

Page 1 of 24Report No.:UNIA19072001-4FR-01

FCC RADIO TEST REPORT

FCC ID:2AT7Z-GHUB001

Product:Gravio HubTrade Name:GravioModel Name:GHUB001Serial Model:N/AReport No.:UNIA19072001-4FR-01

Prepared for

Asteria Technology Pte. Ltd.

160 ROBINSON ROAD, #19-05 SBF CENTER, SINGAPORE Singapore

Prepared by

Shenzhen United Testing Technology Co., Ltd.

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

TEST RESULTCERTIFICATION

Applicant's name:	Asteria Technology Pte. Ltd.
Address:	160 ROBINSON ROAD, #19-05 SBF CENTER, SINGAPORE Singapore
Manufacture's Name:	Asteria Technology Pte. Ltd.
Address	160 ROBINSON ROAD, #19-05 SBF CENTER, SINGAPORE Singapore
Product description	

Product name	Gravio Hub		
Trade Mark	Gravio		
Model and/or type reference .:	GHUB001		
Standards	FCC Rules and Regulations Pa	art 15 Subpart C Section	on 15.249,

This device described above has been tested by Shenzhen United Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of UNI, this document may be altered or revised by Shenzhen United Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

Date of Test	
Date (s) of performance of tests	
Date of Issue:	
Test Result:	

Jul. 20, 2019 ~ Aug. 08 , 2019 Aug. 08 , 2019 Pass

Prepared by:

Reviewer:

Approved & Authorized Signer:

ann yang/Editor Sherwin Qian/Supervisor Voure

Liuze/Manager

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 3 of 24Report No.:UNIA19072001-4FR-01

Page 3 of 24Report	No.:UNIA19072001-4FR-01	
Table of Co	ontents	Page
1. TEST SUMMARY		4
2. GENERAL INFORMATION		5
2.1 GENERAL DESCRIPTION OF EU	г	5
2.2 Carrier Frequency of Channels		6
2.3 Operation of EUT during testing		6
2.4DESCRIPTION OF TEST SETUP		6
2.5MEASUREMENT INSTRUMENTS	LIST	7
3. CONDUCTED EMISSIONS TEST		8
3.1 Conducted Power Line Emission	Limit	8
3.2 Test Setup		8
3.3 Test Procedure		8
3.4 Test Result		8
4 RADIATED EMISSION TEST		1 1
4.1 Radiation Limit		11
4.2 Test Setup		11
4.3 Test Procedure		12
4.4 Test Result		12
5 BAND EDGE		18
5.1 Limits		18
5.2 Test Procedure		18
5.3 Test Result		18
6 OCCUPIED BANDWIDTH MEASUR	EMENT	20
6.1 Test Setup		20
6.2 Test Procedure		20
6.3 Measurement Equipment Used		20
6.4 Test Result		20
7 ANTENNA REQUIREMENT		22
8 PHOTOGRAPH OF TEST		23
8.1 Radiated Emission		23
8.2Conducted Emission		24

1. TEST SUMMARY

TEST PROCEDURES AND RESULTS

DESCRIPTION OF TEST CONDUCTED EMISSIONS TEST RADIATED EMISSION TEST BAND EDGE OCCUPIED BANDWIDTH MEASUREMENT ANTENNA REQUIREMENT RESULT COMPLIANT COMPLIANT COMPLIANT COMPLIANT STANGARD FCC Part 15.207 FCC Part 15.209/15.249 FCC Part 15.249/15.205 FCC Part 15.249 FCC Part 15.203

TEST FACILITY

Test Firm : Shenzhen United Testing Technology Co.,Ltd.

Address :2F, Annex Bldg, JiahuangyuanTech Park, #365 Baotian 1

Rd, TiegangCommunity, XixiangStr, Bao'an District, Shenzhen, China

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19.The testing quality system of our laboratory meets with ISO/IEC-17025 requirements, which is approved by CNAS. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

CNAS-LAB Code: L6494

The EMC Laboratory has been assessed and in compliance with CNAS-CL01 accreditation criteria for testing Laboratories (identical to ISO/IEC 17025:2017 General Requirements) for the Competence of testing Laboratories.

Designation Number: CN1227

Test Firm Registration Number: 674885

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission. The acceptance letter from the FCC is maintained in our files.

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

Conducted Emission Expanded Uncertainty

Radiated emission expanded uncertainty(9kHz-30MHz) Radiated emission expanded uncertainty(30MHz-1000MHz) Radiated emission expanded uncertainty(Above 1GHz) = 2.23dB, k=2 = 3.08dB, k=2 = 4.42dB, k=2

= 4.06dB, k=2

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Gravio Hub
Trade Mark	Gravio
Model Name	GHUB001
Serial No.	N/A
Model Difference	N/A
FCC ID	2AT7Z-GHUB001
Antenna Type	Ceramics Antenna
Antenna Gain	0.5dBi
Frequency Range	2402~2480MHz
Number of Channels	40CH
Modulation Type	GFSK
Battery	3V(The battery only supplies power to the Zigbee module when the battery is powered off.)
PowerSource	DC 12V

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

2.2 Carrier Frequency of Channels

Channel List									
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
01	2402	11	2422	21	2442	31	2462		
02	2404	12	2424	22	2444	32	2464		
03	2406	13	2426	23	2446	33	2466		
04	2408	14	2428	24	2448	34	2468		
05	2410	15	2430	25	2450	35	2470		
06	2412	16	2432	26	2452	36	2472		
07	2414	17	2434	27	2454	37	2474		
08	2416	18	2436	28	2456	38	2476		
09	2418	19	2438	29	2458	39	2478		
10	2420	20	2440	30	2460	40	2480		

2.3 Operation of EUT during testing

Operating Mode

The mode is used: Transmitting mode Low Channel: 2402MHz Middle Channel: 2440MHz High Channel: 2480MHz

2.4 DESCRIPTION OF TEST SETUP

Operation of EUT during Conducted testing:

Operation of EUT duringRadiation testing:

EUT

Table forauxiliary equipment:

Equipment Description	Manufacturer	Model	Calibration Due Date
N/A	1		

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

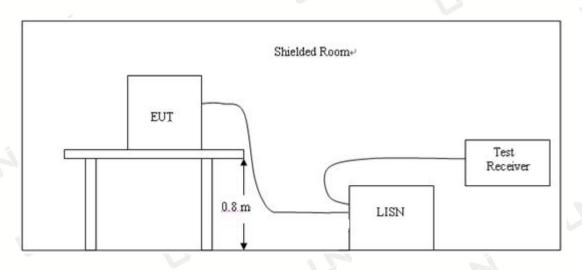
2.5 MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
		CONDUCTED	EMISSIONS TEST		
1	AMN	Schwarzbeck	NNLK8121	8121370	2019.9.9
2	AMN	ETS	3810/2	00020199	2019.9.9
3	EMI TEST RECEIVER	Rohde&Schwarz	ESCI	101210	2019.9.9
4	AAN	TESEQ	T8-Cat6	38888	2019.9.9
A.S.()	4,	RADIATED E	EMISSION TEST	4	•
1	Horn Antenna	Sunol	DRH-118	A101415	2019.9.29
2	BicoNILog Antenna	Sunol	JB1 Antenna	A090215	2019.9.29
3	PREAMP	HP	8449B	3008A00160	2019.9.9
4	PREAMP	HP	8447D	2944A07999	2019.9.9
5	EMI TEST RECEIVER	Rohde&Schwarz	ESR3	101891	2019.9.9
6	VECTOR Signal Generator	Rohde&Schwarz	SMU200A	101521	2019.9.28
7	Signal Generator	Agilent	E4421B	MY4335105	2019.9.28
8	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2019.9.28
9	MXA Signal Analyzer	Agilent	N9020A	MY51110104	2019.9.9
10	ANT Tower&Turn table Controller	Champro	EM 1000	60764	2019.9.28
11	Anechoic Chamber	Taihe Maorui	9m*6m*6m	966A0001	2019.9.9
12	Shielding Room	Taihe Maorui	6.4m*4m*3m	643A0001	2019.9.9
13	RF Power sensor	DARE	RPR3006W	15100041SNO88	2020.3.14
14	RF Power sensor	DARE	RPR3006W	15100041SNO89	2020.3.14
15	RF power divider	Anritsu	K241B	992289	2019.9.28
16	Wideband radio communication tester	Rohde&Schwarz	CMW500	154987	2019.9.28
17	Biconical antenna	Schwarzbeck	VHA 9103	91032360	2019.9.8
18	Biconical antenna	Schwarzbeck	VHA 9103	91032361	2019.9.8
19	Broadband Hybrid Antennas	Schwarzbeck	VULB9163	VULB9163#958	2019.9.8
20	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2020.1.12
21	Active Receive Loop Antenna	Schwarzbeck	FMZB 1919B	00023	2019.11.02
22	Horn Antenna	A-INFOMW	LB-180400-KF	J211060660	2020.03.14
23	Microwave Broadband Preamplifier	Schwarzbeck	BBV 9721	100472	2019.10.24
24	Active Loop Antenna	Com-Power	AL-130R	10160009	2020.05.10
25	Power Meter	KEYSIGHT	N1911A	MY50520168	2020.05.10
26	Frequency Meter	VICTOR	VC2000	997406086	2020.05.10
27	DC Power Source	HYELEC	HY5020E	055161818	2020.05.10

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

3. CONDUCTED EMISSIONS TEST

3.1 Conducted Power Line Emission Limit


For unintentional device, according to § 15.207(a) Line Conducted Emission Limits is as following

		Maximum RF Li	ne Voltage(dBµV)		
Frequency	CLA	SS A	CLASS B		
(MHz)	Q.P.	Ave.	Q.P.	Ave.	
0.15~0.50	79	66	66~56*	56~46*	
0.50~5.00	73	60	56	46	
5.00~30.0	73	60	60	50	

* Decreasing linearly with the logarithm of the frequency

For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

3.2 Test Setup

3.3 Test Procedure

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4,If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hzpower through a Line Impedance Stabilization Network (LISN) which supplied power source and wasgrounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUTusing a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has twomonitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

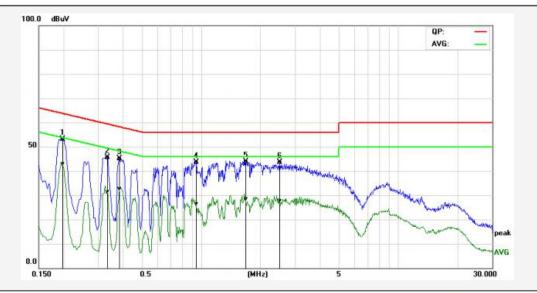
3.4 Test Result

Pass

Remark:

- 1. All modes were tested at AC 120V and 240V, only the worst result of AC 120V 60Hz was reported.
- 2. All modes of Low, Middle, and High channel were tested, only the worst result of High Channel was

reported as below:

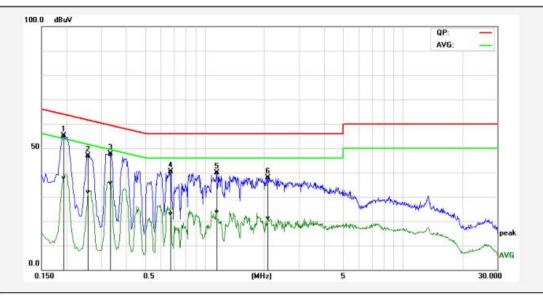

深圳市优耐检测技术有限公司
Shenzhen United Testing Technology Co.,Ltd.
United Testing Technology (Hong Kong) Limited

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China
深圳市宝安区西乡街道铁岗社区宝田一路365号嘉皇源科技园附楼2楼 邮编:518102 Tel:+86-755-86180996 Fax:+86-755-86180156

Page 9 of 24Report No.:UNIA19

No.:UNIA19072001-4FR-01

Temperature:	24°C	Relative Humidity:	45%				
Test Date:	Aug. 05, 2019	Pressure:	1010hPa				
Test Voltage:	AC 120V, 60Hz	Phase:	Line				
Test Mode:	Transmitting mode of GFSK 2480MHz						


Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
0.1980	43.51	33.22	9.73	53.24	42.95	63.69	53.69	-10.45	-10.74	Pass
0.3339	35.73	21.49	9.81	45.54	31.30	59.35	49.35	-13.81	-18.05	Pass
0.3860	35.23	22.70	9.83	45.06	32.53	58.15	48.15	-13.09	-15.62	Pass
0.9460	33.74	16.51	9.85	43.59	26.36	56.00	46.00	-12.41	-19.64	Pass
1.6860	33.94	18.60	9.87	43.81	28.47	56.00	46.00	-12.19	-17.53	Pass
2.5020	33.60	17.81	9.93	43.53	27.74	56.00	46.00	-12.47	-18.26	Pass
	(MHz) 0.1980 0.3339 0.3860 0.9460 1.6860	reading (MHz) (dBuV) 0.1980 43.51 0.3339 35.73 0.3860 35.23 0.9460 33.74 1.6860 33.94	reading reading (MHz) (dBuV) (dBuV) 0.1980 43.51 33.22 0.3339 35.73 21.49 0.3860 35.23 22.70 0.9460 33.74 16.51 1.6860 33.94 18.60	reading reading factor (MHz) (dBuV) (dBuV) (dB) 0.1980 43.51 33.22 9.73 0.3339 35.73 21.49 9.81 0.3860 35.23 22.70 9.83 0.9460 33.74 16.51 9.85 1.6860 33.94 18.60 9.87	reading reading factor result (MHz) (dBuV) (dBuV) (dB) (dBuV) 0.1980 43.51 33.22 9.73 53.24 0.3339 35.73 21.49 9.81 45.54 0.3860 35.23 22.70 9.83 45.06 0.9460 33.74 16.51 9.85 43.59 1.6860 33.94 18.60 9.87 43.81	reading reading factor result result (MHz) (dBuV) (dBuV) (dB) (dBuV) (dBuV) 0.1980 43.51 33.22 9.73 53.24 42.95 0.3339 35.73 21.49 9.81 45.54 31.30 0.3860 35.23 22.70 9.83 45.06 32.53 0.9460 33.74 16.51 9.85 43.59 26.36 1.6860 33.94 18.60 9.87 43.81 28.47	reading reading factor result limit (MHz) (dBuV) (dBuV) (dB) (dBuV) (dBuV) (dBuV) 0.1980 43.51 33.22 9.73 53.24 42.95 63.69 0.3339 35.73 21.49 9.81 45.54 31.30 59.35 0.3860 35.23 22.70 9.83 45.06 32.53 58.15 0.9460 33.74 16.51 9.85 43.59 26.36 56.00 1.6860 33.94 18.60 9.87 43.81 28.47 56.00	reading reading factor result result limit limit limit (MHz) (dBuV) (dBuV) (dB) (dBuV) (dBuV)	reading reading factor result result limit limit margin (MHz) (dBuV) (dBuV) (dB) (dBuV) (dB) 0.1980 43.51 33.22 9.73 53.24 42.95 63.69 53.69 -10.45 0.3339 35.73 21.49 9.81 45.54 31.30 59.35 49.35 -13.81 0.3860 35.23 22.70 9.83 45.06 32.53 58.15 48.15 -13.09 0.9460 33.74 16.51 9.85 43.59 26.36 56.00 46.00 -12.41 1.6860 33.94 18.60 9.87 43.81 28.47 56.00 46.00 -12.19	reading reading factor result result limit limit margin margin (MHz) (dBuV) (dBuV) (dB) (dBuV) (dB) (dBuV) (dBuV) (dB) (dB)

Remark: Factor = Insertion Loss + Cable Loss, Result=Reading + Factor, Margin=Result - Limit.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 10 of 24Report No.:UNIA19072001-4FR-01

Temperature:	24°C	Relative Humidity:	45%				
Test Date:	Aug. 05, 2019	Pressure:	1010hPa				
Test Voltage:	AC 120V, 60Hz	20V, 60Hz Phase: Neutral					
Test Mode:	Mode: Transmitting mode of GFSK 2480MHz						

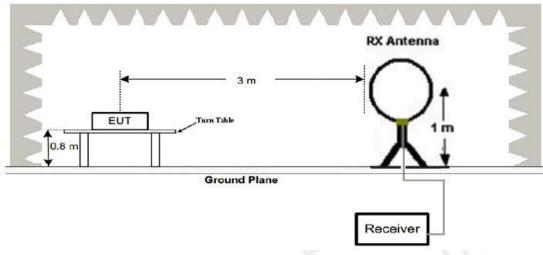
No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1*	0.1940	45.38	27.87	9.72	55.10	37.59	63.86	53.86	-8.76	-16.27	Pass
2P	0.2580	37.19	22.09	9.79	46.98	31.88	61.49	51.50	-14.51	-19.62	Pass
3P	0.3339	37.92	25.79	9.81	47.73	35.60	59.35	49.35	-11.62	-13.75	Pass
4P	0.6740	30.64	12.99	9.81	40.45	22.80	56.00	46.00	-15.55	-23.20	Pass
5P	1.1500	29.91	13.79	9.85	39.76	23.64	56.00	46.00	-16.24	-22.36	Pass
6P	2.0980	27.92	11.21	9.89	37.81	21.10	56.00	46.00	-18.19	-24.90	Pass

Remark: Factor = Insertion Loss + Cable Loss, Result=Reading + Factor, Margin=Result - Limit.

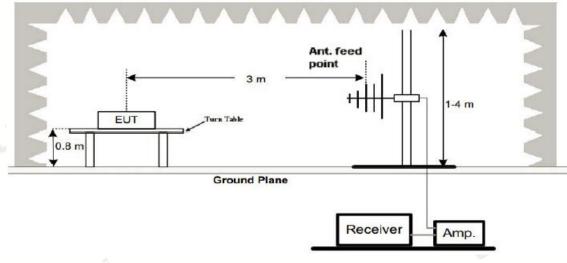
深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

4 RADIATED EMISSION TEST

4.1 Radiation Limit


For unintentional device, according to § 15.209(a), except for Class B digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
30-88	3	40	100
88-216	3	43.5	150
216-960	3	46	200
Above 960	3	54	500

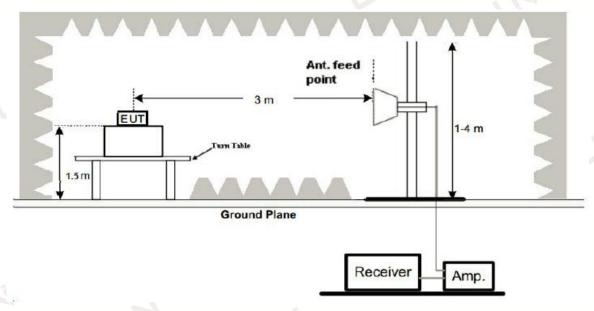

For intentional device, according to § 15.209(a), the general requirement of field strength of radiatedemissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

4.2 Test Setup

1. Radiated Emission Test-Up Frequency Below 30MHz

2. Radiated Emission Test-Up Frequency 30MHz~1GHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited



3. Radiated Emission Test-Up Frequency Above 1GHz

For unintentional device, according to § 15.209(a), except for Class B digital devices, the field strength ofradiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the followingvalues:

Frequency	Distance	Radiated	Detection method
(MHz)	(Meters)	(dBµV/m)	
2400-2483.5	3	114	PK
2400-2483.5	3	94	AV

For intentional device, according to § 15.209(a), the general requirement of field strength of radiatedemissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

4.3 Test Procedure

- 1. Below 1GHz measurement the EUT is placed on turntable which is 0.8m above ground plane. And above 1GHz measurement EUT was placed on low permittivity and low tangent turn table which is 1.5m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highestemissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna bothhorizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The test frequency range from 9KHz to25GHz per FCC PART 15.33(a).

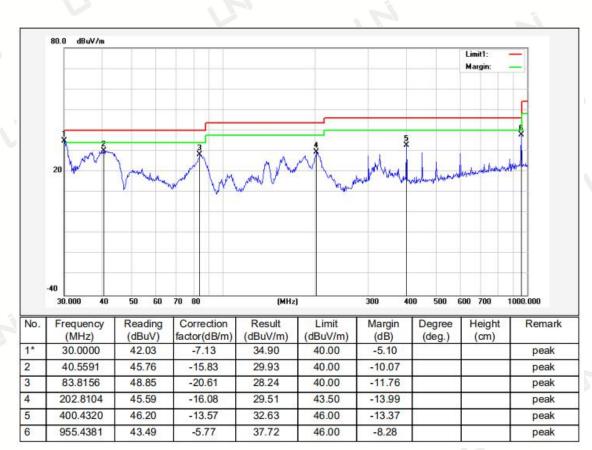
4.4 Test Result

PASS

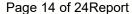
Remark:

1. All the test modes completed for test. The worst case of Radiated Emissionis High channel, the test data of this mode was reported.

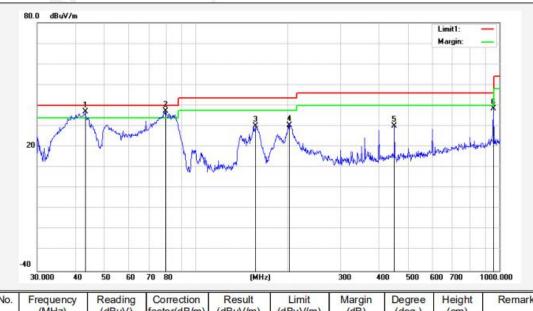
2. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report.


3. Radiated emission test from 9KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9KHz to 30MHz and not recorded in this report.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited


Below 1GHz Test Results:

Temperature:	24°C	Relative Humidity:	45%
Test Date:	Aug. 05, 2019	Pressure:	1010hPa
Test Voltage:	AC 120V, 60Hz	Polarization:	Horizontal
Test Mode:	Transmitting mode of GFSK2480N	ЛНz	



Remark: Absolute Level= Reading Level+ Factor, Margin= Absolute Level – Limit Factor=Ant. Factor + Cable Loss – Pre-amplifier

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Temperature:	24°C	Relative Humidity:	45%
Test Date:	Aug. 05, 2019	Pressure:	1010hPa
Test Voltage:	AC 120V, 60Hz	Polarization:	Vertical
Test Mode:	Transmitting mode of GFSK2480N	ИНz	, N

No.	Frequency (MHz)	Reading (dBuV)	Correction factor(dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Degree (deg.)	Height (cm)	Remark
1!	43.2017	54.81	-17.88	36.93	40.00	-3.07			peak
2*	79.5207	58.52	-21.36	37.16	40.00	-2.84			peak
3	157.5588	45.98	-15.86	30.12	43.50	-13.38			peak
4	203.5228	46.62	-16.27	30.35	43.50	-13.15			peak
5	451.1350	42.86	-12.72	30.14	46.00	-15.86			peak
6	955.4381	44.28	-5.77	38.51	46.00	-7.49			peak

Remark: Absolute Level= Reading Level+ Factor, Margin= Absolute Level – Limit Factor=Ant. Factor + Cable Loss – Pre-amplifier

Remark:

- (1) Measuring frequencies from 9 KHz to the 1 GHz, Radiated emission test from 9KHz to 30MHzwas verified, and no any emission was found except system noise floor.
- (2) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (3) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

Above 1 GHz Test Results: CH Low (2402MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2402	107.49	-5.84	101.65	114	-12.35	PK
2402	80.34	-5.84	74.50	94	-19.50	AV
4804	63.35	-3.64	59.71	74	-14.29	РК
4804	50.87	-3.64	47.23	54	-6.77	AV
7206	58.61	-0.95	57.66	74	-16.34	РК
7206	46.62	-0.95	45.67	54	-8.33	AV
Remark: Fact	or = Antenna	Factor + Cabl	e Loss – Pre-ampli	ifier. Margin=	Absolute Le	vel – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2402	109.21	-5.84	103.37	114	-10.63	PK
2402	81.25	-5.84	75.41	94	-18.59	AV
4804	61.24	-3.64	57.60	74	-16.40	РК
4804	48.99	-3.64	45.35	54	-8.65	AV
7206	56.75	-0.95	55.8	74	-18.2	РК
7206	47.21	-0.95	46.26	54	-7.74	AV
Remark: Fact	or = Antenna I		e Loss – Pre-ampl	ifier. Margin=	Absolute Le	vel – Limit

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

CH Middle (2440MHz)

Horizontal:

Result	Factor	Emission Level	Limits	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
109.35	-5.71	103.64	114	-10.36	PK
81.24	-5.71	75.53	94	-18.47	AV
60.24	-3.51	56.73	74	-17.27	PK
47.92	-3.51	44.41	54	-9.59	AV
57.34	-0.82	56.52	74	-17.48	РК
46.38	-0.82	45.56	54	-8.44	AV
	(dBµV) 109.35 81.24 60.24 47.92 57.34	(dBµV) (dB) 109.35 -5.71 81.24 -5.71 60.24 -3.51 47.92 -3.51 57.34 -0.82	(dBµV)(dB)(dBµV/m)109.35-5.71103.6481.24-5.7175.5360.24-3.5156.7347.92-3.5144.4157.34-0.8256.52	(dBµV)(dB)(dBµV/m)(dBµV/m)109.35-5.71103.6411481.24-5.7175.539460.24-3.5156.737447.92-3.5144.415457.34-0.8256.5274	(dBµV)(dB)(dBµV/m)(dBµV/m)(dB)109.35-5.71103.64114-10.3681.24-5.7175.5394-18.4760.24-3.5156.7374-17.2747.92-3.5144.4154-9.5957.34-0.8256.5274-17.48

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2440	108.79	-5.71	103.08	114	-10.92	PK
2440	82.21	-5.71	76.50	94	-17.50	AV
4880	61.24	-3.51	57.73	74	-16.27	РК
4880	49.35	-3.51	45.84	54	-8.16	AV
7320	56.88	-0.82	56.06	74	-17.94	РК
7320	46.27	-0.82	45.45	54	-8.55	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin= Absolute Level – Limit

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

						-
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detecto
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2480	108.77	-5.65	103.12	114	-10.88	PK
2480	81.22	-5.65	75.57	94	-18.43	AV
4960	64.35	-3.43	60.92	74	-13.08	PK
4960	50.39	-3.43	46.96	54	-7.04	AV
7440	57.68	-0.75	56.93	74	-17.07	PK
7440	47.35	-0.75	46.60	54	-7.40	AV

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2480	109.31	-5.65	103.66	114	-10.34	PK
2480	82.25	-5.65	76.60	94	-17.40	AV
4960	61.34	-3.43	57.91	74	-16.09	PK
4960	50.39	-3.43	46.96	54	-7.04	AV
7440	56.81	-0.75	56.06	74	-17.94	PK
7440	47.26	-0.75	46.51	54	-7.49	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin= Absolute Level – Limit

Remark:

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.

(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.The resolution bandwidth of test receiver/spectrum analyzer is 1MHzand video bandwidth is 3MHz for peak measurement with peak detectorat frequency above 1GHz.The resolution bandwidth of test receiver/spectrum analyzer is 1MHzand video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.

(6) RBW >20dB BW,VBW>=RBW ,PK detector is for PK value, RMS detector is for AV value.
 (7) All modes of operation were investigated and the worst-case emissionsare reported.

Page 18 of 24Report

No.:UNIA19072001-4FR-01

5 BAND EDGE

5.1 Limits

FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emissionlimits in §15.209, whichever is the lesser attenuation.

5.2 Test Procedure

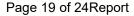
The band edge compliance of RF radiated emission should be measured by following the guidance in ANSIC63.10 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT issituated in three orthogonal planes (if appropriate), adjusting the measurement antenna height andpolarization etc. Set RBW to 1MHz and VBM to 3MHz to measure the peak field strength and set RMS detector to measure the average radiated field strength. The conducted RF band edge was measured by using a spectrum analyzer. Set span wide enough to capture the highest in-band emission and the emission at the band edge. Set RBW to 100 KHz and VBW to 300 KHz, to measure the conducted peak band edge.

5.3 Test Result

PASS

Radiated Band Edge Test:

Operation Mode: TX CH Low (2402MHz)


Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	56.31	-5.81	50.50	74	-23.50	РК
2310	1	-5.81		54	1	AV
2390	56.81	-5.84	50.97	74	-23.03	PK
2390	1	-5.84	1	54	1	AV
2400	57.84	-5.84	52.00	74	-22.00	PK
2400		-5.84	/	54	1	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:	in .		1			
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	55.29	-5.81	49.48	74	-24.52	PK
2310	/	-5.81	1	54	1	AV
2390	55.87	-5.84	50.03	74	-23.97	РК
2390	/	-5.84	15	54		AV
2400	57.69	-5.84	51.85	74	-22.15	PK
2400		-5.84	1	54	/	AV
			· · · · · ·			

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Page 19 of 24Report No.:UNIA19072001-4FR-01

Operation Mode: TX CH High (2480MHz) Horizontal.

nonzoniai.						
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.5	57.61	-5.65	51.96	74	-22.04	PK
2483.5	1	-5.65	1	54	1	AV
2500	57.06	-5.72	51.34	74	-22.66	PK
2500		-5.72	NI I	54	/	AV
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						1

Vertical:					1	
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	56.99	-5.65	51.34	74	-22.66	PK
2483.5		-5.65	1	54	/	AV
2500	56.21	-5.72	50.49	74	-23.51	РК
2500	1	-5.72	1	54	1	AV
Remark: Fact	or = Antenna Facto	or + Cable I c	oss – Pre-amplifier			1

Remark: Factor Antenna Factor Cable Loss Pre-amplifier.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

6 OCCUPIED BANDWIDTH MEASUREMENT

- 6.1 Test Setup
 - Same asRadiated Emission Measurement
- 6.2 Test Procedure
 - 1. The EUT was placed on a turn table which is 0.8m above ground plane.
 - 2. Set EUT as normal operation.
 - 3. Based on ANSI C63.10 section 6.9.2: RBW=30KHz. VBW=100KHz, Span=3MHz.
 - 4. The useful radiated emission from the EUT was detected by the spectrum analyzer with peak detector.

6.3 Measurement Equipment Used

Same asRadiated Emission Measurement

6.4 Test Result

PASS

Frequency (MHz)	20dB Bandwidth (MHz)	Result
2402	1.132	PASS
2440	1.132	PASS
2480	1,129	PASS

CH:2402MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 21 of 24Report

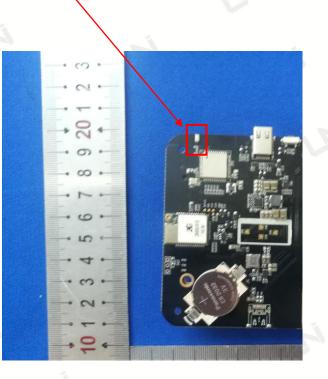
No.:UNIA19072001-4FR-01

CH:2440MHz

CH:2480MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

7 ANTENNA REQUIREMENT


Standard Applicable:

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed toensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Connected Construction

The antenna used in this product is a Ceramics Antenna, The directional gains of antenna used for transmitting is 0.5dBi.

ANTENNA:

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 23 of 24Report No.:UNIA19

No.:UNIA19072001-4FR-01

8 PHOTOGRAPH OF TEST

8.1Radiated Emission

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 24 of 24Report No.:UNIA19072001-4FR-01

End of Report

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited