SAR evaluation

MPE Calculation Method

 $E (V/m) = (30*P*G)^{0.5}/d$

Power Density: Pd $(W/m2) = E^2/377$

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

 $Pd = (30*P*G) / (377*d^2)$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

Calculated Result and Limit (WORSE CASE IS AS BELOW)

WIFI:

Directional	Peak Output	Power Density	Limit of Power	Test
AntennaGain	Power (mW)	(S)(mW/cm2)	Density (S)	Result
(Numeric)			(mW/cm2)	
1.122	19.4536	0.00434	1	Compiles
(0.5dBi)	(12.89dBm@2437MHz)			

Zigbee:

Field strength =104.61dBuV/m @3m

So EIRP={ $[10^{(104.61/20)}/10^6 \text{ x3}]^2/30 }$ x1000 mW = 8.672mW

EIRP (mW)	Power Density	Limit of Power	Test
	(S)(mW/cm2)	Density (S)	Result
		(mW/cm2)	
8.672	0.00173	1	Compiles

Conclusion:

0.00434+0.00173=0.00607<1