

FCC PART 15.247 TEST REPORT

For

Ackcio Pte. Ltd.

FCC: 75 Ayer Rajah Crescent, #03-01/02, Singapore 139953

FCC ID: 2AT8M-TM-V3X0

Report Type: Original Report		Product Type: BEAM-TM	
Report Number:	SZ6210225-049	938E-00	
Report Date:	2021-07-20		
	Jacob Kong	Jaid	Gong
Reviewed By:	RF Engineer	Juco	Ŭ J
Prepared By:	Bay Area Comp 5F(B-West), 61 Building D, Shi Shenzhen, Chin Tel: +86-755-3 Fax: +86-755-3 www.baclcorp.e	bliance Laboratories Co F, 7F, the 3rd Phase of hua Rd, FuTian Free T a 3320018 3320008 <u>com.cn</u>	orp. (Shenzhen) Wan Li Industrial `rade Zone,

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "★".

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Bay Area Compliance Laboratories Corp. (Shenzhen)

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
OBJECTIVE	4
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
	(
DESCRIPTION OF TEST CONFIGURATION	0
DESCRIPTION OF TEST CONFIGURATION	0 6
SPECIAL ACCESSORIES	
Equipment Modifications	6
DUTY CYCLE	
SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL I/O CABLE Block Diagram of Test Setup	/
SUMMARY OF TEST RESULTS	0
SUMMARI OF TEST RESULTS	
TEST EQUIPMENT LIST	
FCC §15.247 (i) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	
APPLICABLE STANDARD	
Result	11
FCC §15.203 – ANTENNA REQUIREMENT	12
APPLICABLE STANDARD	12
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.205, §15.209 & §15.247(d) - RADIATED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST DATA	
FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH	
APPLICABLE STANDARD	
Test Procedure	20
ТЕЅТ DATA	20
FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	
APPLICABLE STANDARD	
TEST PROCEDURE	
FCC §15.247(e) - POWER SPECTRAL DENSITY	
FCC Part 15.247	Page 2 of 30

Bay Area Compliance Laboratories Corp. (Shenzhen)

Report No.: SZ6210225-04938E-00

Applicable Standard	28
TEST PROCEDURE	28
TEST DATA	28

GENERAL INFORMATION

Product	BEAM-TM
Tested Model	BEAM-TM
HVIN	BEAM-TM
Frequency Range	902.5~927.5MHz
Maximum conducted Average output power	13.72dBm
Modulation Technique	GFSK
Antenna Specification*	3.0 dBi(It is provided by the applicant)
Voltage Range	DC 3.6V from battery
Date of Test	2021-04-12 to 2021-07-16
Sample number	SZ6210225-04938E-RF-S_X9 (Assigned by BACL, Shenzhen)
Received date	2021-02-25
Sample/EUT Status	Good condition

Product Description for Equipment under Test (EUT)

Objective

This report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All tests and measurements indicated in this document were performed in accordance with the ANSI C63.10-2013.

For Radiated Emissions testing, please refer to DA 00-705 Released March 30, 2000, Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters. Each test item follows test standards and with no deviation.

Parameter		Uncertainty	
Occupied Channel Bandwidth		±5%	
RF Output Power	with Power meter	±0.73dB	
RF conducted test with spectrum		±1.6dB	
AC Power Lines Conducted Emissions		±1.95dB	
Emissions, Radiated	Below 1GHz	±4.75dB	
	Above 1GHz	±4.88dB	
Temperature		±1°C	
Humidity		±6%	
Supply	voltages	±0.4%	

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 342867, the FCC Designation No.: CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0023.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

50 channels with frequency range from 902MHz to 928MHz was use by EUT

Number	Frequency (MHz)								
1	902.5	11	907.5	21	912.5	31	917.5	41	923
2	903	12	908	22	913	32	918	42	923.5
3	903.5	13	908.5	23	913.5	33	918.5	43	924
4	904	14	909	24	914	34	919	44	924.5
5	904.5	15	909.5	25	914.5	35	919.5	45	925
6	905	16	910	26	915	36	920	46	925.5
7	905.5	17	910.5	27	915.5	37	920.5	47	926
8	906	18	911	28	916	38	921	48	926.5
9	906.5	19	911.5	29	916.5	39	921.5	49	927
10	907	20	912	30	917	40	922.5	50	927.5

EUT Exercise Software

"SmartRF Studio 7 V2.20.1"* software was use to the EUT tested and power level is 24*. The software and power level was provided by the applicant.

Special Accessories

No special accessory.

Equipment Modifications

No modification was made to the EUT tested.

Duty cycle

Date: 13.JUL.2021 19:31:09

Ton	Ton+off	Duty Cycle
(ms)	(ms)	(%)
18.116	165.217	10.96

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
/	/	/	/

External I/O Cable

Cable Description	Length (m)	From Port	То
/	/	/	/

Block Diagram of Test Setup

Non-Conductive Table 80/150 above Ground Plane	EUT		▲ 1.0 Meter
(1.5 Meters	$ \longrightarrow $	T

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §2.1091	Maximum Permissible Exposure(MPE)	Compliant
§15.203	Antenna Requirement	Compliant
§15.207(a)	AC Line Conducted Emissions	Not Applicable
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliant
§15.247(a)(1)	99% Occupied Bandwidth & 20 dB Emission Bandwidth	Compliant
§15.247(a)(1)	Channel Separation Test	Compliant
§15.247(a)(1)	Time of Occupancy (Dwell Time)	Compliant
§15.247(a)(1)(i)	Quantity of hopping channel Test	Compliant
§15.247(b)(2)	Peak Output Power Measurement	Compliant
§15.247(d)	Band edges	Compliant

Note: EUT only powered by battery.

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date				
	Radiated Emission Test								
R&S	EMI Test Receiver	ESR3	102455	2020/08/04	2021/08/03				
Sonoma instrument	Pre-amplifier	310 N	186238	2020/08/04	2021/08/03				
Sunol Sciences	Broadband Antenna	JB1	A040904-2	2020/12/22	2023/12/21				
Unknown	Cable 2	RF Cable 2	F-03-EM197	2020/11/29	2021/11/28				
Unknown	Cable	Chamber Cable 1	F-03-EM236	2020/11/29	2021/11/28				
Rohde & Schwarz	Auto test software	EMC 32	V9.10	NCR	NCR				
Rohde & Schwarz	Spectrum Analyzer	FSV40-N	102259	2020/08/04	2021/08/03				
COM-POWER	Pre-amplifier	PA-122	181919	2020/11/29	2021/11/28				
Quinstar	Amplifier	QLW- 18405536-J0	15964001002	2020/11/28	2021/11/27				
Sunol Sciences	Horn Antenna	3115	9107-3694	2021/01/15	2024/01/14				
Insulted Wire Inc.	RF Cable	SPS-2503- 3150	02222010	2020/11/29	2021/11/28				
Unknown	RF Cable	W1101-EQ1 OUT	F-19-EM005	2020/11/29	2021/11/28				
	RF	Conducted Tes	t						
Rohde & Schwarz	SPECTRUM ANALYZER	FSU26	200120	2021/04/02	2022/04/01				
WEINSCHEL	3dB Attenuator	Unknown	F-03-EM121	2020/11/29	2021/11/28				
Unknown	RF Cable	Unknown	2301 276	2020/11/29	2021/11/28				

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §15.247 (i) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 (i) and subpart 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure						
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (Minutes)		
0.3-1.34	614	1.63	*(100)	30		
1.34-30	824/f	2.19/f	$*(180/f^2)$	30		
30-300	27.5	0.073	0.2	30		
300-1500	/	/	f/1500	30		
1500-100,000	/	/	1.0	30		

Limits for General Population/Uncontrolled Exposure

f = frequency in MHz

* = Plane-wave equivalent power density

Result

Calculated Formulary:

Predication of MPE limit at a given distance

$$\mathbf{S} = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Frequency	Ante	nna Gain	Tune Up Conducted Power		Evaluation Distance	Power Density	$\frac{MPE \ Limit}{(mW/cm^2)}$
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm^2)	(mW/cm ²)
902.5-927.5	3	2.0	14.0	25.12	20	0.010	0.6

Note: the tune up conducted power was declared by the applicant

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliant

FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has one external antenna with unique antenna connector and the antenna gain is 3.0 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant.

FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard

FCC §15.205; §15.209; §15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

During the radiated emission test, according to the DA 00-705 Released March 30, 2000, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz - 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	РК
	1 MHz	10 Hz	/	Average

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Bay Area Compliance Laboratories Corp. (Shenzhen)

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Data

Environmental Conditions

Temperature:	24~25.8 °C	
Relative Humidity:	51~55 %	
ATM Pressure:	101.0~101.2 kPa	

The testing was performed by Andy Yu on 2021-04-12 for below 1GHz and Alan He on 2021-07-13 for above 1GHz.

EUT operation mode: Transmitting

30 MHz~1 GHz:

Final_Result

Frequency (MHz)	QuasiPeak (dB µ V/m)	Limit (dB µ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
854.478750	39.69	46.00	6.31	109.0	Н	241.0	0.3
950.460500	43.15	46.00	2.85	109.0	Н	232.0	1.6

Critical_Freqs

Frequency (MHz)	MaxPeak (dB µ V/m)	Limit (dB µ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
57.402500	25.30	40.00	14.70	100.0	V	27.0	-16.5
206.782500	30.58	43.50	12.92	100.0	Н	78.0	-11.2
806.485000	38.16	46.00	7.84	100.0	Н	279.0	-0.5
998.545000	46.59	53.90	7.31	100.0	Н	128.0	3.4

Note: the QP measurement not performed when the Peak value more than 6dB lower than limit

1 GHz - 10 GHz:

F	Re	eceiver	T (11	Rx An	tenna	Corrected	Corrected	T • •/	
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	l urntable Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	limit (dBµV/m)	Margin (dB)
			Low Ch	annel (9	02.5MI	Hz)			
1805.00	55.96	PK	191	1.5	Н	-1.65	54.31	74	19.69
1805.00	51.17	Ave.	191	1.5	Н	-1.65	49.52	54	4.48
			Middle C	hannel (914.5 N	/Hz)			
1829.00	54.12	PK	33	1.8	Н	-1.55	52.57	74	21.43
1829.00	51.63	Ave.	33	1.8	Н	-1.55	50.08	54	3.92
High Channel (927.5MHz)									
1855.00	55.47	PK	186	2.2	Н	-1.16	54.31	74	19.69
1855.00	52.12	Ave.	186	2.2	Н	-1.16	50.81	54	3.19

Note:

 $Corrected \ Factor = Antenna \ factor \ (RX) + Cable \ Loss - Amplifier \ Factor$

Corrected Amplitude = Corrected Factor + Reading Margin = Limit - Corrected. Amplitude

The other spurious emission which is 20dB to the limit was not recorded.

Pre-scan with low channel Peak Horizontal

Date: 13.JUL.2021 20:48:32

Vertical

FCC Part 15.247

Page 18 of 30

Date: 13.JUL.2021 20:42:54

FCC Part 15.247

Page 19 of 30

FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

Environmental Conditions

Temperature:	27.8 °C	
Relative Humidity:	56 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Nancy Wang on 2021-07-16.

Test Result: Pass.

Please refer to the following table and plots.

EUT operation mode: Transmitting

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	Limit (kHz)
Low	902.5	0.556	≥500
Middle	914.5	0.557	≥500
High	927.5	0.556	≥500

Low Channel

Date: 16.JUL.2021 09:34:30

Middle Channel

Date: 16.JUL.2021 09:33:39

FCC Part 15.247

Page 21 of 30

High Channel

FCC Part 15.247

Page 22 of 30

Date: 16.JUL.2021 09:31:38

FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	27.8 °C		
Relative Humidity:	56 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Nancy Wang on 2021-07-16.

EUT operation mode: Transmitting

Channel	Frequency (MHz)	Max Conducted Peak Output Power (dBm)	Limit (dBm)
Low	902.5	13.72	30
Middle	914.5	13.45	30
High	927.5	13.16	30

Report No.: SZ6210225-04938E-00

Date: 16.JUL.2021 09:20:29

Middle Channel

Date: 16.JUL.2021 09:20:06

FCC Part 15.247

Page 24 of 30

Report No.: SZ6210225-04938E-00

High Channel

FCC Part 15.247

Page 25 of 30

Date: 16.JUL.2021 09:19:34

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	27.8 °C	
Relative Humidity:	56 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Nancy Wang on 2021-07-16.

EUT operation mode: Transmitting

Test Result: Compliance

Please refer to the following plots.

Band Edge, Left Side

Date: 16.JUL.2021 09:21:24

Band Edge, Right Side

Date: 16.JUL.2021 09:23:20

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW to: $3kHz \le RBW \le 100 kHz$.
- 3. Set the VBW $\geq 3 \times RBW$.
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Data

Environmental Conditions

Temperature:	27.8 °C		
Relative Humidity:	56 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Nancy Wang on 2021-07-16.

EUT operation mode: Transmitting

Test Result: Pass

Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)
Low	902.5	7.54	≤8
Middle	914.5	7.45	≤ 8
High	927.5	7.62	≤8

Power Spectral Density, Low Channel

Date: 16.JUL.2021 09:12:09

Power Spectral Density, Middle Channel

Date: 16.JUL.2021 09:14:03

Power Spectral Density, High Channel

Report No.: SZ6210225-04938E-00

Date: 16.JUL.2021 09:15:35

***** END OF REPORT *****