Zhejiang Kezheng Electronic Product Inspection

Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China TEL: +86-571-88366800

TEST REPORT

Lie Wei Chen Yignon

Report No. 2019-9035

FCC ID------: 2AT9WMT-501668

Applicant······ SHENZHEN CLOBOT INTELLIGENT TECHNOLOGY CO., LTD.

Address Area A&B,7F. SZZT Industrial Park, No.3 Tongguan Road; Guangming

New District Shenzhen, China

Manufacturer SHENZHEN CLOBOT INTELLIGENT TECHNOLOGY CO., LTD.

Address······ Area A&B,7F. SZZT Industrial Park, No.3 Tongguan Road; Guangming

New District Shenzhen, China

Product Name······: Robotic Vacuum Cleaner

Trade Mark·····: N/A

Model/Type reference····· MT-501

Listed Model(s) MT-500,MT-502,MT-503,MT-505,MT-506,MT-507,MT-508,MT-509

Standard FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of receipt of test sample...: Jun.25, 2019

Result..... PASS

Compiled by:

(Printed name+signature) Liu Wei

Supervised by:

(Printed name+signature) Chen Yiyun

Approved by:

(Printed name+signature) Wang Weixiong

Testing Laboratory Name...... Zhejiang Kezheng Electronic Product Inspection

Address...... Building 16 and Binjiang District,

Hangzho

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by Kezheng. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to Kezheng within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

TABLE OF CONTENTS Page 3. TEST ITEM AND RESULTS......9

Page 3 of 65 Report No.: 2019-9035

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 15.247:</u> Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report version

Revised No.	Date of issue	Description
01	Jul.31, 2019	Original

Page 4 of 65 Report No.: 2019-9035

1.3. Test Description

FCC Part 15 Subpart C(15.247)					
To ad Maria	Standard Section	Decult	Test		
Test Item	FCC	Result	Engineer		
Antenna Requirement	15.203	Pass	John Xie		
Conducted Emission	15.207	Pass	John Xie		
6dB Bandwidth	15.247(a)(2)	Pass	John Xie		
Peak Output Power	15.247(b)	Pass	John Xie		
Power Spectral Density	15.247(e)	Pass	John Xie		
Restricted Band	15.247(d)/15.205	Pass	John Xie		
Band Edge and Spurious Emission(Conducted)	15.247(d)	Pass	John Xie		
Spurious Emission(Radiated)	15.247(d)&15.209	Pass	John Xie		

Note: The measurement uncertainty is not included in the test result.

Page 5 of 65 Report No.: 2019-9035

1.4. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Zhejiang Kezheng Electronic Product Inspection quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Below is the best measurement capability for Zhejiang Kezheng Electronic Product Inspection.

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.42 dB	(1)
Transmitter power Radiated	2.14 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.20 dB	(1)
Radiated Emissions 30~1000MHz	4.70 dB	(1)
Radiated Emissions 1~18GHz	5.00 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.5. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

Page 6 of 65 Report No.: 2019-9035

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	SHENZHEN CLOBOT INTELLIGENT TECHNOLOGY CO., LTD.
Address:	Area A&B,7F. SZZT Industrial Park, No.3 Tongguan Road; Guangming New District Shenzhen, China
Manufacturer:	SHENZHEN CLOBOT INTELLIGENT TECHNOLOGY CO., LTD.
Address:	Area A&B,7F. SZZT Industrial Park, No.3 Tongguan Road; Guangming New District Shenzhen, China

2.2. General Description of EUT

Product Name:	Robotic Vacuum Cleaner
Model/Type reference:	MT-501
Marketing Name:	N/A
Listed Model(s):	MT-500,MT-502,MT-503,MT-505, MT-506,MT-507,MT-508,MT-509
Model Difference:	Different appearance
Adapter :	INPUT: 100V-240V~ 50/60Hz 0.5A Max OUTPUT: DC 19V 600mA
Power supply(Battery):	DC 10.8V 2500mAh
Hardware version:	M300_V2.0
Software version:	1.0.25
WIFI 802.11b/g/n(HT20)	
Modulation:	802.11b: DSSS(CCK, DQPSK, DBPSK) 802.11g/n: OFDM(BPSK,QPSK,16QAM,64QAM)
Operation frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz 80211n(HT40): 2422MHz~2452MHz
Max Peak Output Power:	802.11b: 15.61dBm 802.11g: 12.02dBm 802.11n (HT20): 12.03dBm 802.11n (HT40): 11.86dBm
Channel number:	802.11b/g/n(HT20):11 channels 80211n(HT40): 7 channels
Test frequency:	CH01/03: 2412M/2422MHz; CH06: 2437MHz; CH09/11: 2452M/2462MHz
Channel separation:	5MHz
Antenna type:	PCB Antenna
Antenna gain:	2.5dBi

2.3. Operation state

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing.

Operation Frequency List:

Channel	Frequency (MHz)
01	2412
02	2417
03	2422
04	2427
05	2432
06	2437
07	2442
08	2447
09	2452
10	2457
11	2462

Note: 1.CH 01~CH 11 for 802.11b/g/n(HT20/HT40), CH03~CH09 for 802.11n(HT40).

2. The display in grey were the channel selected for testing.

Test mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit (duty cycle>98%).

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated suprious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit(duty cycle>98%). The EUT in each of three orthogonal axis emissions had been tested ,but only the worst case (X axis) data Recorded in the report.

2.4. Measurement Instruments List

Tonscer	Tonscend JS0806-2 Test system					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until	
1	Spectrum Analyzer	R&S	FSV40-N	101798	Apr.25, 2020	
2	Vector Signal Generator	Agilent	N5182A	MY50142520	Apr.10, 2020	
3	Analog Signal Generator	HP	83752A	3344A00337	Apr.10, 2020	
4	Power Sensor	Agilent	E9304A	MY50390009	Apr.10, 2020	
5	Power Sensor	Agilent	E9300A	MY41498315	Apr.10, 2020	
6	Wideband Radio Communication Tester	R&S	CMU200	115297	Apr.10, 2020	
7	Climate Chamber	Angul	AGNH80L	1903042120	Apr.10, 2020	
8	Dual Output DC Power Supply	Agilent	E3646A	MY40009992	Apr.10, 2020	
9	RF Control Unit	Tonscend	JS0806-2	/	Apr.10, 2020	

Transmitter spurious emissions & Receiver spurious emissions					
Item	Test Equipment	Manufacturer	Manufacturer Model No. Serial No.		Calibrated until
1	EMI Test Receiver	R&S	ESR	102525	Apr.10, 2020
2	High Pass Filter	Chengdu E-Microwave	OHF-3-18-S	0E01901038	Apr.15, 2020
3	High Pass Filter	Chengdu E-Microwave	OHF-6.5-18-S	0E01901039	Apr.15, 2020
4	Spectrum Analyzer	HP	8593E	3831U02087	Apr.10, 2020
5	Ultra-Broadband logarithmic period Antenna	Schwarzbeck	VULB 9163 01230		Apr.17, 2020
6	Loop Antenna	Beijin ZHINAN	ZN30900C	18050	Apr.17, 2020
7	Horn Antenna	R&S	Sep-60	69483	Apr.10, 2020
8	Spectrum Analyzer	R&S	FSV40-N	101798	Apr.25, 2020
9	Horn Antenna	Schwarzbeck	BBHA 9120 D	2023	Apr.10, 2020
10	Pre-Amplifier	Schwarzbeck	BBV 9745	9745#129	Apr.10, 2020
11	Pre-Amplifier	EMCI	EMC051835SE	980662	Apr.17, 2020
12	Power Meter	Agilent	E4419B	GB41293710	Apr.10, 2020

Note:

2.5. Test Software

Software name	Model	Version
Conducted emission Measurement Software	EZ-EMC	EMC-Con 3A1.1
Radiated emission Measurement Software	EZ-EMC	FA-03A.2.RE
Bluetooth and WIFI Test System	JS1120-3	2.5.77.0418

¹⁾The Cal. Interval was one year.

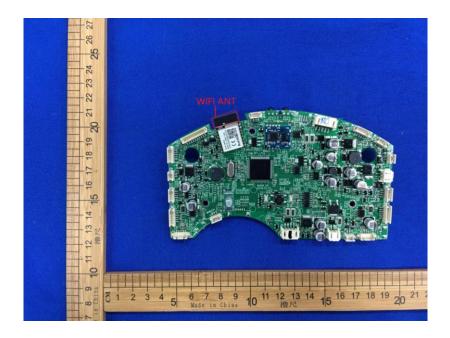
²⁾The cable loss has calculated in test result which connection between each test instruments.

3. TEST ITEM AND RESULTS

3.1. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

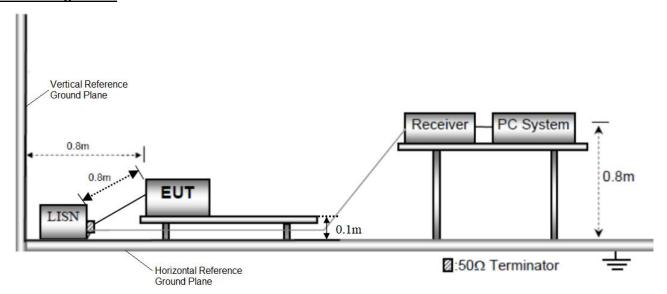
(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.

3.2. Conducted Emission

Limit


Conducted Emission Test Limit

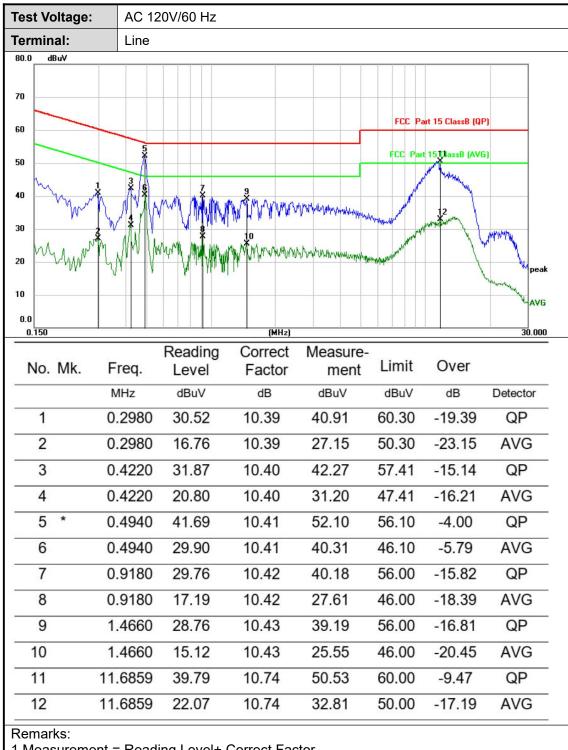
Eroguenov	Maximum RF Line Voltage (dBμV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

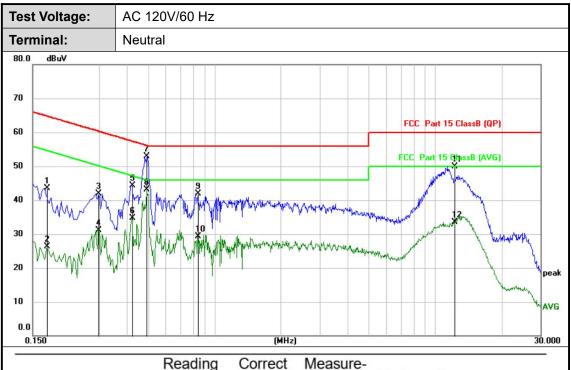
Test Configuration

Test Procedure


- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 0.1m above the conducting ground plane. The vertical conducting plane was located 80 cm to the rear of the EUT. All other surfaces of EUT were at least 0.8m from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment.

 The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

Test Mode:


Please refer to the clause 2.3.

Test Results

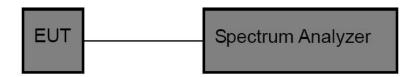
^{1.}Measurement = Reading Level+ Correct Factor

^{2.}Over = Measurement -Limit

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1740	33.14	10.39	43.53	64.77	-21.24	QP
2	0.1740	15.91	10.39	26.30	54.77	-28.47	AVG
3	0.2986	31.46	10.39	41.85	60.28	-18.43	QP
4	0.2986	20.68	10.39	31.07	50.28	-19.21	AVG
5	0.4220	33.98	10.40	44.38	57.41	-13.03	QP
6	0.4220	24.31	10.40	34.71	47.41	-12.70	AVG
7	0.4940	42.45	10.41	52.86	56.10	-3.24	QP
8 *	0.4940	32.62	10.41	43.03	46.10	-3.07	AVG
9	0.8420	31.50	10.42	41.92	56.00	-14.08	QP
10	0.8420	18.97	10.42	29.39	46.00	-16.61	AVG
11	12.2379	39.16	10.76	49.92	60.00	-10.08	QP
12	12.2379	22.78	10.76	33.54	50.00	-16.46	AVG

Remarks:

^{1.}Measurement = Reading Level+ Correct Factor


^{2.}Over = Measurement -Limit

3.3. Bandwidth

Limit

Test Item	Limit	Frequency Range(MHz)
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5

Test Configuration

Test Procedure

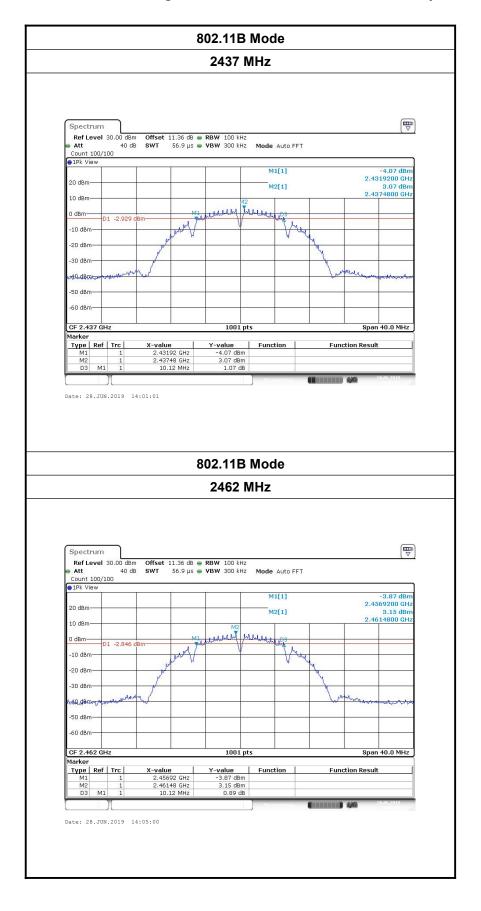
- The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:

6db Bandwidth

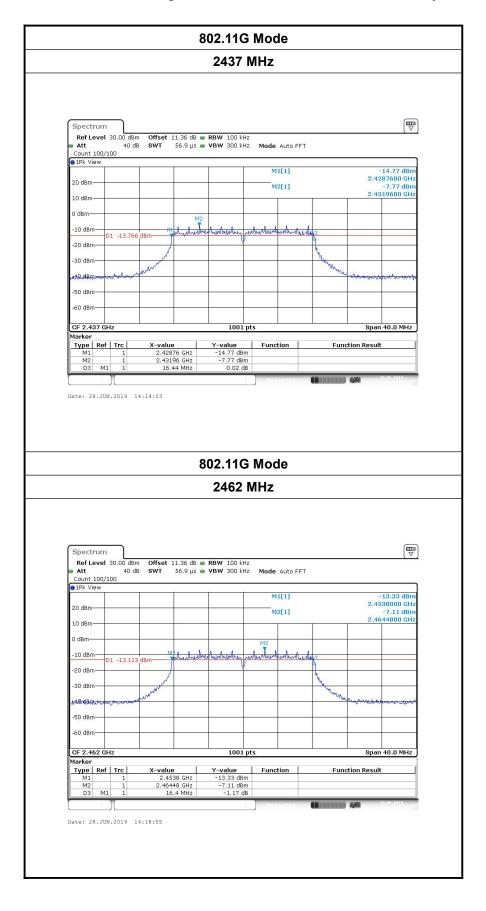
- (1) Set RBW = 100 kHz.
- (2) Set the video bandwidth (VBW) ≥ 3 RBW.
- (3) Detector = Peak.
- (4) Trace mode = Max hold.
- (5) Sweep = Auto couple.

99% Bandwidth

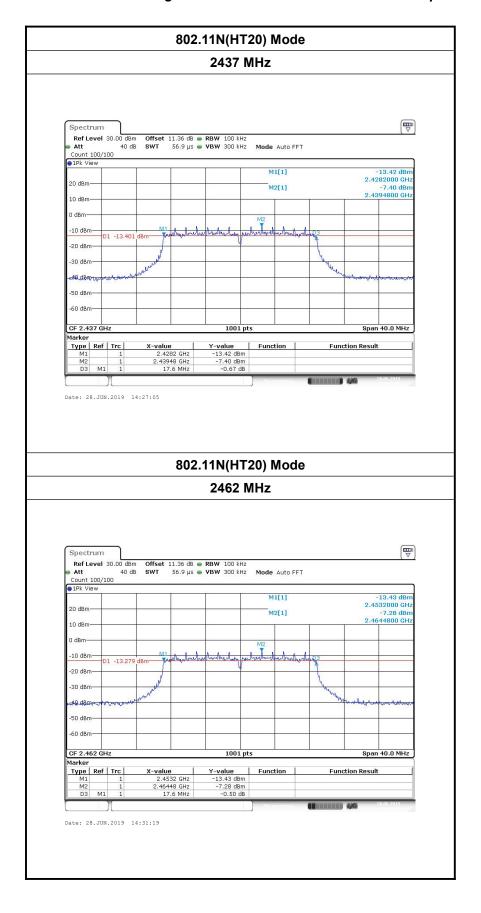
- (1) Set RBW = 500 kHz.
- (2) Set the video bandwidth (VBW) =2MHz.
- (3) Detector = Peak.
- (4) Trace mode = Max hold.
- (5) Sweep = Auto couple.

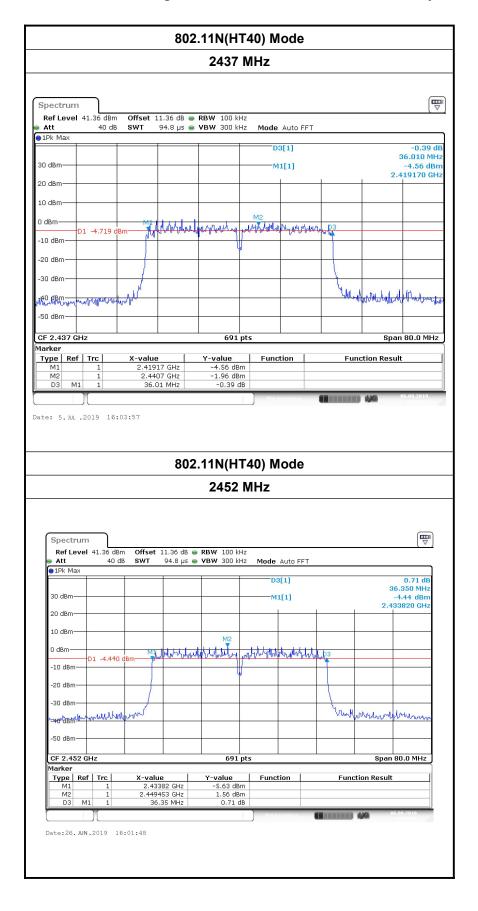

NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

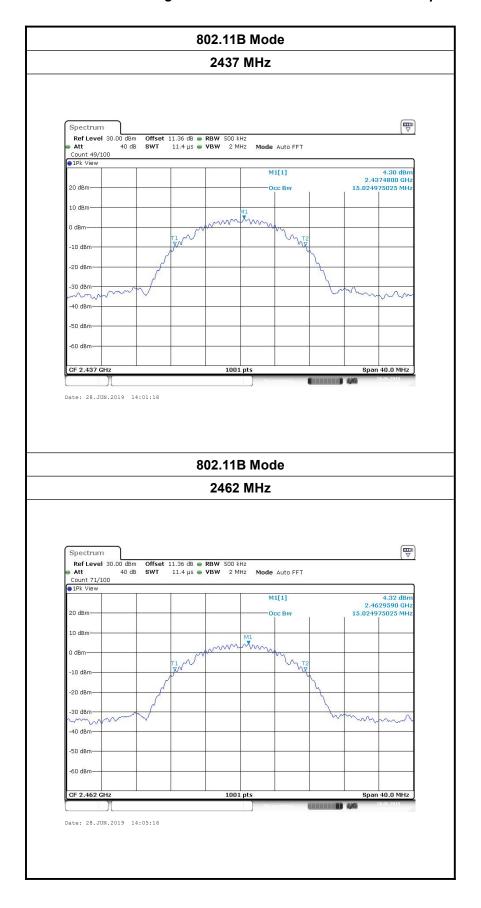
Test Mode

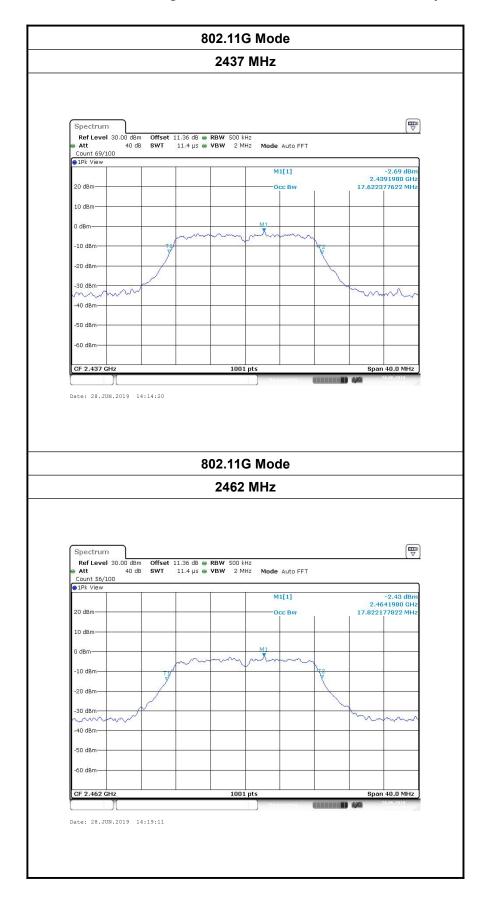

Please refer to the clause 2.3.

Test Results

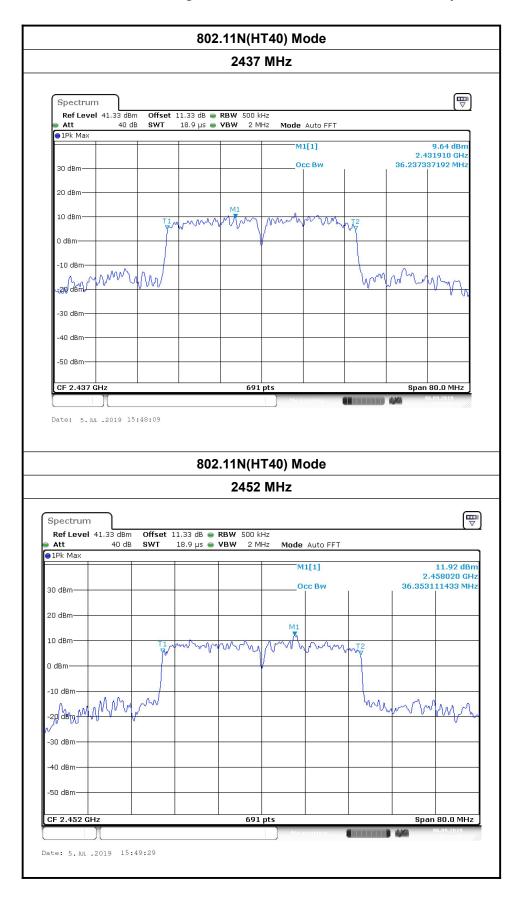

hannel frequency (MHz) 2412	6dB Bandwidth (MHz)	Limit (MHz)
2412	40.400	
	10.120	
2437	10.120	>=0.5
2462	10.120	
802	2.11B Mode	I
	2412 MHz	
-10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	M300 kHz Mode Auto FFT M1[1] M2[1] 2.	-4.12 dBm 4069200 GHz 3.00 dBm 4124800 GHz
	-value Function Function Res	ult
M1 1 2.40692 GHz M2 1 2.41248 GHz D3 M1 1 10.12 MHz Date: 28.JUN.2019 13:56:51		28.06.2019


est Mode:	802.11G Mode	
Channel frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)
2412	16.400	
2437	16.440	>=0.5
2462	16.400	
802	⊥ 2.11G Mode	
2	2412 MHz	
Spectrum Ref Level 30.00 dBm Offset 11.33 dB Ref Rev Att 40 dB SWT 56.9 μs VBV Count 100/100 1Pk View 20 dBm 0 dBm	M1[1] 2.4 M2[1] 2.4	-13.69 dBm 038000 GHz -7.69 dBm 194800 GHz
CF 2.412 GHz Marker	1001 pts Spa	n 40.0 MHz
Type Ref Trc X-value Y- M1 1 2.4038 GHz -	value Function Function Results 13.69 dBm -7.69 dBm -1.13 dB -1.13 dB	28.06.2019
Date: 28.JUN.2019 14:09:34		


t Mode:		802.11N(HT2		
hannel frequ	ency (MHz)	6dB Band (MHz		Limit (MHz
2412	2	17.60	0	
243	7	17.60	0	>=0.5
2462	2	17.60	0	
	802.11	N(HT20) Mode	ı	<u> </u>
	2	412 MHz		
Spectrum Ref Level 30.00 dB Att Count 100/100 ●1Pk View 20 dBm 10 dBm 01 -13.49 -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	3B SWT 56.9 μs • VBV	M 300 kHz Mode Auto FFT M1[1] M2[1]	2	-13.49 dBm 2.4032000 GHz -7.49 dBm .4144800 GHz
CF 2.412 GHz		1001 pts	S	pan 40.0 MHz
Marker Type Ref Trc	2.4032 GHz -1	value	Function Re	sult

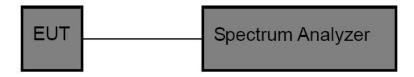

Report No.: 2019-9035

est Mode:	802.11B Mode	
Channel frequency (MHz)	99% Bandwidth (MHz)	Limit (MHz
2412	14.985	
2437	15.025	>=0.5
2462	15.025	
80	2.11B Mode	I
	2412 MHz	
Spectrum		(₩) ∇ 4.24 dBm
20 dBm-		2.4124800 GHz 4.985014985 MHz
10 dBm		
-10 dBm	\(\sqrt{\tau}\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
-20 dBm		
-30 dBm	\	
-50 dBm-		
-60 dBm		
CF 2.412 GHz	1001 pts	Span 40.0 MHz
Date: 28.JUN.2019 13:57:08		


2412 2437 2462	z) §	99% Bandw (MHz) 17.582	idth	Limit (MHz)
2437				
2462		17.622		>=0.5
		17.822		
	802.11G	Mode		
	2412 N	ЛHz		
	dB © RBW 500 kHz us © VBW 2 MHz	Mode Auto FFT		∇
●1Pk View	Ť Ť	M1[1]		-3.44 dBm
20 dBm		Occ Bw		069250 GHz 417582 MHz
10 dBm				
0 dBm	M1			
-10 dBm		£		
-20 dBm				
-30 dBm			Jan Jan	man
-40 dBm				
-50 dBm-				
-60 dBm				
CF 2.412 GHz	1001 pt:	<u> </u>	Sna	n 40.0 MHz
	2232 p.	Measuring	W (28.06.2019

Channal fraguence		I(HT20) Mode		
Channel frequence (MHz)	у	99% Band (MHz)		Limi (MHz
2412		18.382	2	
2437		18.422	2	>=0.
2462		18.182	2	
	'	802.11N(HT2	0) Mode	
		2412 M		
Count 53/100		33 dB e RBW 500 kHz 1.4 µs e VBW 2 MHz	Mode Auto FFT	₩
	10 dB SWT 1	1.4 μs (a) VBW 2 MHz	Mode Auto FFT	
20 dBm-			M1[1] —Occ Bw	-3.80 dBm 2.4171150 GHz 18.381618382 MHz
10 dBm-				
			M1	
0 dBm-				
0 dBm	7.4		mula y	
	74		The state of the s	
-10 dBm	73/1		more to the second	mmm
-10 dBm				m
-10 dBm	74		matura p	mmm
-10 dBm -20 dBm -30 dBm -40 dBm	7	1001 pts		Span 40.0 MHz

hannel freque			Γ40) Μοσ 9% Ban o		h		Lin	nit
(MHz)		(MHz)				(Mł	łz)	
2422		36.469						
2437			36.23	37			>=(0.5
2452			36.35	53				
		802	.11N(HT	40) M	ode			
			2422 N					
Spectrum Ref Level 41.33 dB	m Offset	11 33 dB =	RBW 500 kHz					∀
■ Att 40 c		18.9 µs 🖷			Auto FFT			
●1Pk Max	_				1[1]			12.06 dBm
								428020 GHz 385673 MHz
30 dBm-					cc Bw		30.408	383673 MHZ
20 dBm-								
20 00111				M1				
10 dBm-	T1	www.	my 1	4morth	-MONA	my		
0.10	1 7	1	Ψ			T2		
0 dBm								
-10 dBm	Α Λ					1	MM	. 000
- My www	V~N						MAN AND	My
7₁26 dBm								3~
-30 dBm								
-40 dBm	+						+	
-50 dBm								
-30 UBIII				_				
CF 2.422 GHz			691 pt	s			Spa	n 80.0 MHz
				Me.a	suring		1 4/4	06.09.2019
Date: 5.JUL .2019 1	5:46:35							



3.4. Peak Output Power

<u>Limit</u>

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	1 Watt or 30 dBm	2400~2483.5

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. The measurement is according to section 9.1.2 of KDB 558074 D01 15.247 DTS Meas Guidance v05.
- 3. Spectrum Setting:

Set analyser center frequency to DTS channel center frequency.

Set the RBW to: 1MHz Set the VBW to: 3MHz

Detector: peak
Sweep time: auto

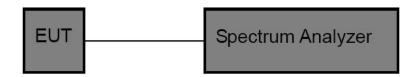
Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

4. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

Test Mode

Please refer to the clause 2.3

Test Result


Mode	Channel frequency (MHz)	Test Result (dBm)	Limit (dBm)
	2412	15.48	
802.11b	2437	15.47	
	2462	15.61	
	2412	11.73	
802.11g	2437	11.69	
	2462	12.02	20
	2412	11.85	30
802.11n (HT20)	2437	11.85	
(11120)	2462	12.03	
	2422	11.59	
802.11n (HT40)	2437	11.67	
(11170)	2452	11.86	
	Res	ult: PASS	

3.5. Power Spectral Density

<u>Limit</u>

FCC Part 15 Subpart C(15.247)				
Test Item	Frequency Range(MHz)			
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5		

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 15.247 DTS Meas Guidance v05.
- 3. Spectrum Setting:

Set analyser center frequency to DTS channel center frequency.

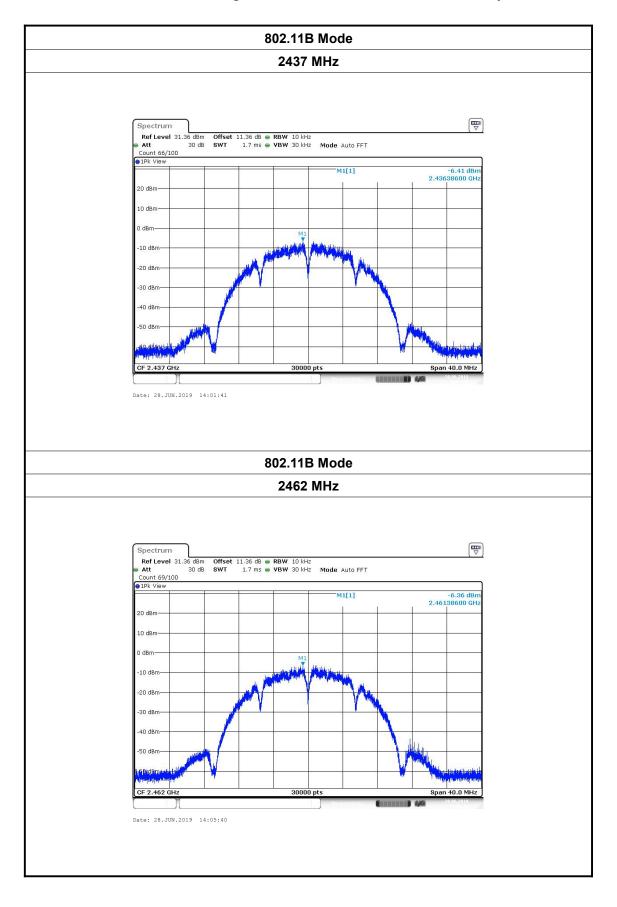
Set the span to 1.5 times the DTS bandwidth.

Set the RBW to: 10 kHz Set the VBW to: 30 kHz

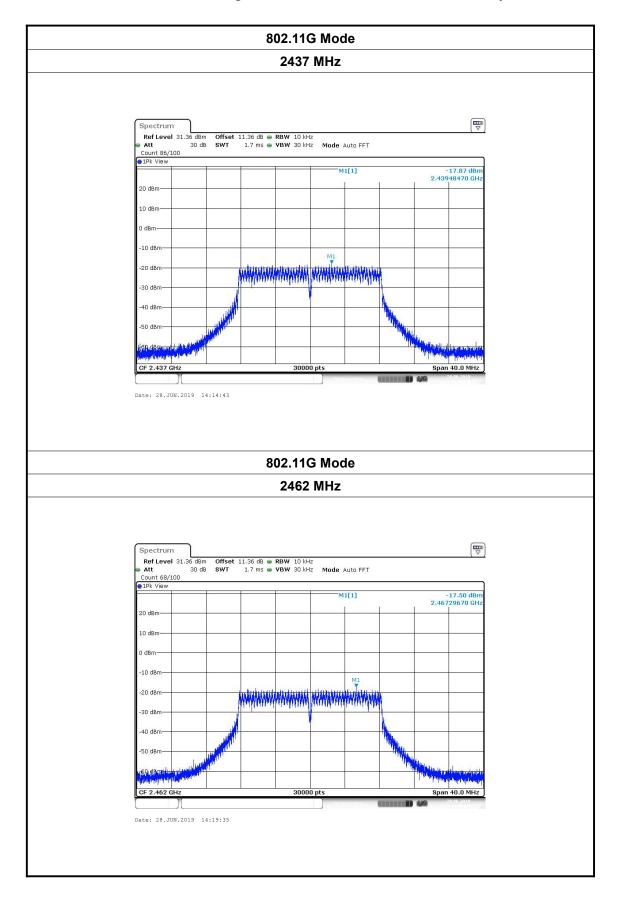
Detector: peak
Sweep time: auto

Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

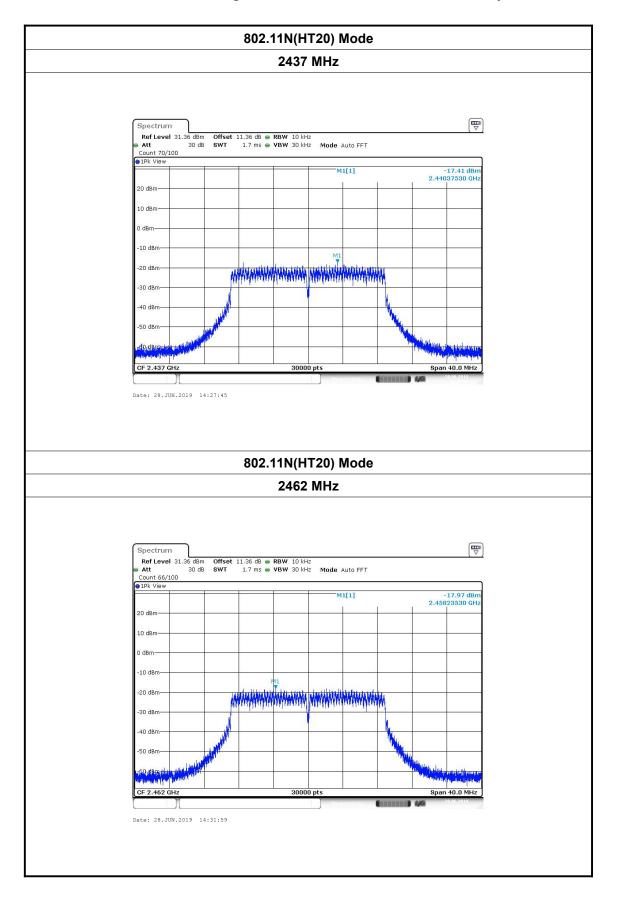
Test Mode

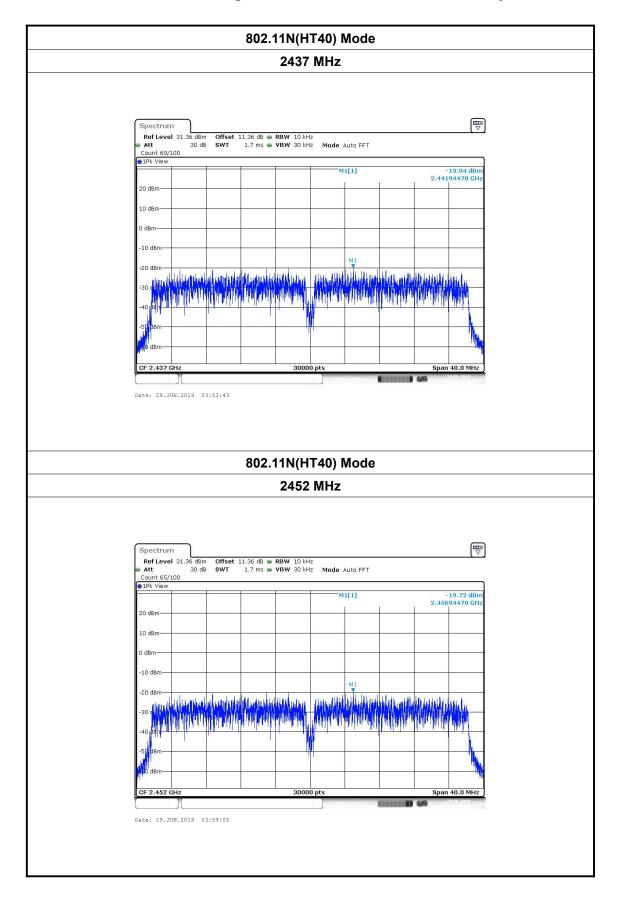

Please refer to the clause 2.3

Test Result


Note:

Power Density(dBm/3kHz)=Power Density(dBm/10kHz)-10*Log(10/3)


Test Mode:	802.11	3 Mode		
Channel Freque (MHz)	ency	Power Density (dBm/10kHz)	Power Density (dBm/3kHz)	Limit (dBm)
2412		-6.35	-11.58	
2437		-6.41	-11.64	8dBm/3kHz
2462		-6.36	-11.59	
	"	802.11	3 Mode	
		2412	MHz	
20 10 0 c -10 -20 -30 -40 -50	### 30 ### 30	30000	M1[1] 2.412	-6.35 dBm 59130 GHz (中国) (中国) (中国) (中国) (中国) (中国) (中国) (中国)


Test Mode:	802.11	G Mode						
Channel Frequency (MHz)		Power Density (dBm/10 kHz)			Power Density (dBm/3 kHz)			Limit (dBm)
2412		-18.02			-23.25			
2437		-17.87			-23.10			8dBm/3kHz
2462	2462		-17.50		-22.73			
		8	02.11G I	Mode				
			2412 M	lHz				
20 · 10 · 0 dl	unt 70/100 Pk View dBm-	1.7 ms ●	VBW 30 kHz	Mule Auto FFT			18.02 dBm 99530 GHz	
-30	dBm	i william	Lumbina hin	illelinnininilli				
-40	dBm-	A A A A A A A A A A A A A A A A A A A			The second			
h <mark>च्ची</mark>	dBm					The state of the s	Maria Maria Mari	
	2.412 GHz		30000 pts	Measuring		Span	40.0 MHz	
Date	: 28.JUN.2019	14:10:13						

Test Mode:	802.1	1N(HT20) Mode			
Channel Frequency (MHz)		Power Density (dBm/10kHz)	Power Density (dBm/3 kHz)	Limit (dBm)	
2412		-18.39	-23.62		
2437		-17.41	-22.64	8dBm/3kHz	
2462		-17.97	-23.20		
		802.11N(HT2	20) Mode		
		2412 N	lHz		
10 dt -10	dBm————————————————————————————————————	Wanning way was a second of the second of th	2.4153	.8.39 dBm 17530 GHz	
-40 -50	dBm	30000 pt		Hagear day	
		30000 pt	S Span	300-010	

Test Mode:	802.1	1N(HT40) Mode		
Channel Frequency (MHz)		Power Density (dBm/10 kHz)	Power Density (dBm/3 kHz)	Limit (dBm)
2422		-16.64	-21.87	
2437		-19.94	-25.17	8dBm/3kHz
2452		-19.72	-24.95	
		802.11N(HT40	D) Mode	
		2422 MI	Нz	
10 0 c -11 -2(-3)	Mark I			
CF	2.422 GHz	30000 pts	Span 40	0.0 MHz
Date	e: 5.JUL.201	9 04:16:32		

