

FCC TEST REPORT FCC ID: 2AT7Z-GHUB0203

Report Number	: ZKT-231012L7800E-2
Date of Test	Sep. 13, 2023 to Oct. 13, 2023
Date of issue	: Oct. 24, 2023
Total number of pages	. 42
Test Result	: PASS
Testing Laboratory	: Shenzhen ZKT Technology Co., Ltd.
Address	. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China
Applicant's name	: Asteria Technology Pte. Ltd.
Address	. 160 ROBINSON ROAD, #19-05 SBF CENTER, SINGAPORE, 068914
Manufacturer's name	
Address	. 160 ROBINSON ROAD, #19-05 SBF CENTER, SINGAPORE, 068914
Test specification:	
Standard	FCC CFR Title 47 Part 15 Subpart C Section 15.247 ANSI C63.10:2013
Test procedure	:/
Non-standard test method	: N/A
Test Report Form No	: TRF-EL-111_V0
Test Report Form(s) Originator	: ZKT Testing
Master TRF	
test (EUT) is in compliance with the identified in the report. This report shall not be reproduced	en tested by ZKT, and the test results show that the equipment under FCC requirements. And it is applicable only to the tested sample except in full, without the written approval of ZKT, this document may hal only, and shall be noted in the revision of the document.
Product name	: Gravio Hub 2
Trademark	: Gravio
Model/Type reference	GHUB002
Ratings	: Input: DC 12V 2A

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Testing Laboratory	.: Shenzhen ZKT Technology Co	Ltd.
Address		angwei Community
Tested by (name + signature)	.: Jim Liu	
Reviewer (name + signature)	.: Tom Zou	
Approved (name + signature)	·: Lake Xie	

Project No.: ZKT-231012 Page	2L7800E-2 e 3 of 42
Table of Contents	Page
1.VERSION	5
2. SUMMARY OF TEST RESULTS	6
2.1 TEST FACILITY	7
2.2 MEASUREMENT UNCERTAINTY	7
3. GENERAL INFORMATION	8
3.1 GENERAL DESCRIPTION OF EUT	8
3.2 DESCRIPTION OF TEST MODES	9
3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	9
3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	9
3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	10
4. EMC EMISSION TEST	12
4.1 CONDUCTED EMISSION MEASUREMENT	12
4.1.1 POWER LINE CONDUCTED EMISSION LIMITS	12
4.1.2 TEST PROCEDURE 4.1.3 DEVIATION FROM TEST STANDARD	12 12
4.1.3 DEVIATION FROM TEST STANDARD 4.1.4 TEST SETUP	12
4.1.5 EUT OPERATING CONDITIONS	13
4.2 RADIATED EMISSION MEASUREMENT	16
4.2.1 RADIATED EMISSION LIMITS	16
4.2.2 TEST PROCEDURE 4.2.3 DEVIATION FROM TEST STANDARD	17 17
4.2.4 TEST SETUP	17
4.2.5 EUT OPERATING CONDITIONS	18
5.RADIATED BAND EMISSION MEASUREMENT	24
5.1 TEST REQUIREMENT: 5.2 TEST PROCEDURE	24 24
5.3 DEVIATION FROM TEST STANDARD	24
5.4 TEST SETUP	25
5.5 EUT OPERATING CONDITIONS 5.6 TEST RESULT	25 25
	-
6.POWER SPECTRAL DENSITY TEST 6.1 APPLIED PROCEDURES / LIMIT	28 28
6.2 TEST PROCEDURE	28
6.3 DEVIATION FROM STANDARD	28
6.4 TEST SETUP 6.5 EUT OPERATION CONDITIONS	28 28
0.3 EUT OFERATION CONDITIONS	20

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

www.zkt-lab.com

Project No.: ZKT-231012L7800E-2 Page 4 of 42

1		
ſ		
		2

	Table of Contents	Page
6	6.6 TEST RESULT	29
7. CHA	ANNEL BANDWIDTH	31
7	7.1 APPLIED PROCEDURES / LIMIT	31
7	7.2 TEST PROCEDURE	31
7	7.3 DEVIATION FROM STANDARD	31
-	7.4 TEST SETUP	31
	7.5 EUT OPERATION CONDITIONS	31
7	7.6 TEST RESULT	32
8.PEA	K OUTPUT POWER TEST	34
8	3.1 APPLIED PROCEDURES / LIMIT	34
3	3.2 TEST PROCEDURE	34
	3.3 DEVIATION FROM STANDARD	34
-	3.4 TEST SETUP	34
	3.5 EUT OPERATION CONDITIONS	34
3	3.6 TEST RESULT	35
9. 100	KHZ BANDWIDTH OF FREQUENCY BAND EDGE REQUIREMEN	NT 37
9	9.1 APPLICABLE STANDARD	37
-	9.2 TEST PROCEDURE	37
-	9.3 DEVIATION FROM STANDARD	37
-	9.4 TEST SETUP	37
ę	9.5 EUT OPERATION CONDITIONS	37
10.AN	TENNA REQUIREMENT	41
11. TE	ST SETUP PHOTO	42
12. EU	T CONSTRUCTIONAL DETAILS	42

1.VERSION

	Report No.	Version	Description	Approved
ſ	ZKT-231012L7800E-2	Rev.01	Initial issue of report	Oct. 24, 2023
ſ			S.	(

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C				
Standard Test Item Judgment Rema			Remark	
FCC part 15.203/15.247 (c)	Antenna requirement	PASS		
FCC part 15.207	AC Power Line Conducted Emission	PASS		
FCC part 15.247 (b)(3) Conducted Peak Output Power		PASS		
FCC part 15.247 (a)(2) Channel Bandwidth& 99% OCB		PASS		
FCC part 15.247 (e)	Power Spectral Density	PASS		
FCC part 15.247(d)	Band Edge	PASS		
FCC part 15.205/15.209	Spurious Emission	PASS		

NOTE:

(1)"N/A" denotes test is not applicable in this Test Report

2.1 TEST FACILITY

Shenzhen ZKT Technology Co., Ltd. Add. : 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

FCC Test Firm Registration Number: 692225 Designation Number: CN1299 IC Registered No.: 27033

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U + where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2 + providing a level of confidence of approximately 95$

V /2	0
-------------	---

No.	Item	Uncertainty
1	3m camber Radiated spurious emission(9KHz-30MHz)	U=4.5dB
2	3m camber Radiated spurious emission(30MHz-1GHz)	U=4.8dB
3	3m chamber Radiated spurious emission(1GHz-6GHz)	U=4.9dB
4	3m chamber Radiated spurious emission(6GHz-40GHz)	U=5.0dB
5	Conducted disturbance	U=3.2dB
6	RF Band Edge	U=1.68dB
7	RF power conducted	U=1.86dB
8	RF conducted Spurious Emission	U=2.2dB
9	RF Occupied Bandwidth	U=1.8dB
10	RF Power Spectral Density	U=1.75dB
11	humidity uncertainty	U=5.3%
12	Temperature uncertainty	U=0.59°C

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Product Name:	Gravio Hub 2	
Model No.:	GHUB002	
Serial No.:	N/A	
Model Different .:	N/A	
Hardware Version:	V4.4	
Software Version:	V2.0	
Sample ID.:	ZKT-231012L7800E-2	
Sample(s) Status:	Engineer sample	
Operation Frequency:	2405-2480MHz	6.6
Channel Numbers:	16 Channels	
Modulation Type:	GFSK	
Antenna Type:	Double Copper Antenna	
Antenna gain:	3.52 dBi	
Power supply:	AC 120V, 60Hz/AC 240V, 60Hz	
Switching power adapter:	AC 100-240V, 50/60Hz, 2A	

Operation Frequency each of channel			
Channel	Frequency	Channel	Frequency
11	2405 MHz	19	2445 MHz
12	2410 MHz	20	2450 MHz
13	2415 MHz	21	2455 MHz
14	2420 MHz	22	2460 MHz
15	2425 MHz	23	2465 MHz
16	2430 MHz	24	2470 MHz
17	2435 MHz	25	2475 MHz
18	2440 MHz	26	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2405MHz
The Middle channel	2440MHz
The Highest channel	2480MHz

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

3.2 DESCRIPTION OF TEST MODES

Transmitting mode	Keep the EUT in continuously transmitting mode				
Charging mode	Keep the EUT in Charging mode.				
Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply					

voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

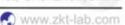
Test Software	Zigbee Test Tool	
Power level setup	<0dBm	

3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED Conducted Emission

Conducted Spurious

EUT

3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	Gravio Hub 2	Gravio	GHUB002	N/A	EUT
A-1	Adapter	MI	A232-050200U-CN2	N/A	N/A

Item	Shielded Type	Ferrite Core	Length	Note
		2		

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[$ Length $\]$ column.

3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS **Conduction Test equipment**

Radiation Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Firmware Version	Last calibration	Calibrated until
1	LISN	R&S	ENV216	101471	N/A	Oct. 21, 2022	Oct. 20, 2023
2	LISN	CYBERTEK	EM5040A	E185040014 9	N/A	Oct. 21, 2022	Oct. 20, 2023
3	Test Cable	N/A	C-01	N/A	N/A	Oct. 21, 2022	Oct. 20, 2023
4	Test Cable	N/A	C-02	N/A	N/A	Oct. 21, 2022	Oct. 20, 2023
5	Test Cable	N/A	C-03	N/A	N/A	Oct. 21, 2022	Oct. 20, 2023
6	EMI Test Receiver	R&S	ESCI3	101393	4.42 SP3	Oct. 28, 2022	Oct. 27, 2023
7	Triple-Loop Antenna	N/A	RF300	N/A	N/A	Oct. 28, 2022	Oct. 27, 2023
8	Absorbing Clamp	DZ	ZN23201	15034	N/A	Oct. 31, 2022	Oct. 30, 2023
9	EMC Software	Frad	EZ-EMC	Ver.EMC-CO N 3A1.1	N/A		\

Firmware Calibrated Last Item Equipment Manufacturer Serial No. Type No. calibration Version Spectrum Analyzer 1 **KEYSIGHT** 9020A MY55370835 A.17.05 Oct. 28, 2022 Oct. 27, 2023 (9kHz-26.5GHz) Spectrum Analyzer 2 R&S FSV40-N 100363 1.71 SP2 Oct. 28, 2022 Oct. 27, 2023 (10kHz-39.9GHz) **EMI Test Receiver** 3 R&S ESCI7 101169 4.32 Oct. 28, 2022 Oct. 27, 2023 (9kHz-7GHz) **Bilog Antenna** 4 Schwarzbeck **VULB9168** N/A N/A Nov. 02, 2022 Nov. 01, 2023 (30MHz-1500MHz) Horn Antenna 5 Agilent AH-118 071145 N/A Nov. 01, 2022 Oct. 31, 2023 (1GHz-18GHz) Horn Antenna 6 A.H.System SAS-574 588 N/A Oct. 28, 2022 Oct. 27, 2023 (15GHz-40GHz) 7 TESEQ HLA6121 N/A Nov. 01, 2022 Oct. 31, 2023 Loop Antenna 58357 Amplifier EM EM330 8 060747 N/A Nov. 15, 2022 Nov. 14, 2023 Amplifier Electronics (30-1000MHz) Amplifier 9 Agilent 8449B 3008A00315 N/A Oct. 28, 2022 Oct. 27, 2023 (1GHz-26.5GHz) Amplifier **DLE-161** Oct. 28, 2022 10 Quanjuda 097 N/A Oct. 27, 2023 (500MHz-40GHz) 11 **Test Cable** N/A R-01 N/A N/A Oct. 28, 2022 Oct. 27, 2023 N/A 12 **Test Cable** N/A R-02 N/A Oct. 28, 2022 Oct. 27, 2023

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

N/A

Test Cable

13

R-03

N/A

N/A

Oct. 27, 2023

Oct. 28, 2022

until

Project No.: ZKT-231012L7800E-2 Page 11 of 42

14	Test Cable	N/A	RF-01	N/A	N/A	Oct. 28, 2022	Oct. 27, 2023
15	Test Cable	N/A	RF-02	N/A	N/A	Oct. 28, 2022	Oct. 27, 2023
16	Test Cable	N/A	RF-03	N/A	N/A	Oct. 28, 2022	Oct. 27, 2023
17	ESG Signal Generator	Agilent	E4421B	N/A	B.03.84	Oct. 21, 2022	Oct. 20, 2023
18	Signal Generator	Agilent	N5182A	N/A	A.01.87	Oct. 21, 2022	Oct. 20, 2023
19	Magnetic Field Probe Tester	Narda	ELT-400	0-0344	N/A	Nov. 15, 2022	Nov. 14, 2023
20	Wideband Radio Communication Test	R&S	CMW500	106504	V 3.7.22	Oct. 28, 2022	Oct. 27, 2023
21	MWRF Power Meter Test system	MW	MW100-RF CB	N/A	N/A	Oct. 21, 2022	Oct. 20, 2023
22	D.C. Power Supply	LongWei	TPR-6405D	N/A	N/A	١	١
23	EMC Software	Frad	EZ-EMC	Ver.EMC-CO N 3A1.1	N/A	1	١
24	RF Software	MW	MTS8310	V2.0.0.0	N/A	1	۱. ۱
25	Turntable	MF	MF-7802BS	N/A	N/A	١	١
26	Antenna tower	MF	MF-7802BS	N/A	N/A	\	\

4. EMC EMISSION TEST

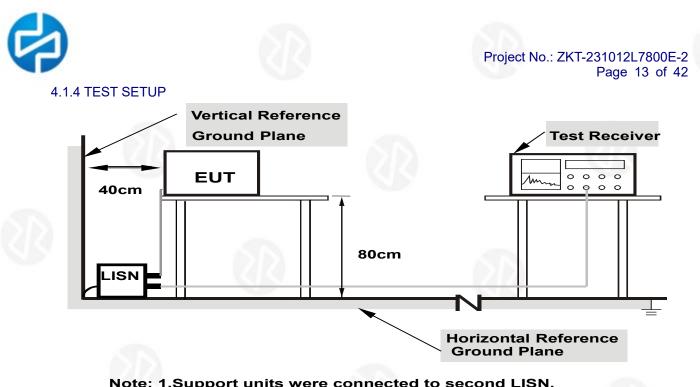
Project No.: ZKT-231012L7800E-2 Page 12 of 42

4.1 CONDUCTED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.207
Test Method:	ANSI C63.10:2013
Test Frequency Range:	150KHz to 30MHz
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto

4.1.1 POWER LINE CONDUCTED EMISSION Limits

	Limit (Standard	
FREQUENCY (MHz)	Quas⊡-peak	Average	Stanuaru
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC


Note:

(1) *Decreases with the logarithm of the frequency.

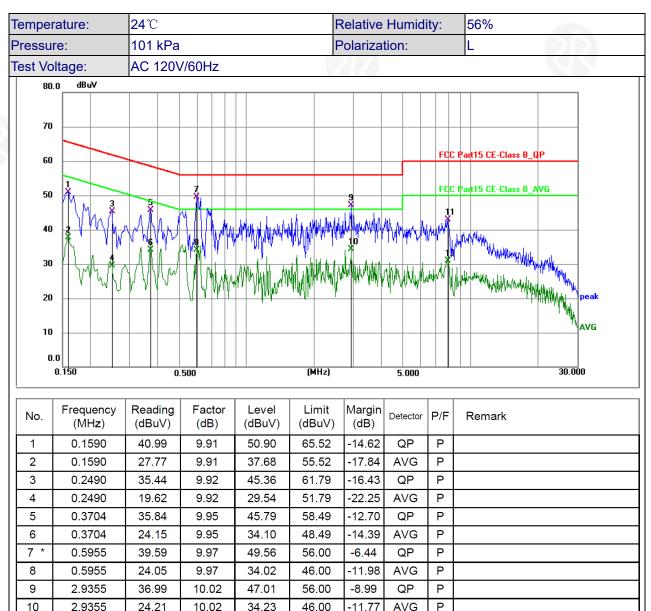
- 4.1.2 TEST PROCEDURE
- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD No deviation

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to Charging during test. This operating condition was tested and used to collect the included data.


We pretest AC 120V and AC 240V, the worst voltage was AC 120V and the data recording in the report.

4.1.6 Test Result

11

12

7.9125

7.9125

32.95

20.95

10.01

10.01

Margin = Level - Limit

42.96

30.96

60.00

50.00

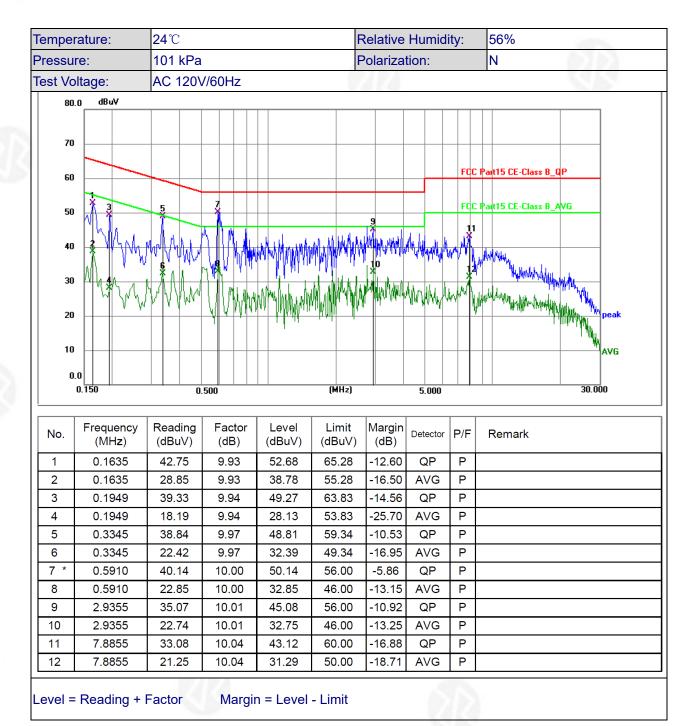
-17.04

-19.04

QP

AVG

Ρ


Ρ

4.2 RADIATED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.209						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	9kHz to 25GHz						
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Value		
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak		
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak		
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak		
	Above 1GHz	Peak	1MHz	3MHz	Peak		
		Peak	1MHz	10Hz	Average		

4.2.1 RADIATED EMISSION LIMITS

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT

	Limit (dBuV/m) (at 3M)			
FREQUENCY (MHz)	PEAK	AVERAGE		
Above 1000	74	54		

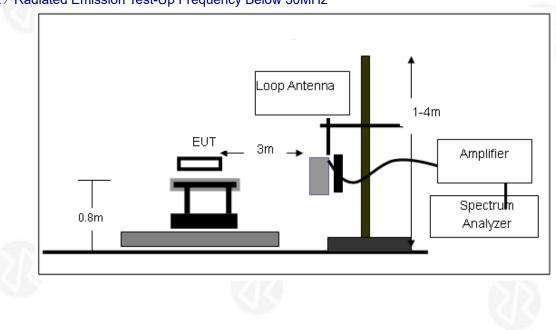
Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 25GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-chamber test. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8m; above 1GHz, the height was 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.
- g. For the radiated emission test above 1GHz:
- Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.

The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

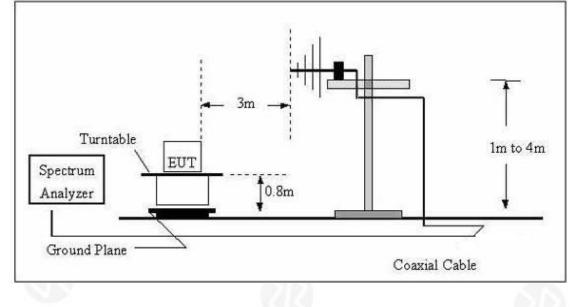

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

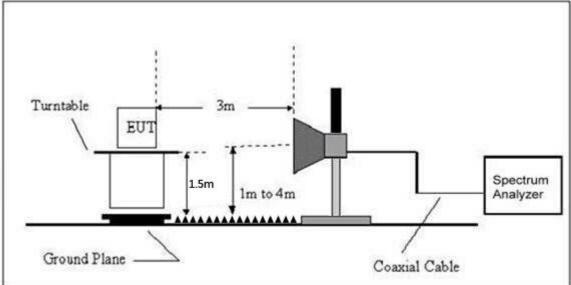
4.2.3 DEVIATION FROM TEST STANDARD No deviation

4.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz


Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

) www.zkt-lab.com



Project No.: ZKT-231012L7800E-2 Page 18 of 42

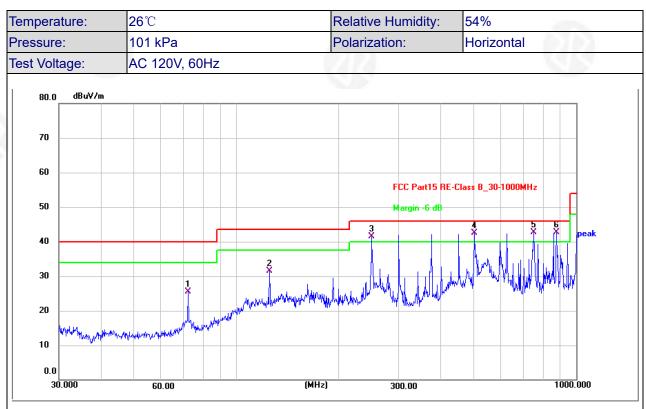
(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

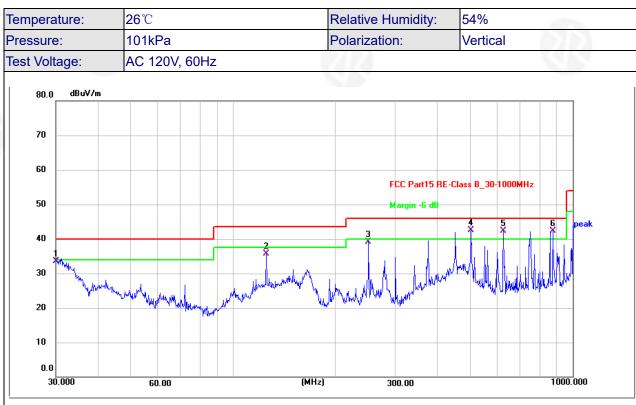
4.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

4.2.6 TEST RESULTS (Between 9KHz - 30 MHz)


The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o), the test result no need to reported.

Between 30MHz - 1GHz



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	72.0841	43. <mark>6</mark> 7	-18.11	25.56	40.00	-14.44	QP	Ρ
2	125.0065	48.17	-16.74	31.43	43.50	-12.07	QP	Ρ
3!	250.3010	54.48	-12.97	41.51	46.00	-4.49	QP	Ρ
4 !	501.1790	50.85	-8.33	42.52	46.00	-3.48	QP	Ρ
5 *	750.1082	46.12	-3.39	42.73	46.00	-3.27	QP	Ρ
6!	875.2470	43.68	-0.97	42.71	46.00	-3.29	QP	Ρ

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	30.1051	49.92	-16.49	33.43	40.00	-6.57	QP	Ρ
2	125.0065	52.38	-16.74	35.64	43.50	-7.86	QP	Р
3	250.3010	52.27	-13.15	39.12	46.00	-6.88	QP	Ρ
4 '	* 501.1790	50.75	-8.23	42.52	46.00	-3.48	QP	Р
5	625.0780	47.65	-5.37	42.28	46.00	-3.72	QP	Ρ
6	875.2470	43.42	-1.18	42.24	46.00	-3.76	QP	Ρ

Remarks:

1.Level = Reading + Factor

Margin = Level - Limit 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. The test data shows only the worst case GFSK middle channel mode.

Test Results (1GHz-25GHz)

Test Mode: CH11				Test	Test channel: Lowest				
			F	Peak Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	
4810.00	39.49	34.04	6.58	34.09	46.02	74.00	-27.98	V	
7215.00	33.28	37.11	7.73	34.50	43.62	74.00	-30.38	V	
9620.00	32.76	39.31	9.23	34.79	46.51	74.00	-27.49	V	
12025.00	*					74.00		V	
14430.00	*					74.00		V	
4810.00	44.22	34.04	6.58	34.09	50.75	74.00	-23.25	Н	
7215.00	35.22	37.11	7.73	34.50	45.56	74.00	-28.44	Н	
9620.00	32.39	39.31	9.23	34.79	46.14	74.00	-27.86	н	
12025.00	*					74.00	~	Н	
14430.00	*					74.00		Н	
			A۱	/erage Valu	е				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	
4810.00	27.89	34.04	6.58	34.09	34.42	54.00	-19.58	V	
7215.00	21.72	37.11	7.73	34.50	32.06	54.00	-21.94	V	
9620.00	20.66	39.31	9.23	34.79	34.41	54.00	-19.59	V	
12025.00	*			S D		54.00	5	V	
14430.00	*					54.00		V	
4810.00	32.36	34.04	6.58	34.09	38.89	54.00	-15.11	Н	
7215.00	24.03	37.11	7.73	34.50	34.37	54.00	-19.63	Н	
9620.00	20.57	39.31	9.23	34.79	34.32	54.00	-19.68	Н	
12025.00	*			_	51	54.00		Н	
14430.00	*				51	54.00		Н	

Test Mode: CH18 Test channel: Middle									
	Peak Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	
4880.00	37.97	34.38	6.69	34.09	44.95	74.00	-29.05	V	
7320.00	32.27	37.22	7.78	34.53	42.74	74.00	-31.26	V	
9760.00	31.86	39.46	9.35	34.80	45.87	74.00	-28.13	V	
12200.00	*					74.00		V	
14640.00	*					74.00		V	
4880.00	42.39	34.38	6.69	34.09	49.37	74.00	-24.63	Н	
7320.00	34.08	37.22	7.78	34.53	44.55	74.00	-29.45	н	
9760.00	31.35	39.46	9.35	34.80	45.36	74.00	-28.64	Н	
12200.00	*					74.00	1	Н	
14640.00	*					74.00		Н	
			A۱	/erage Valu	е				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	
4880.00	26.67	34.38	6.69	34.09	33.65	54.00	-20.35	V	
7320.00	20.89	37.22	7.78	34.53	31.36	54.00	-22.64	V	
9760.00	19.93	39.46	9.35	34.80	33.94	54.00	-20.06	V	
12200.00	*			SN.		54.00	151	V	
14640.00	*					54.00		V	
4880.00	30.98	34.38	6.69	34.09	37.96	54.00	-16.04	Н	
7320.00	23.11	37.22	7.78	34.53	33.58	54.00	-20.42	Н	
9760.00	19.71	39.46	9.35	34.80	33.72	54.00	-20.28	Н	
12200.00	*				51	54.00		Н	
14640.00	*					54.00		Н	

.

Test Mode: CH26 Test channel: Highest									
	Peak Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	
4960.00	36.52	34.72	6.79	34.09	43.94	74.00	-30.06	V	
7440.00	31.31	37.34	7.82	34.57	41.90	74.00	-32.10	V	
9920.00	31.00	39.62	9.46	34.81	45.27	74.00	-28.73	V	
12400.00	*					74.00		V	
14880.00	*					74.00		V	
4960.00	40.64	34.72	6.79	34.09	48.06	74.00	-25.94	Н	
7440.00	32.99	37.34	7.82	34.57	43.58	74.00	-30.42	н	
9920.00	30.35	39.62	9.46	34.81	44.62	74.00	-29.38	н	
12400.00	*					74.00	1	Н	
14880.00	*					74.00		Н	
			Av	verage Valu	е				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	
4960.00	25.54	34.72	6.79	34.09	32.96	54.00	-21.04	V	
7440.00	20.13	37.34	7.82	34.57	30.72	54.00	-23.28	V	
9920.00	19.25	39.62	9.46	34.81	33.52	54.00	-20.48	V	
12400.00	*			S D		54.00	- 61	V	
14880.00	*					54.00		V	
4960.00	29.69	34.72	6.79	34.09	37.11	54.00	-16.89	Н	
7440.00	22.25	37.34	7.82	34.57	32.84	54.00	-21.16	Н	
9920.00	18.92	39.62	9.46	34.81	33.19	54.00	-20.81	Н	
12400.00	*				51	54.00		Н	
14880.00	*				1	54.00		Н	

Remark:

1. Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. "*", means this data is the too weak instrument of signal is unable to test.

5.RADIATED BAND EMISSION MEASUREMENT

5.1 TEST REQUIREMENT:

Test Requirement:	FCC Part15 C Section 15.209 and 15.205					
Test Method:	ANSI C63.10: 2013					
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.					
Test site:	Measurement Distance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Value	
	Above Peak 1MHz 3MHz Peak					
	1GHz	Average	1MHz	3MHz	Average	

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)			
	PEAK	AVERAGE		
Above 1000	74	54		

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

5.2 TEST PROCEDURE

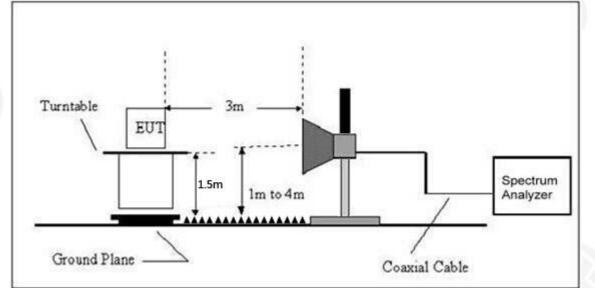
Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the Highest channel

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

5.3 DEVIATION FROM TEST STANDARD No deviation


Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

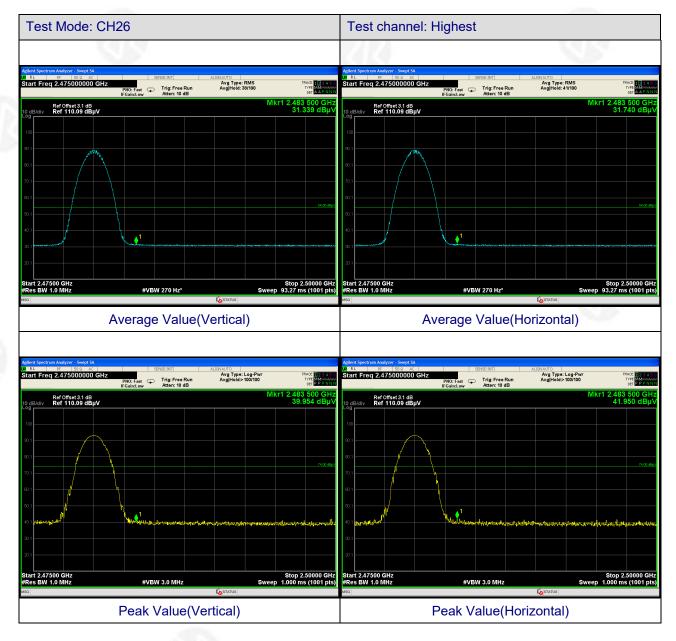
5.4 TEST SETUP

5.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULT

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China


Radiated Band Edge:

Fest Mode: CH11		Test	Test channel: Lowest				
SN		5					
ent Spectrum Analyzer - Swept SA RL RF SSG AC, SEVAEINT I Itt Freq 2.310000000 GHz PN0: Fast Trig: Free Run IF Gaintow Attem: 10 dB	ALIGNAUTO Avg Type: RMS Avg Hold: 23/100	Agilent Spectrum / TRACE 1 2 3 4 5 0 TYPE MMHHMMH DET A AP NNN	nalyzer - Swept SA F 50 & AC .310000000 GHz PNO: Fast IFGain:Low	SENSE:INT ALIGN	IAUTO Avg Type: RMS Avg Hold: 18/100	TRACE 1 3 4 TYPE MMMW DET A A P N	
Ref Offset 3.1 dB Ref 110.09 dBµV	•1 Sweep 41	2,390,00 GHz 29,856 dBµV 0 dB/dW R 10 dB	rf Offset 3.1 dB ef 110.09 dBµV	VBW 270 Hz*	↓1 Stop Sweep 410.1	390 00 G 9.754 dB	
S BW 1.0 MHZ #VBW 270 HZ"	Sweep 411	MSG	WINZ #		Sweep 410.1	ms (1001 p	
Average Value(vertical)		Average	e Value(Horiz	zontal)		
nt Spectrum Analyzer - Swept SA. Re 177 - 1922 - AC - 98P-6E3VT	AUGNAUTO	LXI RL	inalyzer - Swept SA IF 50.9 AC	SERVER JULI ALLISM		TRACE	
nt Spectrum Analyzer - Swept SA RL 16 50 20 AC 5092821171	ALISVAUTO Avg Type: Log-Pwr Avg Hold>100/100		inalyzer - Swept SA IF 50.9 AC	, SPNSE-INTI ALICA	идло Avg Type: Log-Pwr AvgHold>100/100		
nd Spectrum Analyzer - Swept SA. At 1979 1979 1970 1970 1970 1970 1970 Int Freq 2.3100000000 GHz PNO: Fest IF GainLow Trig: Free Run If GainLow Atten: 10 dB Ref Offset 3.1 dB	ALISVAUTO Avg Type: Log-Pwr Avg Hold>100/100	With RL With RL Start Freq 2 2,390 00 GHz 38,237 dBj/V 10 dB/dW R 100 gB/dW 10 dB/dW R 100 gB/dW 10 dB/dW R 100 gB/dW 10 dB/dW R	usalyzer - Swept SA # 50.8 AC .310000000 GHz PH0: Fast IFGainLow	SERVER JULI ALLISM	идло Avg Type: Log-Pwr AvgHold>100/100		
nd Spectrum Analyzer - Swept SA. At 1979 1979 1970 1970 1970 1970 1970 Int Freq 2.3100000000 GHz PNO: Fest IF GainLow Trig: Free Run If GainLow Atten: 10 dB Ref Offset 3.1 dB	ALIONAITO Avg Type: Log-Per AvgHold>100/100 Mkr1	TRACE 12 3 4 5 G TYPE MMMANANA DET P P P NNN 2,390 00 GHz	usalyzer - Swept SA # 50.8 AC .310000000 GHz PH0: Fast IFGainLow	SERVER JULI ALLISM	Avg Type: Log-Pwr WygHold> toortoo Mkr1 2, 3		
nd Spectrum Analyzer - Swept SA. At 1979 1979 1970 1970 1970 1970 1970 Int Freq 2.3100000000 GHz PNO: Fest IF GainLow Trig: Free Run If GainLow Atten: 10 dB Ref Offset 3.1 dB	ALIONATO Avg Type: Log-Pwr AvgiHeid>100/100 Mkr1	With RL With RL Start Freq 2 2,390 00 GHz 38,237 dBj/V 10 dB/dW R 100 gB/dW 10 dB/dW R 100 gB/dW 10 dB/dW R 100 gB/dW 10 dB/dW R	usalyzer - Swept SA # 50.8 AC .310000000 GHz PH0: Fast IFGainLow	28/36.IMT ALION Trig: Free Run Atten: 10 dB	идло Avg Type: Log-Pwr AvgHold>100/100		
nt Spectrum Analyzer - Swept SA Text Freq 2.310000000 GHz PHO: Pest II GainLow Trig: Free Run II GainLow Atten: 10 dB IBIdity Ref Offset 3.1 dB EBIdity Ref 110.09 dBµV	ALIONATO L Avg Type: Leg-Pur Avg Type: Leg-Pur Avg Type: Leg-Pur Mc Topological Control of the Control Mkr1	With R With R Mith R<	Indigene - Swept SA. Image: Source - S	EP-SEINT ALION Trig: Free Run Atten: 10 dB	Avg Type: Log-Por Avg Type: Log-Por NgHole > toortoo Mkr1 2: 3)	Trace 123 Tree Market Cert Data 2428 dB 2428	

Remark:

1. Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

6.POWER SPECTRAL DENSITY TEST

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C								
Section	Test Item	Limit	Frequency Range (MHz)	Result				
15.247	Power Spectral Density	8dBm/3kHz	2400-2483.5	PASS				

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULT

Temperature :	26 ℃	Relative Humidity :	54%
Test Mode :	GFSK	Test Voltage :	AC 120V, 60Hz

	TX Frequency		Maximum PS	Mandiat	
Mode	Туре	(MHz)	ANT1	Limit	Verdict
2		2405	-6.701	<=8	Pass
Zigbee	SISO	2440	-7.729	<=8	Pass
		2480	-9.893	<=8	Pass

Test Graph

Zigbee_HCH_2480MHz_Ant1_NTNV

7. CHANNEL BANDWIDTH

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

7.1 APPLIED PROCEDURES / LIMIT

	F	CC Part15 (15.247), Sul	bpart C	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS

7.2 TEST PROCEDURE

1. Set RBW = 100 kHz.

- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

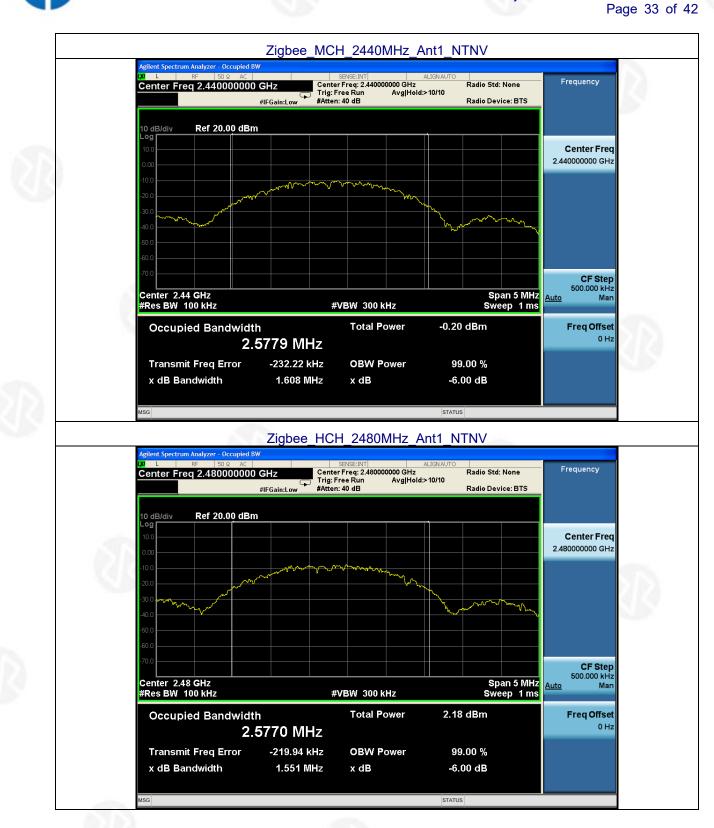
www.zkt-lab.com

7.6 TEST RESULT

Temperature :	26 ℃	Relative Humidity :	54%
Test Mode :	GFSK	Test Voltage :	AC 120V, 60Hz

	ТХ	Frequency		6dB Bandv	vidth (MHz)	
Mode	Туре	(MHz)	ANT	Result	Limit	Verdict
		2405	1	1616	>=0.5	Pass
Zigbee	SISO	2440	1	1608	>=0.5	Pass
		2480	1	1551	>=0.5	Pass

Test Graph



200

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Project No.: ZKT-231012L7800E-2

8.PEAK OUTPUT POWER TEST

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

8.1 APPLIED PROCEDURES / LIMIT

	FC	C Part15 (15.247) , Subp	oart C	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS

8.2 TEST PROCEDURE

a. The EUT was directly connected to the Power meter

8.3 DEVIATION FROM STANDARD No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Temperature :	26 ℃	Relative Humidity :	54%
Test Mode :	GFSK	Test Voltage :	AC 120V, 60Hz

	ТХ	Frequency	Maximum Peak Conduct	ted Output Power (dBm)	Manufat
Mode	Туре	(MHz)	ANT1	Limit	Verdict
		2405	9.147	<=30	Pass
Zigbee	SISO	2440	7.800	<=30	Pass
		2480	6.843	<=30	Pass

Note1: For power test the duty cycle is 100% in continous transmitting mode.

Test Graph

9. 100KHZ BANDWIDTH OF FREQUENCY BAND EDGE REQUIREMENT

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

9.1 APPLICABLE STANDARD

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

9.2 TEST PROCEDURE

Using the following spectrum analyzer setting:

A) Set the RBW = 100KHz.

- B) Set the VBW = 300KHz.
- C) Sweep time = auto couple.
- D) Detector function = peak.
- E) Trace mode = max hold.
- F) Allow trace to fully stabilize.

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

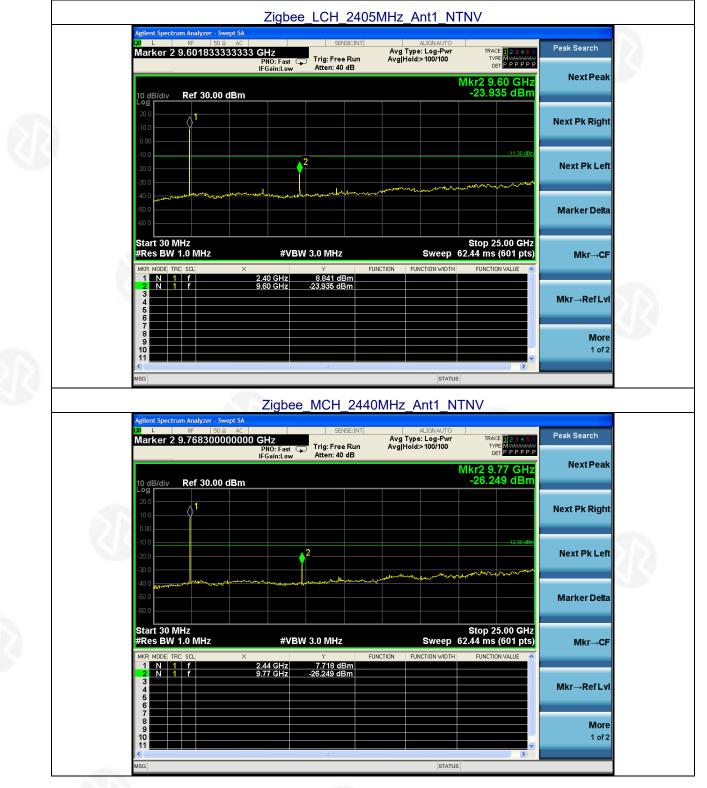
9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

9.6 TEST RESULTS

Temperature :	26 ℃	Relative Humidity :	54%
Test Mode :	GFSK	Test Voltage :	AC 120V, 60Hz

Mode	TX Type	Frequency (MHz)	Delta Peak toBand Emission (dBc)	Limit (dBc)	Verdict
Zigbee	SISO	2405	46.198	>30	Pass
Zigbee	0100	2483.5	48.406	>30	Pass



Conducted Emission Method

		PNO: Fast 🕞 Trig: Free Run IFGain:Low Atten: 40 dB	Avg Hoid≫100/100	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P P P P P P	NextPeak
	10 dB/div Ref 30.00 dB	3m	Μ	kr2 9.93 GHz -30.957 dBm	Next Peak
3	20.0 10.0 0.00				Next Pk Right
8	-10.0	2		-13:40 dBm	Next Pk Left
	-40.0	March Amarchene March and Amarch and Amarch			Marker Delta
	Start 30 MHz #Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep 62	Stop 25.00 GHz .44 ms (601 pts)	Mkr→CF
	MKR MODE TRC SCL 1 N 1 f 2 N 1 f 3 4 - - 5 - - -	X Y 2.49 GHz 6.681 dBm 9.93 GHz -30.957 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	Mkr→RefLvl
	6 7 8 9 10				More 1 of 2

10.ANTENNA REQUIREMENT

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is Double Copper Antenna, the best case gain of the antennas is 3.52dBi, reference to the appendix II for details

Project No.: ZKT-231012L7800E-2 Page 42 of 42

11. TEST SETUP PHOTO

Reference to the appendix I for details.

12. EUT CONSTRUCTIONAL DETAILS

Reference to the appendix II for details.

***** END OF REPORT ****

