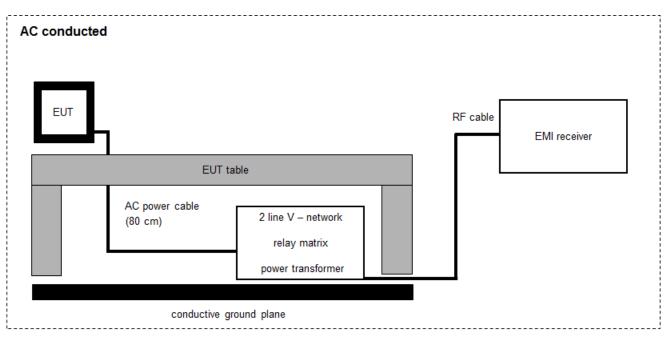
Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A, B, C	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
2	A, B, C	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
3	А, В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3089	300000307	vIKI!	07.07.2017	06.07.2019
4	С	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	viKi!	11.04.2019	10.04.2021
5	А	Band Reject filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	11	300003351	ev	-/-	-/-
6	A, B, C	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	14.09.2018	13.12.2019
7	Α	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
8	Α	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
9	A	High Pass Filter	VHF-3500+	Mini Circuits	-/-	400000193	ne	-/-	-/-
10	А	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
11	А	Broadband Amplifier 5-13 GHz	CBLU5135235	CERNEX	22010	300004491	ev	-/-	-/-
12	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
13	A, B, C	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO	-/-	300004682	ne	-/-	-/-
14	A, B, C	PC	ExOne	F+W	-/-	300004703	ne	-/-	-/-
15	A, B, C	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-

6.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

FS = UR + CA + AF

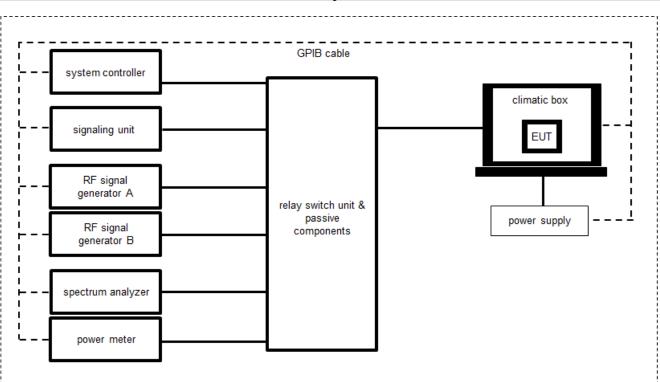

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor) <u>Example calculation</u>:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Microwave System Amplifier, 0.5-26.5 GHz	83017A	HP	00419	300002268	ev	-/-	-/-
2	A	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	01096	300000486	viKi!	13.12.2017	12.12.2019
3	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	17.12.2018	16.12.2019
4	А	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
5	А	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
6	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-


FS = UR + CF + VC


(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	892475/017	300002209	viKi!	13.12.2017	12.12.2019
2	Α	RF-Filter-section	85420E	HP	3427A00162	300002214	NK!	-/-	-/-
3	Α	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	-/-	-/-
4	А	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	12.12.2018	11.12.2019

CTC I advanced

6.5 Conducted measurements Bluetooth system

OP = AV + CA (OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Hygro-Thermometer	-/-, 5-45°C, 20- 100%rF	Thies Clima	-/-	400000109	ev	11.05.2018	10.05.2020
2	A	USB/GPIB interface	82357B	Agilent Technologies	MY52103346	300004390	ne	-/-	-/-
3	А	PC Laboratory	Exone	Fröhlich + Walter	S2642279-03 / 10	300004179	ne	-/-	-/-
4	Α	Spectrum Analyzer	FSV30	Rohde & Schwarz	103809	300005359	vlKI!	17.12.2018	16.12.2020
5	А	Relay Switch Matrix	RSM-1	CTC advanced GmbH	0001	400001355	ne	-/-	-/-
6	A	Tester Software RadioStar (C.BER2 for BT Conformance)	Version 1.0.0.X	CTC advanced GmbH	0001	400001380	ne	-/-	-/-

CTC I advanced

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

8 Measurement uncertainty

Measurement uncertainty						
Test case	Uncertainty					
Antenna gain	± 3 dB					
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative					
Maximum output power	±1 dB					
Detailed conducted spurious emissions @ the band edge	±1 dB					
Band edge compliance radiated	± 3 dB					
Spurious emissions conducted	± 3 dB					
Spurious emissions radiated below 30 MHz	± 3 dB					
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB					
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB					
Spurious emissions radiated above 12.75 GHz	± 4.5 dB					
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB					

9 Summary of measurement results

	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
\boxtimes	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

CTC I advanced

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247, Issue 2	See table!	2019-08-26	Delta tests according
		See lable!	2019-00-20	customer demand.

Test specification clause	Test case	Guideline	Temperature conditions	Power source voltages	Mode	с	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (4)	System gain	-/-	Nominal	Nominal	GFSK					-/-
§15.247(e) RSS - 247 / 5.2 (b)	Power spectral density	KDB 558074 DTS clause: 8.4	Nominal	Nominal	GFSK				\boxtimes	-/-
§15.247(a)(2) RSS - 247 / 5.2 (a)	DTS bandwidth – 6 dB bandwidth	KDB 558074 DTS clause: 8.2	Nominal	Nominal	GFSK				\boxtimes	-/-
RSS Gen clause 4.6.1	Occupied bandwidth	-/-	Nominal	Nominal	GFSK				\boxtimes	-/-
§15.247(b)(3) RSS - 247 / 5.4 (4)	Maximum output power	KDB 558074 DTS clause: 8.3.1.1	Nominal	Nominal	GFSK					-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	KDB 558074 DTS clause: 8.5	Nominal	Nominal	GFSK				\boxtimes	-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	KDB 558074 DTS clause: 8.7.2 or 8.7.3	Nominal	Nominal	GFSK					-/-
§15.247(d) RSS - 247 / 5.5	TX spurious emissions conducted	KDB 558074 DTS clause: 8.5	Nominal	Nominal	GFSK				\boxtimes	-/-
§15.209(a) RSS - Gen	Spurious emissions radiated below 30 MHz	-/-	Nominal	Nominal	GFSK					-/-
15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated 30 MHz to 1 GHz	-/-	Nominal	Nominal	-/-					-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated above 1 GHz	-/-	Nominal	Nominal	GFSK					-/-
§15.107(a) §15.207	Conducted emissions below 30 MHz (AC conducted)	-/-	Nominal	Nominal	GFSK					-/-

Notes:

С	Compliant	NC	Not compliant	NA	Not applicable	NP	Not performed	
---	-----------	----	---------------	----	----------------	----	---------------	--

10 Additional comments

The Bluetooth[®] word mark and logos are owned by the Bluetooth SIG Inc. and any use of such marks by CTC advanced GmbH is under license.

Reference documents:	Test instructions
	Module test report: 1-3116_16-01-19 CTC advanced
Special test descriptions:	None

Configuration descriptions:

Bluetooth Low Energy	
Longest Supported payload (37 – 255 Byte)	Tx: 37, RX: 37
LE 1M PHY supported	Yes
LE 2M PHY supported	No
Stable Modulation Index supported (SMI)	No
LE Coded PHY supported (S=2)	No
LE Coded PHY supported (S=8)	No

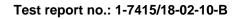
Test mode:		Bluetooth LE Test mode enabled (EUT is controlled over CMW)
	\boxtimes	Special software is used. EUT is transmitting pseudo random data by itself
Antennas and transmit operating modes:		 Operating mode 1 (single antenna) Equipment with 1 antenna, Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)
		 Operating mode 2 (multiple antennas, no beamforming) Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.
		 Operating mode 3 (multiple antennas, with beamforming) Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements.

11 Measurement results

11.1 System gain

Measurement:

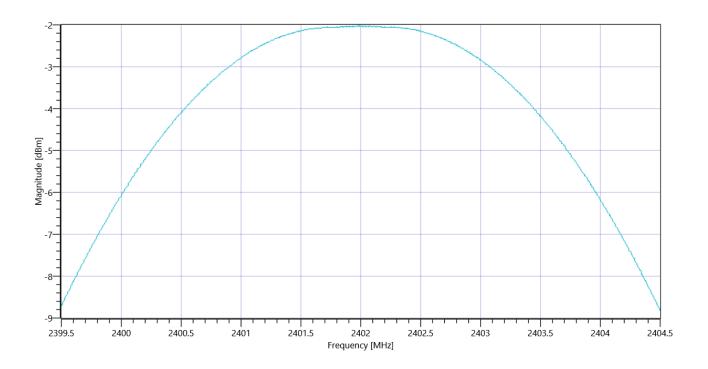
The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.

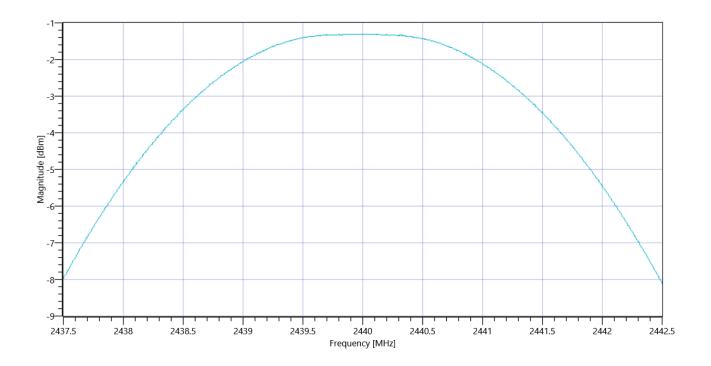

Measurement parameters				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	3 MHz			
Video bandwidth	3 MHz			
Span	5 MHz			
Trace mode	Max hold			
Test setup	See sub clause 6.2 B (radiated) See sub clause 6.5 A (conducted)			
Measurement uncertainty	See sub clause 8			

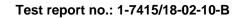
Limits:

FCC		IC	
6 dBi / > 6 dBi c	utput power and	power density reduction required	

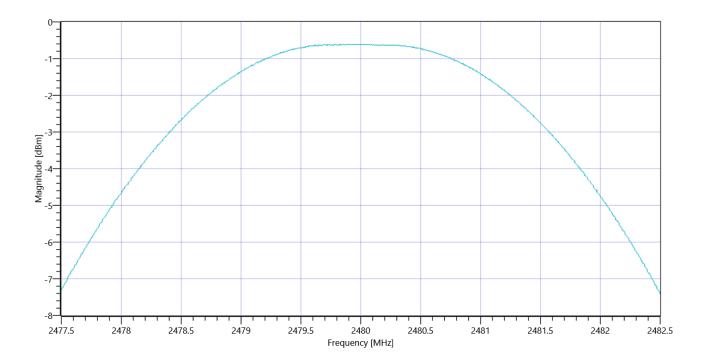
Results:


	2402 MHz	2440 MHz	2480 MHz
Conducted power [dBm] Measured with GFSK modulation	-2.0	-1.3	-0.6
Radiated power [dBm] Measured with GFSK modulation	-1.3	+0.5	+0.3
Gain [dBi] Calculated	+0.7	+1.8	+0.9




Plots:

Plot 1: lowest channel


Plot 2: middle channel

Plot 3: highest channel

11.2 Maximum output power

Description:

Measurement of the maximum output power conducted and radiated. EUT in single channel mode.

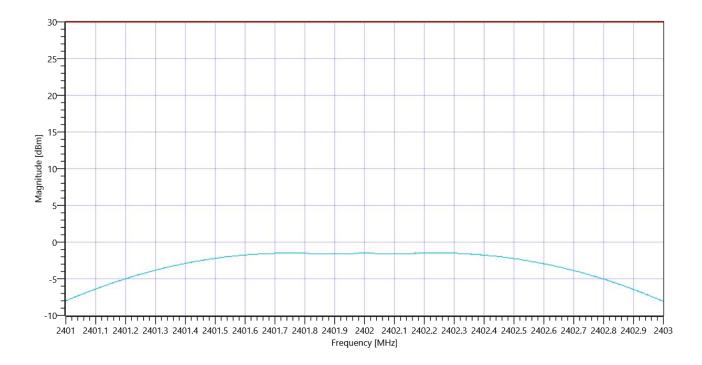
Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	3 MHz	
Video bandwidth	10 MHz	
Span	10 MHz	
Trace mode	Max hold	
Test setup	See sub clause 6.5 A	
Measurement uncertainty	See sub clause 8	

Limits:

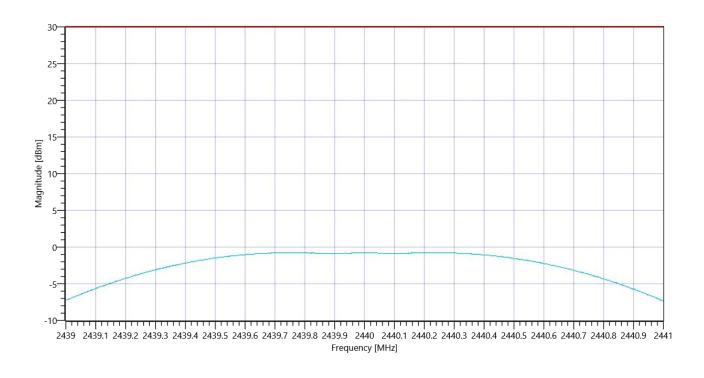
FCC	IC	
Maximum output power		
Conducted: 1.0 W – antenna gain max. 6 dBi		

Results:

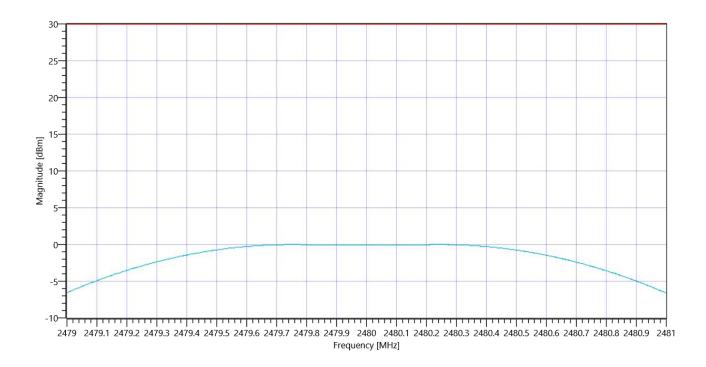
	Frequency			
	2402 MHz 2440 MHz 2480 MHz			
Maximum output power conducted [dBm]	-2.0	-1.3	-0.6	


Results: added from module report 1-3116_16-01-19 CTC advanced

	Frequency		
	2402 MHz	2440 MHz	2480 MHz
Maximum output power conducted [dBm]	-1.3	-1.1	-1.6



Plots:


Plot 1: lowest channel

Plot 2: mid channel

Plot 3: highest channel

CTC I advanced

11.3 Band edge compliance radiated

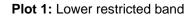
Description:

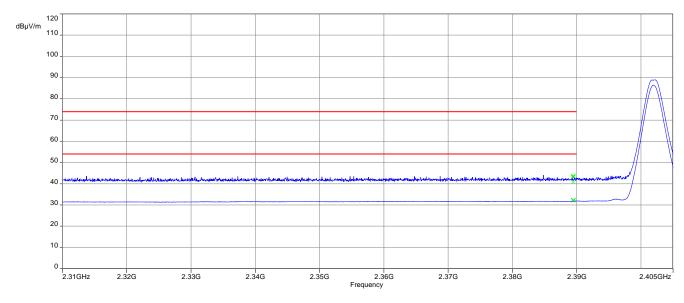
Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to single channel mode and the transmit frequency 2402 MHz for the lower restricted band and 2480 MHz for the upper restricted band. Measurement distance is 3m.

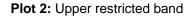
Measurement parameters		
Detector	Peak / RMS	
Sweep time	Auto	
Resolution bandwidth	1 MHz	
Video bandwidth	3 MHz	
Span	Lower Band: 2300 – 2400 MHz higher Band: 2480 – 2500 MHz	
Trace mode	Max hold	
Test setup	See sub clause 6.2 B	
Measurement uncertainty	See sub clause 8	

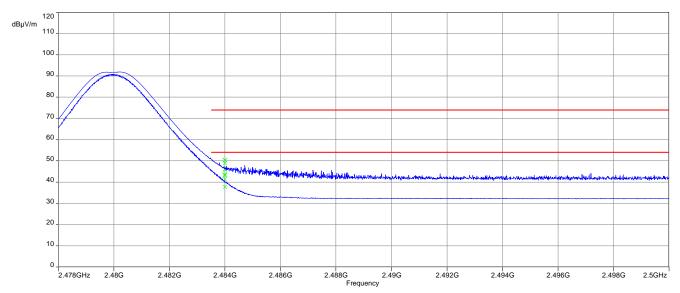
Limits:

FCC	IC	
Band edge compliance radiated		
radiator is operating, the radio frequency power that is produted that in the 100 kHz bandwidth within the band that contains t conducted or a radiated measurement. Attenuation below the	nds, as defined in Section 15.205(a), must also comply with	
54 dBµV/m AVG		


74 dBµV/m Peak


Result:


Scenario	Band edge compliance radiated [dBµV/m @ 3m]
Modulation	GFSK
Lower restricted band	43.3 Peak 32.2 AVG
Upper restricted band	50.4 Peak 43.7 AVG

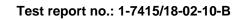


Plots:

11.4 Spurious emissions radiated below 30 MHz

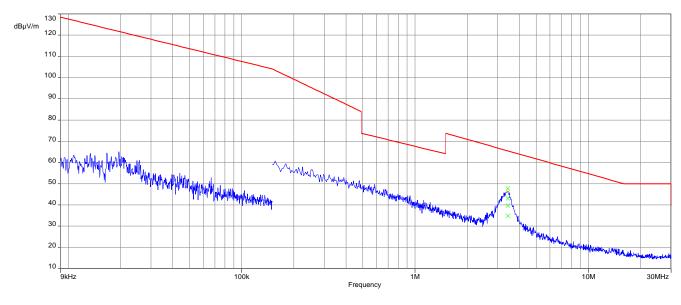
Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit frequencies are 2402 MHz, 2440 MHz and 2480 MHz. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

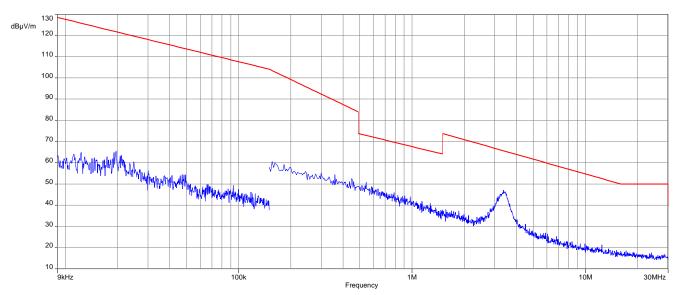

Measurement parameters		
Detector	Peak / Quasi peak	
Sweep time	Auto	
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz	
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 30 kHz	
Span	9 kHz to 30 MHz	
Trace mode	Max hold	
Test setup	See sub clause 6.2 C	
Measurement uncertainty	See sub clause 8	

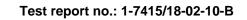
Limits:

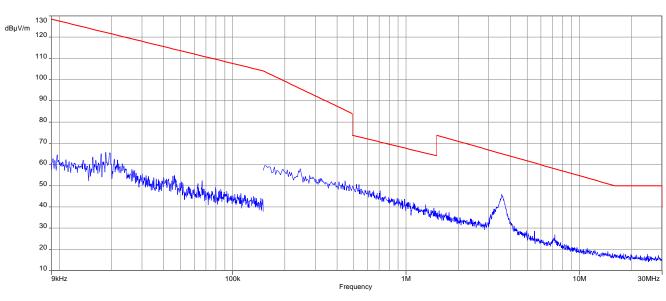
FCC			IC
TX spurious emissions radiated below 30 MHz			Hz
Frequency (MHz)	Field strength (µV/m)		Measurement distance
0.009 – 0.490	2400/F(kHz)		300
0.490 – 1.705	24000/F(kHz)		30
1.705 – 30.0	30		30


Results:

TX spurious emissions radiated below 30 MHz [dBµV/m]			
F [MHz] Detector Level [dBµV/m]			
All detected emissions are more than 20 dB below the limit.			
-//-			
-//-			




Plots:



Plot 1: 9 kHz to 30 MHz, 2402 MHz, transmit mode

Plot 2: 9 kHz to 30 MHz, 2440 MHz, transmit mode

Plot 3: 9 kHz to 30 MHz, 2480 MHz, transmit mode

CTC I advanced

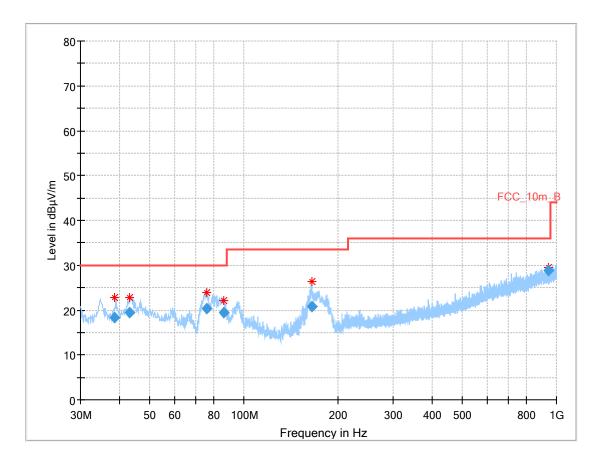
11.5 Spurious emissions radiated 30 MHz to 1 GHz

Description:

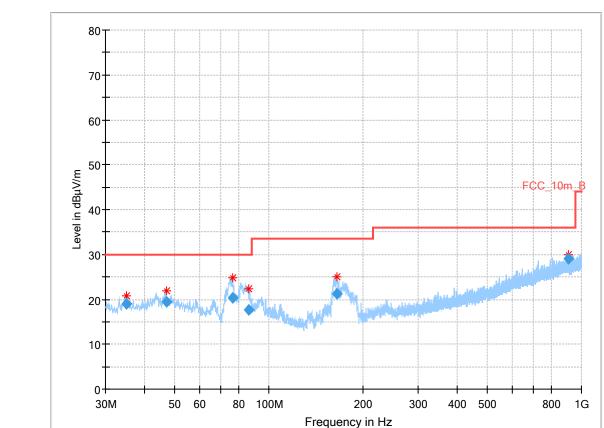
Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit frequencies are 2402 MHz, 2440 MHz and 2480 MHz.

Measurement parameters		
Detector	Peak / Quasi Peak	
Sweep time	Auto	
Resolution bandwidth	120 kHz	
Video bandwidth	3 x RBW	
Span	30 MHz to 1 GHz	
Trace mode	Max hold	
Measured modulation	GFSK	
Test setup	See sub clause 6.1 A	
Measurement uncertainty	See sub clause 8	

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

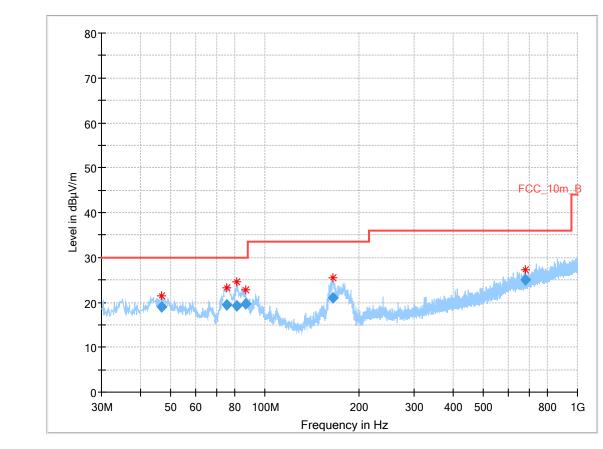

Limits:

FCC	FCC		IC
	TX spurious em	issions radiated	
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).			
	§15.209		
Frequency (MHz)	Frequency (MHz) Field strength (dBµV/m) Measurement distance		
30 - 88	30	.0	10
88 – 216	33	5.5	10
216 - 960	36	5.0	10
Above 960	54	.0	3

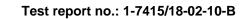

Plots: Transmit mode

Plot 1: 30 MHz to 1 GHz, TX mode, 2402 MHz, vertical & horizontal polarization

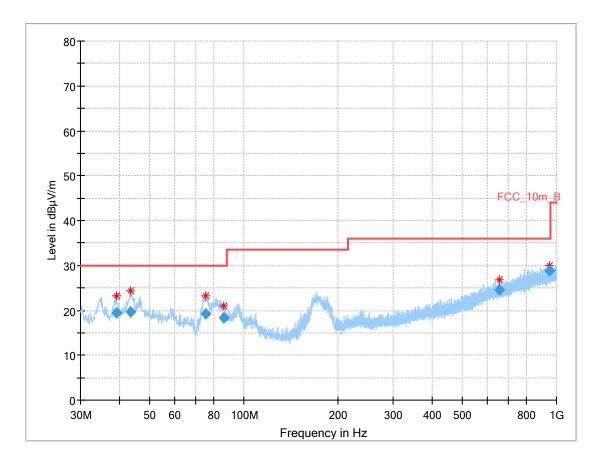
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
38.570	18.31	30.0	11.69	1000	120	98.0	V	349.0	14
43.193	19.39	30.0	10.61	1000	120	160.0	V	128.0	15
76.254	20.23	30.0	9.77	1000	120	160.0	V	295.0	11
85.992	19.39	30.0	10.61	1000	120	160.0	V	355.0	11
165.390	20.87	33.5	12.63	1000	120	98.0	V	256.0	11
944.525	28.85	36.0	7.15	1000	120	98.0	Н	0.0	24



Plot 2: 30 MHz to 1 GHz, TX mode, 2440 MHz, vertical & horizontal polarization


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
35.038	19.04	30.0	10.96	1000	120	98.0	V	355.0	14
46.931	19.48	30.0	10.52	1000	120	100.0	V	355.0	15
76.824	20.28	30.0	9.72	1000	120	160.0	V	341.0	11
86.212	17.72	30.0	12.28	1000	120	160.0	V	0.0	11
164.624	21.21	33.5	12.29	1000	120	98.0	V	161.0	11
908.697	29.06	36.0	6.94	1000	120	160.0	Н	349.0	24

Plot 3: 30 MHz to 1 GHz, TX mode, 2480 MHz, vertical & horizontal polarization


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
46.777	19.08	30.0	10.92	1000	120	160.0	V	215.0	15
75.415	19.37	30.0	10.63	1000	120	160.0	V	22.0	11
80.982	19.17	30.0	10.83	1000	120	160.0	V	340.0	11
86.536	19.69	30.0	10.31	1000	120	160.0	V	348.0	11
165.375	21.07	33.5	12.43	1000	120	98.0	V	253.0	11
680.904	24.92	36.0	11.08	1000	120	101.0	Н	152.0	21

Plots: Receiver mode

Plot 1: 30 MHz to 1 GHz, RX / idle - mode, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
39.024	19.50	30.0	10.50	1000	120	101.0	V	222.0	14
43.517	19.58	30.0	10.42	1000	120	160.0	V	321.0	15
75.527	19.20	30.0	10.80	1000	120	160.0	V	336.0	11
86.030	18.27	30.0	11.73	1000	120	160.0	V	355.0	11
657.641	24.65	36.0	11.35	1000	120	98.0	V	112.0	21
946.737	28.73	36.0	7.27	1000	120	160.0	V	248.0	24

11.6 Spurious emissions radiated above 1 GHz

Description:

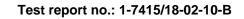
Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit frequencies are 2402 MHz, 2440 MHz and 2480 MHz.

Measurement parameters						
Detector	Peak / RMS					
Sweep time	Auto					
Resolution bandwidth	1 MHz					
Video bandwidth	3 x RBW					
Span	1 GHz to 26 GHz					
Trace mode	Max hold					
Measured modulation	GFSK					
Test setup	See sub clause 6.2 A (1 GHz - 18 GHz) See sub clause 6.3 A (18 GHz - 26 GHz)					
Measurement uncertainty	See sub clause 8					

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

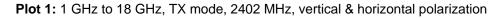
Limits:

FCC			IC					
	TX spurious emissions radiated							
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).								
	§15.	209						
Frequency (MHz)	Field streng	h (dBμV/m)	Measurement distance					
Above 960	54.0 (A	verage)	3					
Above 960	74.0 (Peak)	3					

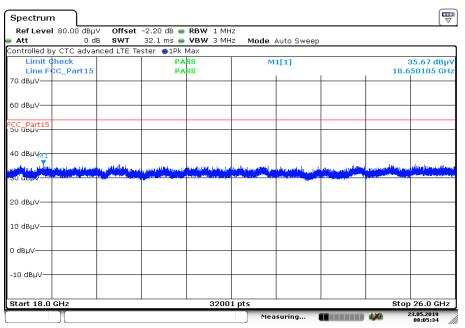


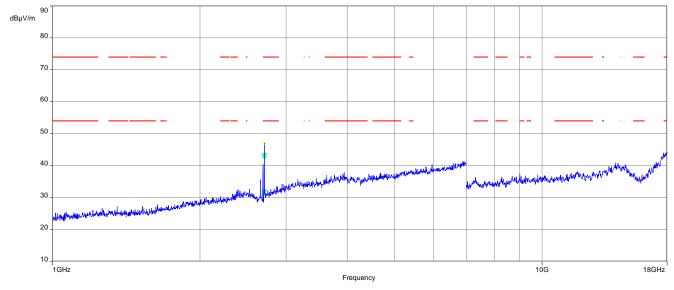
Results: Transmitter mode

	TX spurious emissions radiated [dBµV/m]									
	2402 MHz			2440 MHz		2480 MHz				
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	F [MHz] Detector Level F [MHz] Detector						
	$[dB\mu V/m] = [dB\mu V/m] = [dB\mu V/m] = [dB\mu V/m] = [dB\mu V/m]$ All detected emissions are more than 20 dB below the limit.									
-/-	Peak	-/-	1	Peak	-/-	1	Peak	-/-		
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-		
-/-	Peak	-/-	1	Peak	-/-	1	Peak	-/-		
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-		
-/-	Peak	-/-	1	Peak	-/-	1	Peak	-/-		
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-		


Results: Receiver mode

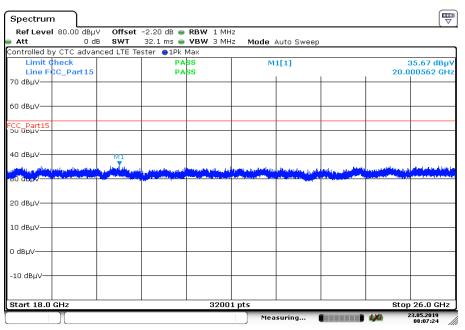
RX spurious emissions radiated [dBµV/m]								
F [MHz] Detector Level [dBµV/m]								
All detect	ed emissions are more than 20 dB below	the limit.						
1	Peak	-/-						
-/-	AVG	-/-						


Plots: Transmitter mode

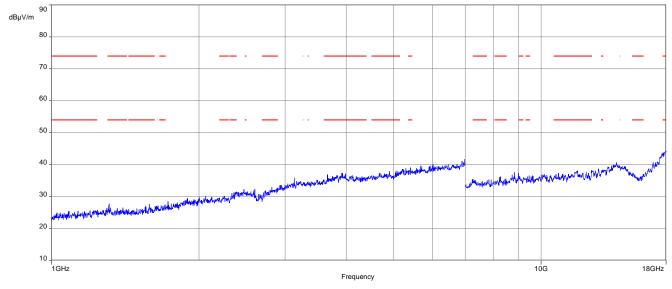

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: 18 GHz to 26 GHz, TX mode, 2402 MHz, vertical & horizontal polarization

Date: 23.MAY.2019 08:05:34

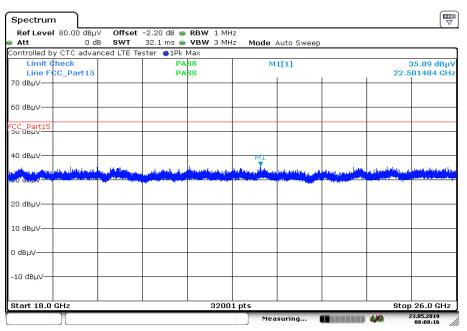


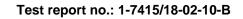
Plot 3: 1 GHz to 18 GHz, TX mode, 2440 MHz, vertical & horizontal polarization


The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 4: 18 GHz to 26 GHz, TX mode, 2440 MHz, vertical & horizontal polarization

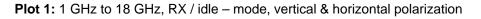
Date: 23.MAY.2019 08:07:24

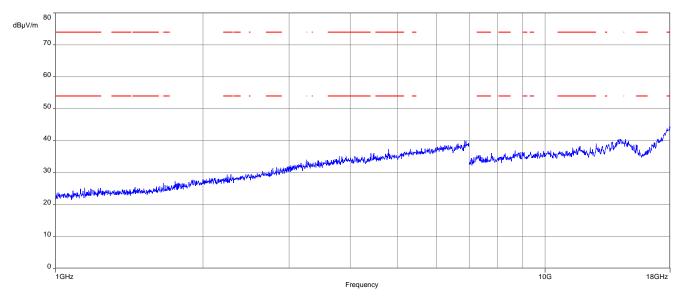


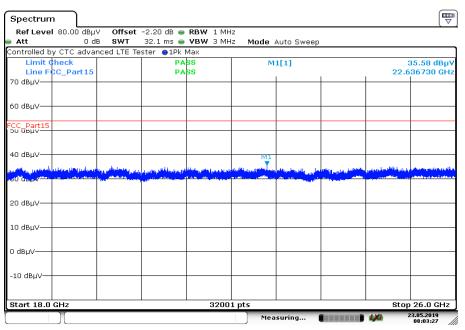

Plot 5: 1 GHz to 18 GHz, TX mode, 2480 MHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 6: 18 GHz to 26 GHz, TX mode, 2480 MHz, vertical & horizontal polarization




Date: 23.MAY.2019 08:08:17



Plots: Receiver mode

Plot 2: 18 GHz to 26 GHz, RX / idle - mode, vertical & horizontal polarization

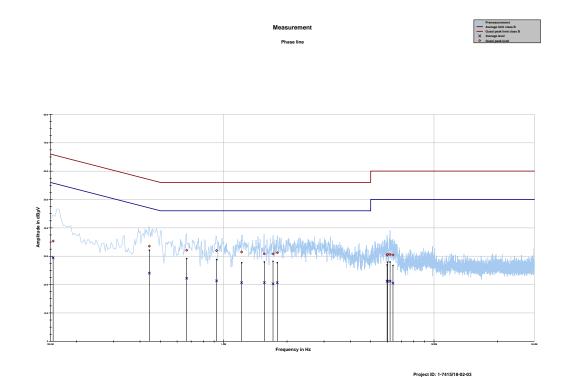
Date: 23.MAY.2019 08:03:27

11.7 Spurious emissions conducted below 30 MHz (AC conducted)

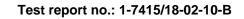
Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit frequency is 2440 MHz. This measurement is representative for all channels and modes. If critical peaks are found frequency 2402 MHz and 2480 MHz will be measured too. The measurement is performed in the mode with the highest output power. Both power lines, phase and neutral line, are measured. Found peaks are remeasured with average and quasi peak detection to show compliance to the limits.

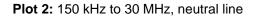
Measurement parameters						
Detector	Peak - Quasi peak / average					
Sweep time	Auto					
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz					
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz					
Span:	9 kHz to 30 MHz					
Trace mode:	Max hold					
Test setup	See sub clause 6.4 A					
Measurement uncertainty	See sub clause 8					

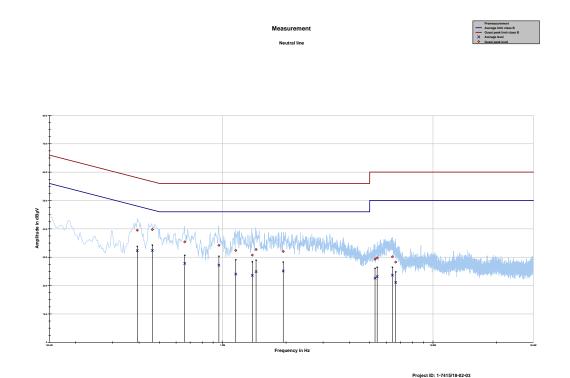

Limits:

FCC		IC				
TX spurious emissions conducted < 30 MHz						
Frequency (MHz)	Quasi-peal	κ (dBμV/m)	Average (dBµV/m)			
0.15 – 0.5	66 to	o 56*	56 to 46*			
0.5 – 5	56		56		46	
5 - 30.0	6	0	50			


*Decreases with the logarithm of the frequency

Plots:


Plot 1: 150 kHz to 30 MHz, phase line



Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
0.154478	35.35	30.41	65.756	29.47	26.40	55.872
0.443030	33.55	23.45	57.005	24.02	23.61	47.628
0.666540	32.13	23.87	56.000	22.23	23.77	46.000
0.924704	31.98	24.02	56.000	21.31	24.69	46.000
1.216751	31.48	24.52	56.000	20.67	25.33	46.000
1.559621	30.83	25.17	56.000	20.68	25.32	46.000
1.715388	30.82	25.18	56.000	20.27	25.73	46.000
1.797081	31.25	24.75	56.000	20.67	25.33	46.000
5.982173	30.37	29.63	60.000	21.16	28.84	50.000
6.017271	30.70	29.30	60.000	21.22	28.78	50.000
6.181004	30.62	29.38	60.000	21.20	28.80	50.000
6.379966	30.44	29.56	60.000	20.51	29.49	50.000

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
0.392450	39.51	18.50	58.012	32.31	16.77	49.073
0.462819	39.74	16.91	56.642	32.38	14.68	47.062
0.659805	35.41	20.59	56.000	27.81	18.19	46.000
0.958704	34.21	21.79	56.000	27.19	18.81	46.000
1.153472	32.39	23.61	56.000	24.04	21.96	46.000
1.382083	30.75	25.25	56.000	23.59	22.41	46.000
1.440320	32.72	23.28	56.000	24.92	21.08	46.000
1.939622	32.05	23.95	56.000	25.13	20.87	46.000
5.301245	29.31	30.69	60.000	22.61	27.39	50.000
5.427168	29.76	30.24	60.000	23.17	26.83	50.000
6.411086	30.15	29.85	60.000	23.65	26.35	50.000
6.647230	28.29	31.71	60.000	21.12	28.88	50.000

12 Observations

No observations except those reported with the single test cases have been made.

Annex A Glossary

EUT	Equipment under test		
	Equipment under test		
DUT	Device under test		
UUT	Unit under test		
GUE	GNSS User Equipment		
ETSI	European Telecommunications Standards Institute		
EN	European Standard		
FCC	Federal Communications Commission		
FCC ID	Company Identifier at FCC		
IC	Industry Canada		
PMN	Product marketing name		
HMN	Host marketing name		
HVIN	Hardware version identification number		
FVIN	Firmware version identification number		
EMC	Electromagnetic Compatibility		
HW	Hardware		
SW	Software		
Inv. No.	Inventory number		
S/N or SN	Serial number		
С	Compliant		
NC	Not compliant		
NA	Not applicable		
NP	Not performed		
PP	Positive peak		
QP	Quasi peak		
AVG	Average		
00	Operating channel		
OCW	Operating channel bandwidth		
OBW	Occupied bandwidth		
OOB	Out of band		
DFS	Dynamic frequency selection		
CAC	Channel availability check		
OP	Occupancy period		
NOP	Non occupancy period		
DC	Duty cycle		
PER	Packet error rate		
CW	Clean wave		
MC	Modulated carrier		
WLAN	Wireless local area network		
RLAN	Radio local area network		
DSSS	Dynamic sequence spread spectrum		
OFDM	Orthogonal frequency division multiplexing		
FHSS	Frequency hopping spread spectrum		
GNSS	Global Navigation Satellite System		
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz		
0/110			

Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2019-06-11
A	New contact person, kind of test item and model name	2019-06-14
В	New HVIN	2019-08-26

Annex C Accreditation Certificate – D-PL-12076-01-04

first page	last page
Deutsche Akkreditierungsstelle GmbH Entrustiel according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilaterral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 10 10117 Berlin 60322 Frankfurt am Main Bisudealbec 100 38116 Braunschweig 38116 Braunschweig
The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards	The publication of extracts of the accreditation certificato is sobject to the prior written approval by Deutsche Akkreditierungsstelle Grubit (DAkk5). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleat. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by OAK5.
The accreditation certificate shall only apply in connection with the notice of accreditation of comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 7 pages. Registration number of the certificate: D-PL-12076-01-04 Handburg and the certificate accreditation of the cover sheet and the following annex with a descent accreditation accreditation of the certificate accreditation of descent accreditation accreditation of the certificate accreditation of descent accreditation accreditation accreditation of descent accreditation accreditation accreditation accreditation accreditation of descent accreditation accredi	The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 31 July 2009 (Federal Law Gazetel p. 3623) and the Regulation (EC) No 765/2008 of the (Luopean Parliament and of the Council of July 2008 setting out the requirements for accreditation and marks travellance relating to the marketing of products (Official Journal of the European Union L 28 of 9 July 2008, p. 30). DAAKs is a signator to the Multilateral Agreements for for accredit on the European co-operation for Accreditation (EA), International Accreditation forum (IAP) and international Jaboratory Accreditation Cooperation (EA), International Accreditation forum (IAP) and international Jaboratory Accreditation Cooperation (ILA), International Accreditation forum (IAP) and international Jaboratory Accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation org Lite: www.european-accreditation org Lite: www.iaf.nu

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-04.pdf

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05.pdf