KSIGN[®] KSIGN (Guangdong) Testing Co., Ltd.

West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu,Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China Tel.: + (86)755-29852678 Fax: + (86)755-29852397 E-mail: info@gdksign.cn Website: www.gdksign.com

	TEST REPORT			
Report No:	KS2009S01073E			
FCC ID······:	2AT9W-MT200			
Applicant·····:	SHENZHEN CLOBOT INTELLIGENT TECHNOLOGY CO., LTD.			
Address	Area A&B, 7/F, Building 1, SZZT Industrial Park, No.3 Tongguan Road, Yutang Street, Guangming New District, Shenzhen, China			
Manufacturer:	SHENZHEN CLOBOT INTELLIGENT TECHNOLOGY CO., LTD.			
Address	Area A&B, 7/F, Building 1, SZZT Industrial Park, No.3 Tongguan Road, Yutang Street, Guangming New District, Shenzhen, China			
Product Name······:	Robotic Vacuum Cleaner			
Trade Mark······:	1			
Model/Type reference······:	MT-200			
Listed Model(s) ······	MT-210; MT-220; MT-230; MT-240; MT-250; MT-260; MT-270; MT-280; MT-290			
Standard·····:	FCC CFR Title 47 Part 15 Subpart C Section 15.247			
Date of receipt of test sample:	Sep. 15, 2020			
Date of testing	Sep. 15, 2020-Sep. 29, 2020			
Date of issue	Sep. 29, 2020			
Result:	PASS			
Compiled by: (Printed name+signature)	Rory Huang			
Supervised by: (Printed name+signature)	Kelly Cheng			
Approved by:	2			
(Printed name+signature)	Cary Luo			
Testing Laboratory Name:	KSIGN(Guangdong) Testing Co., Ltd.			
Address:	West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China			
This test report may be duplicated completely for legal use with the approval of the applicant. It should not be				

iplicated completely for legal use with the approval of th reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by KSIGN. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to KSIGN within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely corresponds to the test sample.

TABLE OF CONTENTS

Page

1. TEST SUMMARY	
1.1. Test Standards	
1.2. REPORT VERSION	
1.3. TEST DESCRIPTION	
1.4. Test Facility	
1.5. Measurement Uncertainty	
1.6. Environmental conditions	
2. GENERAL INFORMATION	
2.1. CLIENT INFORMATION	
2.2. GENERAL DESCRIPTION OF EUT	
2.3. OPERATION STATE	
2.4. Measurement Instruments List	
2.5. Test Software	
3. TEST ITEM AND RESULTS	
3.1. Antenna requirement	
3.2. CONDUCTED EMISSION	
3.3. BANDWIDTH	
3.4. PEAK OUTPUT POWER	
3.5. Power Spectral Density	
3.6. Band edge and Spurious Emission (conducted)	
3.7. Band Edge Emissions(Radiated)	
3.8. Spurious Emission (Radiated)	
4. EUT TEST PHOTOS	
5. PHOTOGRAPHS OF EUT CONSTRUCTIONAL	

1. TEST SUMMARY

1.1. Test Standards

KSIGN®

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report version

Revised No.	Date of issue	Description
01	Sep. 29, 2020	Original

1.3. Test Description

FCC Part 15 Subpart C(15.247)				
	Standard Section		Test	
Test Item	FCC	Result	Engineer	
Antenna Requirement	15.203	Pass	Rory Huang	
Conducted Emission	15.207	Pass	Rory Huang	
6dB&99% Bandwidth	15.247(a)(2)	Pass	Rory Huang	
Peak Output Power	15.247(b)	Pass	Rory Huang	
Power Spectral Density	15.247(e)	Pass	Rory Huang	
Restricted Band	15.247(d)/15.205	Pass	Rory Huang	
Band Edge and Spurious Emission(Conducted)	15.247(d)	Pass	Rory Huang	
Spurious Emission(Radiated)	15.247(d)&15.209	Pass	Rory Huang	

Note: The measurement uncertainty is not included in the test result.

1.4. Test Facility

Address of the report laboratory

KSIGN(Guangdong) Testing Co., Ltd.

West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L13261

KSIGN(Guangdong) Testing Co., Ltd. has been assessed and proved to be in Compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 5457.01

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirementsfor the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

IC Registration No.: CN0096

The 3m alternate test site of KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: CN0096

FCC-Registration No.: CN1272

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the KSIGN(Guangdong) Testing Co., Ltd. system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Below is the best measurement capability for KSIGN(Guangdong) Testing Co., Ltd.

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.42 dB	(1)
Transmitter power Radiated	2.14 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.20 dB	(1)
Radiated Emissions 30~1000MHz	4.70 dB	(1)
Radiated Emissions 1~18GHz	5.00 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth	2.80 dB	(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	SHENZHEN CLOBOT INTELLIGENT TECHNOLOGY CO., LTD.	
Address: Area A&B, 7/F, Building 1, SZZT Industrial Park, No.3 Tongguan Road, Yutang Street, Guangming New District, Shenzhen, China		
Manufacturer: SHENZHEN CLOBOT INTELLIGENT TECHNOLOGY CO., LTD.		
Address:	Area A&B, 7/F, Building 1, SZZT Industrial Park, No.3 Tongguan Road, Yutang Street, Guangming New District, Shenzhen, China	

2.2. General Description of EUT

Product Name:	Robotic Vacuum Cleaner
Trade Mark:	
Model/Type reference:	MT-200
Listed Model(s):	MT-210; MT-220; MT-230; MT-240; MT-250; MT-260; MT-270; MT-280; MT-290
Model Different:	The difference between product models only depends on the model naming and appearance color are different for the marketing requirement. Other power supply methods, interior structure, electrical circuits and key components are the same, which do not affect the safety and electromagnetic compatibility performance.
Power supply:	MODEL:CZH015190060EUWH INPUT:100-240V~50/60Hz 0.5A Max OUTPUT:19.0V 0.6A 11.4W
Power supply(Battery):	DC 12.8V 1800mAh 23.04Wh
Hardware version:	V2.0
Software version:	1.0.6
WIFI	
Modulation:	802.11b: DSSS(CCK, DQPSK, DBPSK) 802.11g/n: OFDM(BPSK,QPSK,16QAM,64QAM)
Operation frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz 802.11n(HT40): 2422MHz~2452MHz
Max Peak Output Power:	802.11b: 13.6dBm 802.11g: 11.64dBm 802.11n (HT20): 9.51dBm 802.11n (HT40): 8.43dBm
Channel number:	802.11b/g/n(HT20):11 channels 802.11n(HT40):7 channels
Test frequency:	CH01/03: 2412MHz/2422MHz; CH06: 2437MHz; CH09/11: 2452MHz/2462MHz
Channel separation:	5MHz
Antenna type:	PCB antenna
Antenna gain:	2.5dBi

2.3. Operation state

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. Operation Frequency List:

Channel	Frequency (MHz)
01	2412
02	2417
03	2422
04	2427
05	2432
06	2437
07	2442
08	2447
09	2452
10	2457
11	2462

Note: 1.CH 01~CH 11 for 802.11b/g/n(HT20/HT40), CH03~CH09 for 802.11n(HT40).

2. The display in grey were the channel selected for testing.

Test mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit (duty cycle>98%).

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit(duty cycle>98%). The EUT in each of three orthogonal axis emissions had been tested ,but only the worst case (X axis) data Recorded in the report.

2.4. Measurement Instruments List

	Tonscend JS0806-2 Test system					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until	
1	Spectrum Analyzer	R&S	FSV40-N	101798	04/07/2021	
2	Vector Signal Generator	Agilent	N5182A	MY50142520	04/07/2021	
3	Analog Signal Generator	HP	83752A	3344A00337	04/07/2021	
4	Power Sensor	Agilent	E9304A	MY50390009	04/07/2021	
5	Power Sensor	Agilent	E9300A	MY41498315	04/07/2021	
6	Wideband Radio Communication Tester	R&S	CMW500	157282	04/07/2021	
7	Climate Chamber	Angul	AGNH80L	1903042120	04/07/2021	
8	Dual Output DC Power Supply	Agilent	E3646A	MY40009992	04/07/2021	
9	RF Control Unit	Tonscend	JS0806-2	/	04/07/2021	
		Torisocria	0000002	1	04/01/202	

	Transmitter spurious emissions & Receiver spurious emissions					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until	
1	EMI Test Receiver	R&S	ESR	102525	04/07/2021	
2	High Pass Filter	Chengdu E-Microwave	OHF-3-18-S	0E01901038	03/27/2021	
3	High Pass Filter	Chengdu E-Microwave	OHF-6.5-18-S	0E01901039	03/27/2021	
4	Spectrum Analyzer	HP	8593E	3831U02087	04/07/2021	
5	Ultra-Broadband logarithmic period Antenna	Schwarzbeck	VULB 9163	01230	03/29/2023	
6	Loop Antenna	Beijin ZHINAN	ZN30900C	18050	03/25/2021	
7	Spectrum Analyzer	R&S	FSV40-N	101798	04/07/2021	
8	Horn Antenna	Schwarzbeck	BBHA 9120 D	2023	03/29/2023	
9	Pre-Amplifier	Schwarzbeck	BBV 9745	9745#129	04/07/2021	
10	Pre-Amplifier	EMCI	EMC051835SE	980662	04/07/2021	
11	Pre-Amplifier	Schwarzbeck	BBV-9721	57	04/07/2021	
12	Horn Antenna	Schwarzbeck	BBHA 9170	00939	03/29/2021	

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	LISN	R&S	ENV432	1326.6105.02	03/27/2021
2	EMI Test Receiver	R&S	ESR	102524	04/07/2021
3	Manual RF Switch	JS TOYO	1	MSW-01/002	04/07/2021

Note:

The Cal. Interval was one year.
The cable loss has calculated in test result which connection between each test instruments.

2.5. Test Software

Software name	Model	Version
Conducted emission Measurement Software	EZ-EMC	EMC-Con 3A1.1
Radiated emission Measurement Software	EZ-EMC	FA-03A.2.RE
Bluetooth and WIFI Test System	JS1120-3	2.5.77.0418

3. TEST ITEM AND RESULTS

3.1. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.

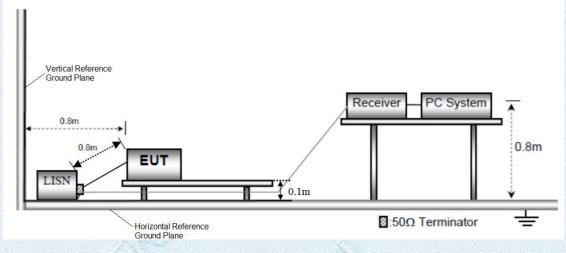
Note: The antenna is permanently fixed to the EUT

3.2. Conducted Emission

Limit

Conducted Emission Test Limit

Frequency	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	


Notes:

(1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequencies.

(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

Test Configuration

Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 0.1m above the conducting ground plane. The vertical conducting plane was located 80 cm to the rear of the EUT. All other surfaces of EUT were at least 0.8m from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

Test Mode:

Please refer to the clause 2.3.

Test Results

Pre-scan 802.11b/g/n(HT20/HT40) modulation, and found the 802.11b modulation 2412MHz which it is worse case, so only show the test data for worse case.

KSIGN®

Test Voltage	: AC 12	20V/60Hz					
Terminal:	Line	Line					
Test Mode:	Charg	ging+WIFI		5			
60.0 dBuV				A STATUTE STOCKED A SPACE			
-							
70							
60						FCC Part 15 C (Q	PI
50					FC	C Purt 15 C (AV	61
40	1.4						*
30 mill	MA	alling the	I de de de la	1.61.00	ma		peak
20	W/X M	W. M. S. MAN	A Real Man Alexand	physiology William	WYX TH	Wildentown	* MA
	310	6			*	1 March	MW VAVG
10	m y y wa	Man Marina	handmind	Anthony	MANNEN	White of 18914 0	
0.0			(MHz)				30.000
	-	Reading	Correct	Measure-	Limit	Over	
No. Mk.	Freq.	Level	Factor	ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.3899	13.50	10.89	24.39	58.07	-33.68	QP
2	0.3899	0.15	10.89	11.04	48.07	-37.03	AVG
3	0.4660	18.67	10.91	29.58	56.58	-27.00	QP
4	0.4660	4.40	10.91	15.31	46.58	-31.27	AVG
5	0.7940	11.04	10.88	21.92	56.00	-34.08	QP
6	0.7940	-1.07	10.88	9.81	46.00	-36.19	AVG
7	7.1940	9.98	10.97	20.95	60.00	-39.05	QP
8	7.1940	1.12	10.97	12.09	50.00	-37.91	AVG
9	21.6620	24.72	11.29	36.01	60.00	-23.99	QP
10	21.6620	12.84	11.29	24.13	50.00	-25.87	AVG

12 * Remarks:

11

1.Measurement = Reading Level+ Correct Factor 2.Over = Measurement -Limit

26.01

20.27

26.6100

26.6100

KSIGN(Guangdong) Testing Co., Ltd.

11.25

11.25

37.26

31.52

60.00

50.00

-22.74

-18.48

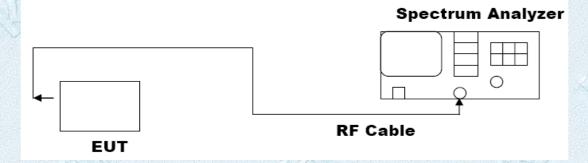
QP

AVG

KSIGN®

Fest Voltage	:: AC 12	20V/60Hz			haller		
Ferminal:	Neutra	al					
Fest Mode:	Charg	ing+WIFI					
VuBb 0.08					1111		
70							_
-					Ð	CC Part 15 C (QP	9
60							
50					FO	C Part 15 C (AV6	1
40							
	illi ki .						A. A.
30	JI JAN	1. 1. 64 . 44	A Hall Hall	W. M. Sur	Wedne	with W	10 pea
20	- And And	Made Anthem	huddandad	and the working	Ma zany	Mahar	A
10		n.		a later d	me lit	where at the has	W K M
0.0	A M	man North	wann	1 Mariana	Store Strating	Marille and L	
0.150		1.1.1.1	(MHz)				30.000
No. Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	
NO. WIK.	MHz	Level dBuV	Factor	dBuV	dBuV	dB	Detector
	100 m				Clark		
1	0.4020	14.11	10.86	24.97	57.81	-32.84	
							QP
2	0.4020	5.82	10.86	16.68	47.81	-31.13	AVG
2	0.4020 0.4540	5.82 18.43	10.86 10.88	16.68 29.31	47.81 56.80	-31.13 -27.49	
			141 14 4	2017.00			AVG QP
3	0.4540	18.43	10.88	29.31	56.80	-27.49	AVG
3 4	0.4540 0.4540	18.43 12.03	10.88 10.88	29.31 22.91	56.80 46.80	-27.49 -23.89	AVG QP AVG QP
3 4 5	0.4540 0.4540 3.5980	18.43 12.03 11.82	10.88 10.88 10.93	29.31 22.91 22.75	56.80 46.80 56.00	-27.49 -23.89 -33.25	AVG QP AVG
3 4 5 6 7	0.4540 0.4540 3.5980 3.5980 7.9180	18.43 12.03 11.82 5.19 7.00	10.88 10.88 10.93 10.93 10.93	29.31 22.91 22.75 16.12 17.93	56.80 46.80 56.00 46.00 60.00	-27.49 -23.89 -33.25 -29.88 -42.07	AVG QP AVG QP AVG QP
3 4 5 6 7 8	0.4540 0.4540 3.5980 3.5980 7.9180 7.9180	18.43 12.03 11.82 5.19 7.00 -2.19	10.88 10.88 10.93 10.93 10.93 10.93	29.31 22.91 22.75 16.12 17.93 8.74	56.80 46.80 56.00 46.00 60.00 50.00	-27.49 -23.89 -33.25 -29.88 -42.07 -41.26	AVG QP AVG QP AVG QP AVG
3 4 5 6 7 8 9	0.4540 0.4540 3.5980 3.5980 7.9180 7.9180 21.6620	18.43 12.03 11.82 5.19 7.00 -2.19 24.24	10.88 10.88 10.93 10.93 10.93 10.93 10.93 11.14	29.31 22.91 22.75 16.12 17.93 8.74 35.38	56.80 46.80 56.00 46.00 60.00 50.00 60.00	-27.49 -23.89 -33.25 -29.88 -42.07 -41.26 -24.62	AVG QP AVG QP AVG QP AVG QP
3 4 5 6 7 8 9 10	0.4540 0.4540 3.5980 3.5980 7.9180 7.9180 21.6620 21.6620	18.43 12.03 11.82 5.19 7.00 -2.19 24.24 12.68	10.88 10.88 10.93 10.93 10.93 10.93 10.93 11.14 11.14	29.31 22.91 22.75 16.12 17.93 8.74 35.38 23.82	56.80 46.80 56.00 46.00 60.00 50.00 60.00 50.00	-27.49 -23.89 -33.25 -29.88 -42.07 -41.26 -24.62 -26.18	AVG QP AVG QP AVG QP AVG QP
3 4 5 6 7 8 9	0.4540 0.4540 3.5980 3.5980 7.9180 7.9180 21.6620	18.43 12.03 11.82 5.19 7.00 -2.19 24.24	10.88 10.88 10.93 10.93 10.93 10.93 10.93 11.14	29.31 22.91 22.75 16.12 17.93 8.74 35.38	56.80 46.80 56.00 46.00 60.00 50.00 60.00	-27.49 -23.89 -33.25 -29.88 -42.07 -41.26 -24.62	AVG QP AVG QP AVG QP AVG QP

Remarks: 1.Measurement = Reading Level+ Correct Factor 2.Over = Measurement -Limit



3.3. Bandwidth

Limit

Test Item	Limit	Frequency Range(MHz)
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5

Test Configuration

Test Procedure

- Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator: 6db Bandwidth
 - (1) Set RBW = 100 kHz.
 - (2) Set the video bandwidth (VBW) \geq 3* RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.

99% Bandwidth

- (1) Set RBW = 500 kHz.
- (2) Set the video bandwidth (VBW) =2MHz.
- (3) Detector = Peak.
- (4) Trace mode = Max hold.
- (5) Sweep = Auto couple.

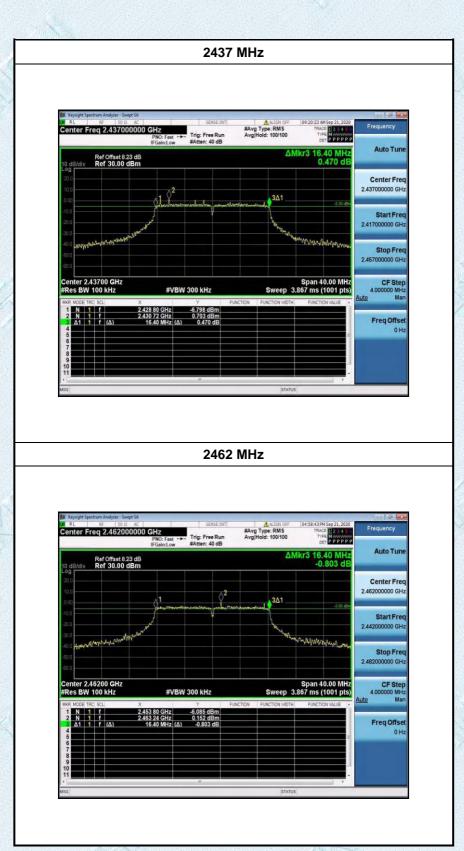
NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

Test Mode

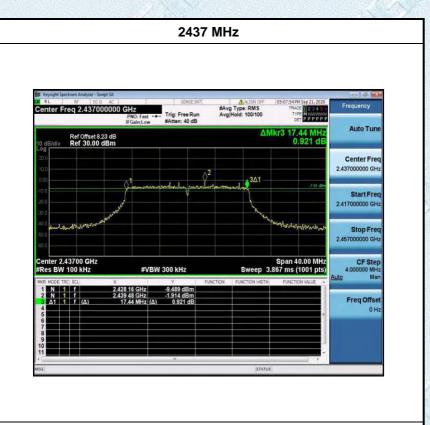
Please refer to the clause 2.3.

Test Results

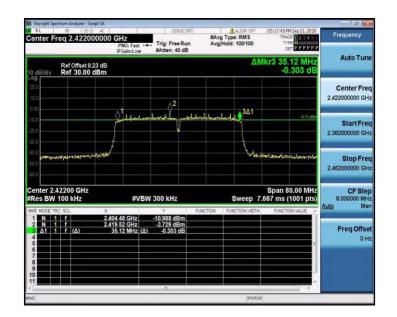
Test Mode:	802.11b Mode			
Channel frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)		
2412	10.120			
2437	9.680	>=0.5		
2462	10.120			
2412 MHz				

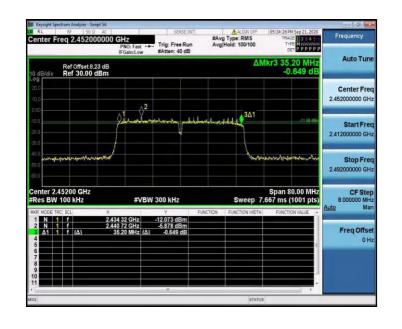


Test Mode:	802.11g Mode	
Channel frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)
2412	16.360	
2437	16.400	>=0.5
2462	16.400	
	2412 MU-	

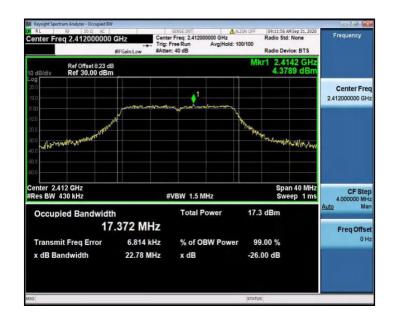


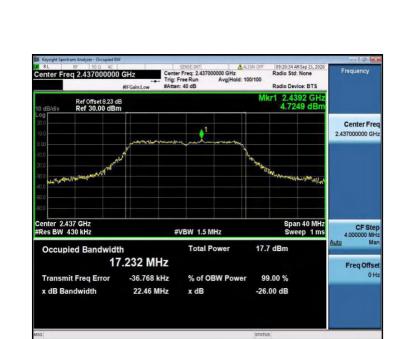

Test Mode:	802.11n(HT20) Mode			
Channel frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)		
2412	17.080			
2437	17.440	>=0.5		
2462	17.360			
2412 MHz				




Test Mode:	802.11n(HT40) Mode			
Channel frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)		
2422	35.120			
2437	34.080	>=0.5		
2452	35.200			
	2422 MHz			

802.11b Mode	
99% Bandwidth (MHz)	Limit (MHz)
14.969	
14.927	>=0.5
15.224	-
	99% Bandwidth (MHz) 14.969 14.927


RL RF 50 Ω AC Center Freq 2.412000000	Trig:		ALIGN OFF z old: 100/100	08:24:38 AM Sep 21, 202 Radio Std: None	Frequency
Ref Offset 8.23 dt 10 dB/div Ref 30.00 dBm	3	n: 40 dB	Mkr	Radio Device: BTS 1 2.41252 GH 4.0319 dBr	
20.0 10.0 9.00	mmm .	1			Center Free 2.412000000 GHz
10.0 20.0 30.0 40.0 menterson and and a strain of the stra	provide the second seco		and the	Marriel and a state of the stat	
-50.0					
Center 2.412 GHz #Res BW 430 kHz	#	VBW 1.5 MHz		Span 40 MH Sweep 1 m	S 4.000000 MHz
Occupied Bandwidt 14	^h .969 MHz	Total Power	15.0	6 dBm	Auto Mar Freq Offset
Transmit Freq Error x dB Bandwidth	36.541 kHz 18.60 MHz	% of OBW Po x dB		9.00 % .00 dB	0 H2


AL 0 GHz 2 4370 BTS Ref Offset 8.23 dB Ref 30.00 dBm Center Freq 2.437000000 GHz Center 2.437 GHz Res BW 430 kHz Span 40 MHz Sweep 1 ms CF St #VBW 1.5 MHz 4.00 Occupied Bandwidth Total Power 16.6 dBm 14.927 MHz **Freq Offse** Transmit Freq Error -76.694 kHz % of OBW Power 99.00 % OH 18.82 MHz x dB Bandwidth -26.00 dB x dB 2462 MHz ALIG 2.462000000 GHz Radio Device: BTS Ref Offset 8.23 dB Ref 30.00 dBm 5.6975 dB Center Freq 2.462000000 GHz CF Step 4.000000 M Center 2.462 GHz Res BW 430 kHz Span 40 MHz Sweep 1 ms #VBW 1.5 MHz Total Power 16.6 dBm Occupied Bandwidth 15.224 MHz Freq Offsel -260.86 kHz 0 Ha Transmit Freq Error % of OBW Power 99.00 % 18.89 MHz x dB Bandwidth x dB -26.00 dB

KSIGN®

Test Mode:	802.11g Mode			
Channel frequency (MHz)	99% Bandwidth (MHz)	Limit (MHz)		
2412	17.372			
2437	17.232	>=0.5		
2462	17.351			
2412 MHz				

2462 MHz

Test Mode:	802.11n(HT20) Mode			
Channel frequency (MHz)	99% Bandwidth (MHz)	Limit (MHz)		
2412	18.093			
2437	18.107	>=0.5		
2462	18.161			
2412 MHz				


	2.412000000	GHz #FGain:Low	+++ Trig: I	SENSE INT r Freq: 2.4120 Free Run h: 40 dB		IGN OFF	Radio St	PM Sep 21, 2020 d: None wice: BTS	Frequenc	1
	Ref Offset 8.23 dE Ref 30.00 dBm					M		128 GHz 353 dBm		
20.0 10.0 0.00		manana	un terre	1					Center 2.412000000	
-10.0 -20.0 -30.0 -40.0	Murraw Mart					J. Marson J.	We Ray UMUN	ontheman		
-50.0 -60.0 Center 2.412	CH7						Sn	an 40 MHz		
#Res BW 43	0 kHz		#	VBW 1.5			Sw	eep 1ms	CF : 4.000000 Auto	
Occupie	d Bandwidti 18	.093 I	MHz	Total	Power	15.2	2 dBm		FreqO	ffsel
Transmit x dB Band	Freq Error dwidth		5 kHz 5 MHz	% of C x dB	BW Power		9.00 % 00 dB			0 Hz
MSG						STATU	2			

Report No.:KS2009S01073E

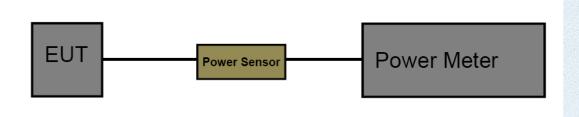
Test Mode:	802.11n(HT40) Mode			
Channel frequency (MHz)	99% Bandwidth (MHz)	Limit (MHz)		
2422	35.793			
2437	35.805	>=0.5		
2452	35.857			
2422 MHz				


Report No.:KS2009S01073E

2437 MHz

KSIGN

2452 MHz


Test

3.4. Peak Output Power

Limit

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	1 Watt or 30 dBm	2400~2483.5

Test Configuration

Procedure

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator.
- 2. The measurement is according to section 9.1.2 of KDB 558074 D01 15.247 DTS Meas Guidance v05.
- 3. Spectrum Setting:

Set analyser center frequency to DTS channel center frequency.

Set the RBW to: 1MHz

Set the VBW to: 3MHz

Detector: peak

Sweep time: auto

Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

4. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

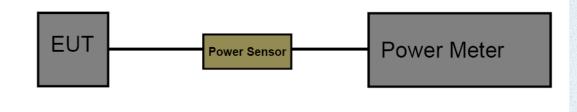
Test Mode

Please refer to the clause 2.3

Test Result

KSIGN®

Mode	Channel frequency (MHz)	Test Result (dBm)	Limit (dBm)	
802.11b	2412	12.57		
	2437	13.60		
	2462	13.46		
802.11g	2412	11.39		
	2437	11.64		
	2462	11.28		
802.11n (HT20)	2412	8.98	30	
	2437	9.51		
	2462	8.99		
802.11n (HT40)	2422	8.43		
	2437	8.37	_	
	2452	7.99		
	Res	ult : PASS		



3.5. Power Spectral Density

Limit

FCC Part 15 Subpart C(15.247)				
Test Item	Limit	Frequency Range(MHz)		
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5		

Test Configuration

Test

Procedure

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator.
- The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 15.247 DTS Meas Guidance v05.
- 3. Spectrum Setting:

Set analyser center frequency to DTS channel center frequency.

Set the span to 1.5 times the DTS bandwidth.

Set the RBW to: 10 kHz

Set the VBW to: 30 kHz

Detector: peak

Sweep time: auto

Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

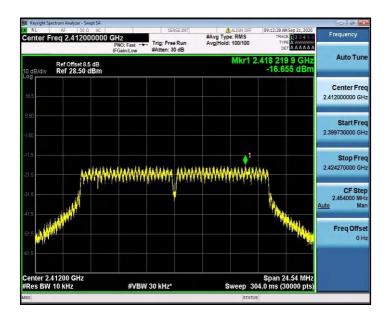
Test Mode

Please refer to the clause 2.3

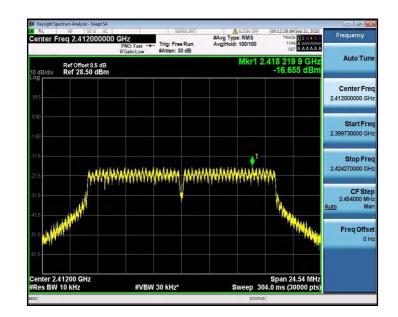
Test Result

Note: Power Density(dBm/3kHz)=Power Density(dBm/10kHz)-10*Log(10/3)

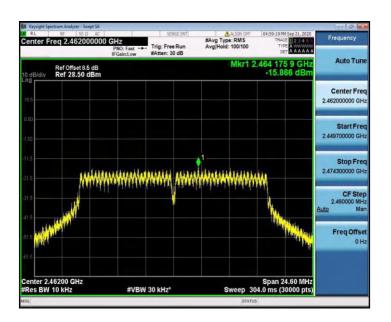
Test Mode:	802.11	802.11b Mode			
Channel Frequency (MHz)		Power Density (dBm/10kHz)	Power Density (dBm/3kHz)	Limit (dBm)	
2412		-13.84	-19.07		
2437		-13.35	-18.58	8dBm/3kHz	
2462		-14.88 -20.11			
		2412 N	ЛНz	1	

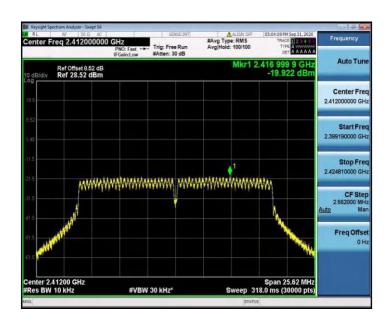


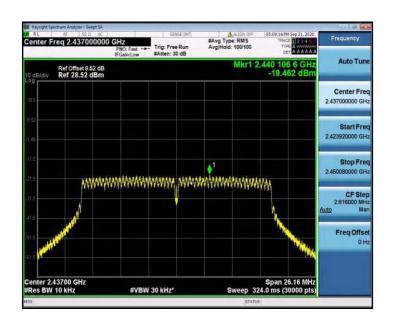
2462 MHz

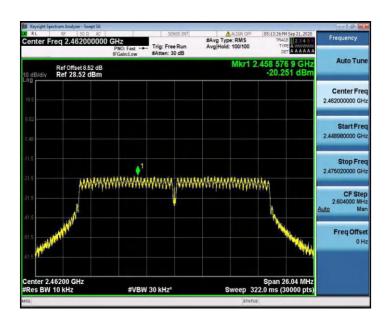


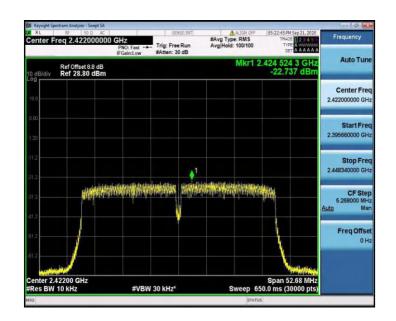
KSIGN®


Test Mode:	802.11g	1g Mode				
Channel Frequency (MHz)		Power Density (dBm/10 kHz)	Power Density (dBm/3 kHz)	Limit (dBm)		
2412		-16.66	-21.89			
2437		-16.23	-21.46	8dBm/3kHz		
2462		-15.87	-21.10			
		2412 MHz				

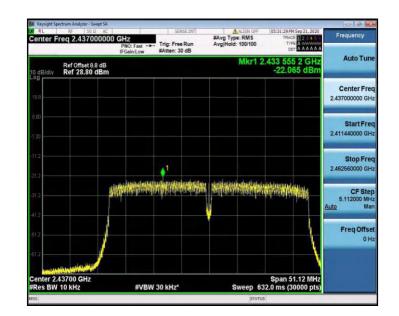

2462 MHz


Page 41 of 95


Test Mode:	802.1	02.11n(HT20) Mode			
Channel Frequency (MHz)		Power Density (dBm/10kHz)	Power Density (dBm/3 kHz)	Limit (dBm)	
2412		-19.92	-25.15		
2437		-19.46	-24.69	8dBm/3kHz	
2462		-20.25	-25.48		
		2412 N	Hz		



2462 MHz

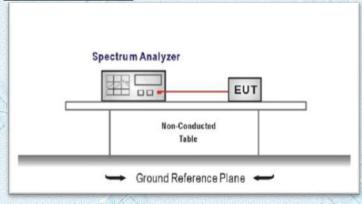


KSIGN®

Test Mode:	802.1	1n(HT40) Mode			
Channel Frequency (MHz)		Power Density (dBm/10kHz)	Power Density (dBm/3 kHz)	Limit (dBm)	
2422		-22.74	-27.97		
2437 2452		-22.07	-27.30	8dBm/3kHz	
		-22.7	-27.93		
		2422 N	IHz		

2452 MHz

RL	RF 50Ω AC		SENSE:INT	ALIGN OFF	05:36:13 PM Sep 21, 2020	Frequency
enter F	req 2.45200000	PNO: Fast +++	Trig: Free Run	#Avg Type: RMS Avg Hold: 100/100		Frequency
	Ref Offset 8.8 dB	IFGain:Low	#Atten: 30 dB	Mkr1 2.4	39 488 62 GHz	Auto Tune
dB/div	Ref 28.80 dBm				-22.701 dBm	
B.8						Center Fred 2.452000000 GHz
80 20						Start Fred 2.425600000 GHz
1.2		¢ ¹				Stop Free 2.478400000 GH
12			delipini verilipini V			CF Step 5.280000 MH: Auto Mar
.2					-	Freq Offse 0 Ha
enter 2	45200 GHz				Span 52.80 MHz	
Res BW		#VBW 3	0 kHz*	Sweep 65	2.0 ms (30000 pts)	


3.6. Band edge and Spurious Emission (conducted)

Limit

FCC CFR Title 47 Part 15 Subpart C Section15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

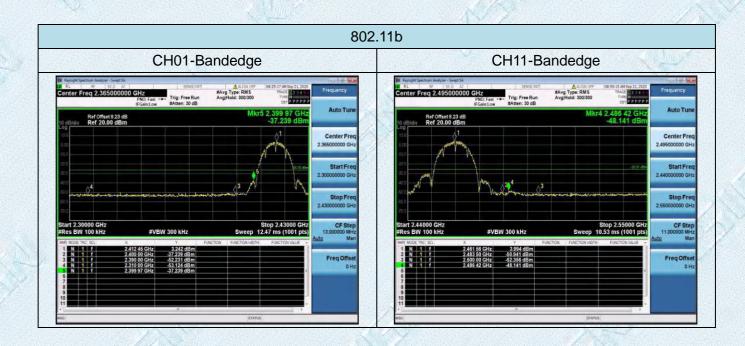
Test Configuration

Test Procedure

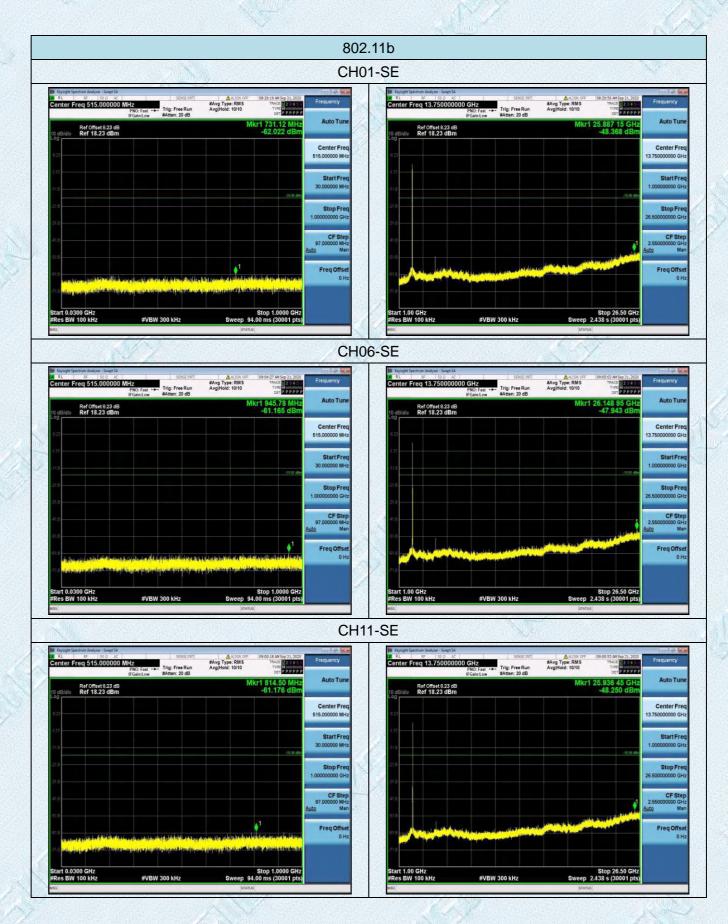
- 1. Connect EUT RF Output port to the Spectrum Analyzer through an RF attenuator.
- 2. Spectrum Setting:

RBW=100KHz VBW=300KHz.

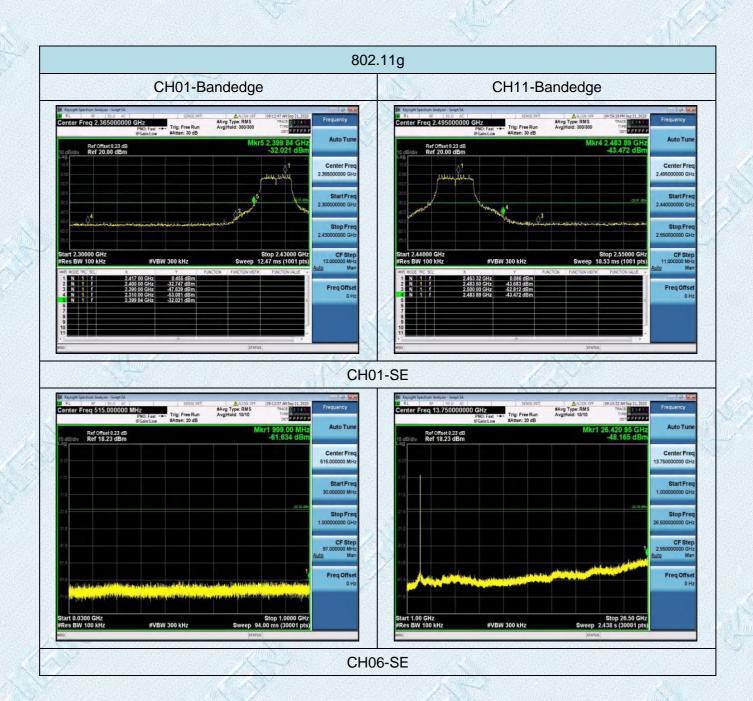
Detector function: Peak. Trace: Max hold. Sweep = Auto couple.

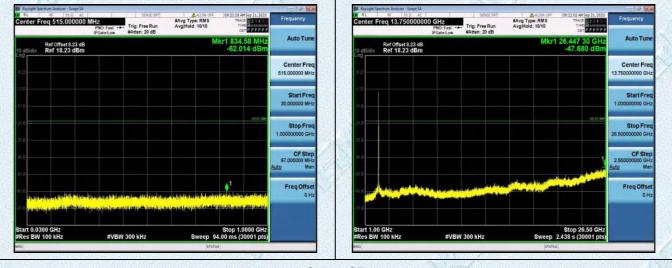

Allow the trace to stabilize.

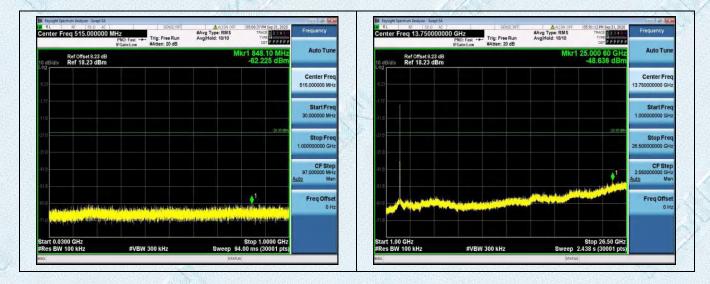
Test Mode

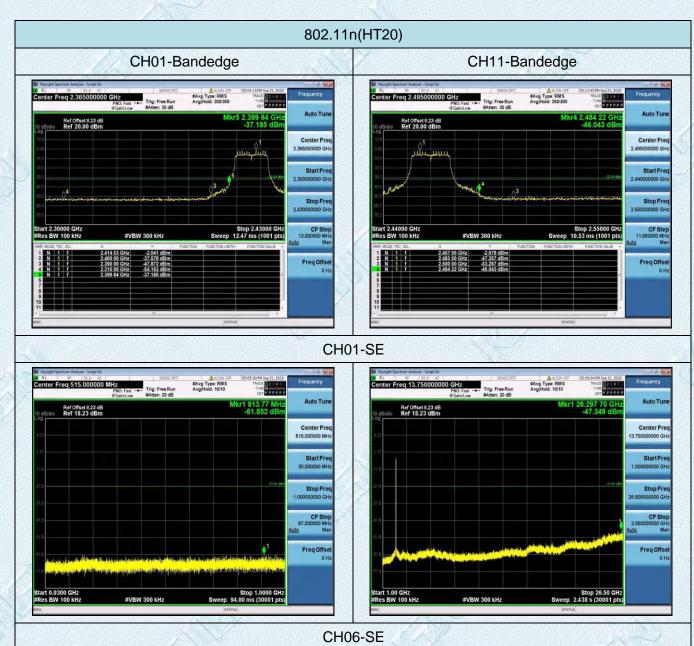

Please refer to the clause 2.3.

Test Results









Page 50 of 95

