

VIS(SHANGHAI) Technology Limited RF TEST REPORT

Report Type:

FCC Part 15.247 & ISED RSS-247 RF report

Model: Luna 3 Plus

REPORT NUMBER: 190801865SHA-001

ISSUE DATE: September 3, 2019

DOCUMENT CONTROL NUMBER: TTRF15.247-02_V1 © 2018 Intertek

TEST REPORT

Intertek Testing Services Shanghai Building No.86, 1198 Qinzhou Road (North) Caohejing Development Zone Shanghai 200233, China

> Telephone: 86 21 6127 8200 www.intertek.com

Report no.: 190801865SHA-001

Applicant:	VIS(SHANGHAI) Technology Limited
	No.58 Linsheng Road, Tinglin Town, Jinshan District, Shanghai
Manufacturing site 1:	VIS(SHANGHAI) Technology Limited
	No.58 Linsheng Road, Tinglin Town, Jinshan District, Shanghai
Manufacturing site 2:	Suzhou SvenTech Co., LTD.
	No.71, Xinqing Road,SIP Suzhou, Jiangsu Province, China.

FCC ID: 2AT72-LUNA3PLUS

SUMMARY:

The equipment complies with the requirements according to the following standard(s) or Specification:

47CFR Part 15 (2017): Radio Frequency Devices (Subpart C)

ANSI C63.10 (2013): American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

RSS-247 Issue 2 (February 2017): Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

RSS-Gen Issue 5 (April 2018): General Requirements for Compliance of Radio Apparatus

PREPARED BY:

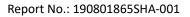
REVIEWED BY:

Frie. li

Project Engineer Eric Li

Reviewer Daniel Zhao

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.



Content

RE	VISIC	DN HISTORY	. 5
1	G	ENERAL INFORMATION	
	1.1	DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)	
	1.2	TECHNICAL SPECIFICATION	
	1.3	DESCRIPTION OF TEST FACILITY	8
2	Т	EST SPECIFICATIONS	. 9
	2.1	STANDARDS OR SPECIFICATION	9
	2.2	MODE OF OPERATION DURING THE TEST	9
	2.3	Test software list	
	2.4	TEST PERIPHERALS LIST	
	2.5	TEST ENVIRONMENT CONDITION:	
	2.6	INSTRUMENT LIST	
	2.7	MEASUREMENT UNCERTAINTY	12
3	Μ	IINIMUM 6DB BANDWIDTH	13
	3.1	LIMIT	13
	3.2	Measurement Procedure	13
	3.3	TEST CONFIGURATION	13
	3.4	Test Results of Minimum 6dB bandwidth	13
4	Μ	IAXIMUM CONDUCTED OUTPUT POWER AND E.I.R.P	14
	4.1	LIMIT	14
	4.2	– Measurement Procedure	
	4.3	TEST CONFIGURATION	
	4.4	TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER	15
5	P	OWER SPECTRUM DENSITY	16
	5.1		16
	5.2	– Measurement Procedure	
	5.3	TEST CONFIGURATION	
	5.4	Test Results of Power spectrum density	17
6	Eſ	MISSION OUTSIDE THE FREQUENCY BAND	18
	6.1		18
	6.2	Measurement Procedure	
	6.3	TEST CONFIGURATION	
	6.4	THE RESULTS OF EMISSION OUTSIDE THE FREQUENCY BAND	
7	R	ADIATED EMISSIONS IN RESTRICTED FREQUENCY BANDS	20
	7.1		
	7.2	LIMIT	
	7.2 7.3	Test Configuration	
	7.3 7.4	TEST RESULTS OF RADIATED EMISSIONS	
8			
5	8.1		
	8.2	Test Configuration	
	8.3	Measurement Procedure	
	8.4	Test Results of Power line conducted emission	
TTI	RF15.24	47-02_V1 © 2018 Intertek Page 3 of 40	

TEST REPORT

9	0	OCCUPIED BANDWIDTH	31
	9.1	Liмit	
	9.2	Measurement Procedure	
	9.3	TEST CONFIGURATION	
	9.4	The results of Occupied Bandwidth	31
10	Α	NTENNA REQUIREMENT	32
11	Α	PPENDIX A: TEST RESULTS	33

Revision History

Report No.	Version	Description	Issued Date
190801865SHA-001	Rev. 01	Initial issue of report	September 3, 2019

Measurement result summary

TEST ITEM	FCC REFERANCE	IC REFERANCE	RESULT
Minimum 6dB Bandwidth	15.247(a)(2)	RSS-247 Issue 2 Clause 5.2	Pass
Maximum conducted output power and e.i.r.p.	15.247(b)(3)	RSS-247 Issue 2 Clause 5.4	Pass
Power spectrum density	15.247(e)	RSS-247 Issue 2 Clause 5.2	Pass
Emission outside the frequency band	15.247(d)	RSS-247 Issue 2 Clause 5.5	Pass
Radiated Emissions in restricted frequency bands	15.247(d), 15.205&15.209	RSS-Gen Issue 5 Clause 8.9&8.10	Pass
Power line conducted emission	15.207(a)	RSS-Gen Issue 5 Clause 8.8	Pass
Occupied bandwidth	-	RSS-Gen Issue 5 Clause 6.6	Tested
Antenna requirement	15.203	-	Pass

Notes: 1: NA =Not Applicable

Intertek Total Quality. Assured. TEST REPORT

1 GENERAL INFORMATION

1.1 Description of Equipment Under Test (EUT)

Product name:	Personal handheld facial massager
Type/Model:	Luna 3 Plus
Description of EUT:	The EUT is Personal handheld facial massager, which supports Bluetooth function. we test it and list the worst testing results in this report.
Rating:	3.7V DC
Category of EUT:	Class B
EUT type:	🔀 Table top 🔲 Floor standing
Software Version:	/
Hardware Version:	/
Sample received date:	2019.7.18
Date of test:	2019.7.20~2019.8.15

1.2 Technical Specification

Frequency Range:	2402MHz ~ 2480MHz
Support Standards:	IEEE 802.15.1
Type of Modulation:	GFSK
Channel Number:	40
Channel Separation:	2MHz
Antenna Information:	OdBi, PCB antenna

1.3 Description of Test Facility

Name:	Intertek Testing Services Shanghai	
Address:	Building 86, No. 1198 Qinzhou Road(North), Shanghai 200233, P.R. China	
Telephone:	86 21 61278200	
Telefax:	86 21 54262353	

The test facility is recognized,	CNAS Accreditation Lab Registration No. CNAS L0139
certified, or accredited by these organizations:	FCC Accredited Lab Designation Number: CN1175
organizations.	IC Registration Lab Registration code No.: 2042B-1
	VCCI Registration Lab Registration No.: R-4243, G-845, C-4723, T-2252
	NVLAP Accreditation Lab NVLAP LAB CODE: 200849-0
	A2LA Accreditation Lab Certificate Number: 3309.02

intertek Total Quality. Assured. TEST REPORT

2 TEST SPECIFICATIONS

2.1 Standards or specification

47CFR Part 15 (2017) ANSI C63.10 (2013) RSS-247 Issue 2 (February 2017) RSS-Gen Issue 5 (April 2018) KDB 558074 (v05)

2.2 Mode of operation during the test

Frequency Band (MHz)			2402 ~ 2480				
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

The lowest, middle and highest channel were tested as representatives.

Data rate VS Power:

The test setting software is offered by the manufactory. The pre-scan for the conducted power with all rates in each modulation and bands was used, and the worst case was found and used in all test cases.

Test software and Power Setting parameter					
Test Software		/			
Working Mode	BLE				
Test Channel	2402MHz	2440MHz	2480MHz		
Power Setting	Default	Default	Default		

While testing transmitting mode of EUT, the internal modulation and continuously transmission was applied.

Radiated test mode: EUT transmitted signal with BT antenna;

Conducted test mode: EUT transmitted signal from BT RF port connected to SPA directly;

2.3 Test software list

Test Items	ems Software Manufacturer		Version	
Conducted emission	ESxS-K1	R&S	V2.1.0	
Radiated emission	ES-K1	R&S	V1.71	

2.4 Test peripherals list

Item No.	Name	Brand and Model	Description
1	Laptop computer	HP, 5480	-
2	Adapter	GAT-0501000U	Input: AC100-240V Output: DC5.0V 1000mA

2.5 Test environment condition:

Test items	Temperature	Humidity	
Minimum 6dB Bandwidth			
Maximum conducted output power and e.i.r.p.			
Power spectrum density	23°C	52% RH	
Emission outside the frequency band			
Occupied bandwidth			
Radiated Emissions in restricted frequency bands	22°C	55% RH	
Power line conducted emission	21°C	52% RH	

TTRF15.247-02_V1 © 2018 Intertek

TEST REPORT

2.6 Instrument list

<mark>Cond</mark>	ucted Emission				
Used	Equipment	Manufacturer	Туре	Internal no.	Due date
	Test Receiver	R&S	ESCS 30	EC 2107	2020-07-14
◄	A.M.N.	R&S	ESH2-Z5	EC 3119	2019-11-29
◄	Shielded room	Zhongyu	-	EC 2838	2020-01-13
	ated Emission				
<mark>Used</mark>	Equipment	Manufacturer	Туре	Internal no.	Due date
	Test Receiver	R&S	ESIB 26	EC 3045	2019-09-12
	Bilog Antenna	TESEQ	CBL 6112D	EC 4206	2019-12-10
	Pre-amplifier	R&S	AFS42-00101800-25-S-42	EC5262	2020-06-11
	Horn antenna	R&S	HF 906	EC 3049	2019-11-16
	Horn antenna	ETS	3117	EC 4792-1	2020-02-25
>	Horn antenna	ΤΟΥΟ	HAP18-26W	EC 4792-3	2020-07-09
>	Semi-anechoic chamber	Albatross project	-	EC 3048	2019-09-08
<mark>RF te</mark>	st				
<mark>Used</mark>	Equipment	Manufacturer	Туре	Internal no.	Due date
	PXA Signal Analyzer	Keysight	N9030A	EC 5338	2020-03-04
	Power sensor	Agilent	U2021XA	EC 5338-1	2020-03-04
	Vector Signal Generator	Agilent	N5182B	EC 5175	2020-03-04
>	MXG Analog Signal Generator	Agilent	N5181A	EC 5338-2	2020-03-04
	Test Receiver	R&S	ESCI 7	EC 4501	2019-09-12
<mark>Addit</mark>	tional instrument				
<mark>Used</mark>	Equipment	Manufacturer	Туре	Internal no.	Due date
	Therom-Hygrograph	ZJ1-2A	S.M.I.F.	EC 3325	2020-04-07
	Pressure meter	YM3	Shanghai Mengde	EW 1739	2020-07-01

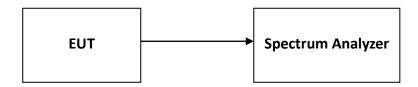
2.7 Measurement uncertainty

The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Measurement uncertainty
Maximum peak output power	± 0.74 dB
Radiated Emissions in restricted frequency bands below 1GHz	\pm 4.90dB
Radiated Emissions in restricted frequency bands above 1GHz	± 5.02dB
Emission outside the frequency band	± 2.89dB
Power line conducted emission	± 3.19dB

3 Minimum 6dB bandwidth

Test result: Pass


3.1 Limit

For systems using digital modulation techniques that may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz and 5725 - 5850 MHz bands, the minimum 6 dB bandwidth shall be at least 500 kHz.

3.2 Measurement Procedure

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \ge 3 × RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

3.3 Test Configuration

3.4 Test Results of Minimum 6dB bandwidth

Please refer to Appendix A

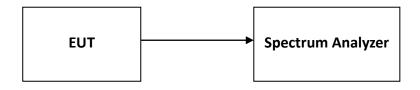
Total Quality. Assured.

4 Maximum conducted output power and e.i.r.p.

Test result: Pass

4.1 Limit

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 W. (The e.i.r.p. shall not exceed 4 W)


If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. If there have a beam forming type, the limit should be the minimum of 30dBm and 30+ (6 –antenna gain-beam forming gain).

4.2 Measurement Procedure

Set the RBW \geq DTS bandwidth. Set VBW \geq 3 × RBW. Set span \geq 3 x RBW Sweep time = auto couple. Detector = peak. Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

4.3 Test Configuration

4.4 Test Results of Maximum conducted output power

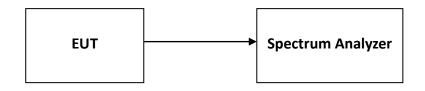
Please refer to Appendix A

5 Power spectrum density

Test result: Pass

5.1 Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.


If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. If there have a beam forming type, the limit should be the minimum of 8dBm/MHz and 8+ (6 –antenna gain-beam forming gain).

5.2 Measurement Procedure

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 × RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

5.3 Test Configuration

5.4 Test Results of Power spectrum density

Please refer to Appendix A

Intertek Total Quality. Assured. TEST REPORT

6 Emission outside the frequency band

Test result: Pass

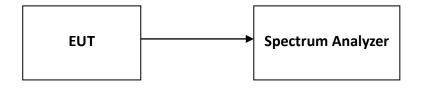
6.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

6.2 Measurement Procedure

Reference level measurement

Establish a reference level by using the following procedure: Set instrument center frequency to DTS channel center frequency. Set the span to \geq 1.5 times the DTS bandwidth. Set the RBW = 100 kHz. Set the VBW \geq 3 x RBW. Detector = peak. Sweep time = auto couple. Trace mode = max hold. Allow trace to fully stabilize. Use the peak marker function to determine the maximum PSD level.


Emission level measurement

Set the center frequency and span to encompass frequency range to be measured. Set the RBW = 100 kHz. Set the VBW ≥ 3 x RBW. Detector = peak. Sweep time = auto couple. Trace mode = max hold. Allow trace to fully stabilize. Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in 11.1 a) or 11.1 b). Report the three highest emissions relative to the limit.

6.3 Test Configuration

6.4 The results of Emission outside the frequency band

Please refer to Appendix A

7 Radiated Emissions in restricted frequency bands

Test result: Pass

7.1 Limit

The radiated emissions which fall in the restricted bands, must also comply with the radiated emission limits specified showed as below:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

7.2 Measurement Procedure

For Radiated emission below 30MHz:

- a) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) Both X and Y axes of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz:

The EUT was placed on the top of a rotating table 0.8 meters (for $30MHz \sim 1GHz$) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.

The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.

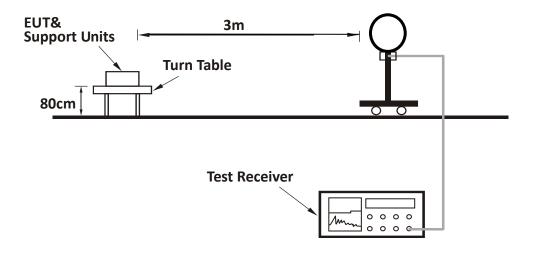
The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

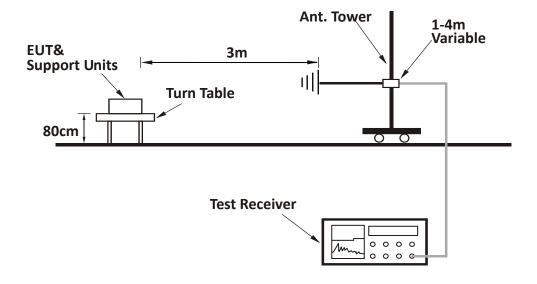
The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.

The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.

The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is \geq 1/T (Duty cycle < 98%) or 3 x RBW (Duty cycle \geq 98%) for Average detection (AV) at frequency above 1GHz.

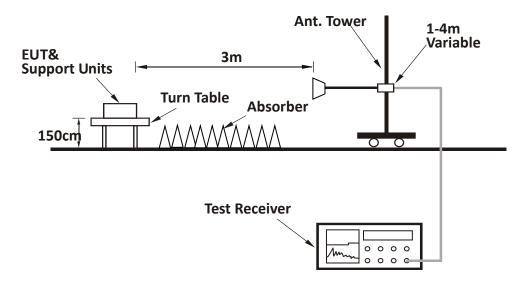

All modes of operation were investigated and the worst-case emissions are reported

Report No.: 190801865SHA-001



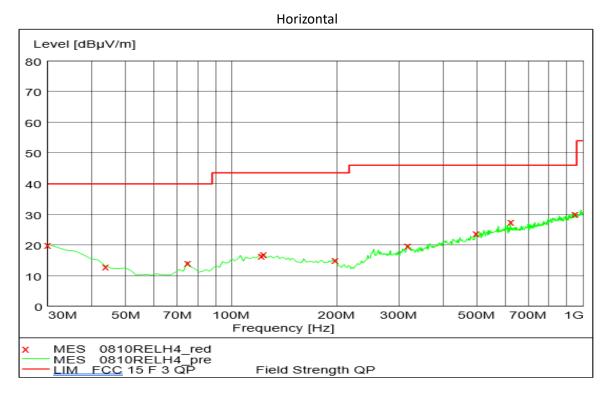
7.3 Test Configuration

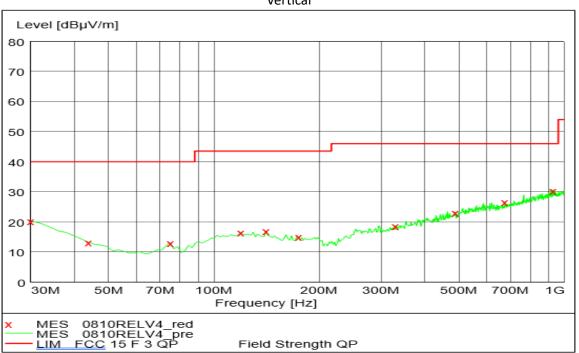
For Radiated emission below 30MHz:



For Radiated emission 30MHz to 1GHz:

For Radiated emission above 1GHz:




Total Quality. Assured. TEST REPORT

7.4 Test Results of Radiated Emissions

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

The worst waveform from 30MHz to 1000MHz is listed as below:

Vertical

TTRF15.247-02_V1 © 2018 Intertek

TEST REPORT

Test data below 1GHz

Antenna	Frequency (MHz)	Corrected Reading (dBuV/m)	Correct Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Detector
н	30.00	20.30	18.80	40.00	19.70	РК
н	74.71	14.50	7.60	40.00	25.50	РК
н	315.75	20.00	15.40	46.00	26.00	РК
н	494.59	24.00	19.60	46.00	22.00	РК
н	620.94	27.80	21.10	46.00	18.20	РК
Н	951.40	30.40	24.20	46.00	15.60	РК
V	30.00	20.30	18.80	40.00	19.70	РК
V	43.61	13.20	11.70	40.00	26.80	РК
V	140.80	17.00	12.50	43.50	26.50	РК
V	486.81	23.20	19.40	46.00	22.80	РК
V	675.37	26.60	21.40	46.00	19.40	РК
V	924.19	30.60	23.90	46.00	15.40	РК

Test result above 1GHz:

The emission was conducted from 1GHz to 25GHz

СН	Antenna	Frequency (MHz)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	Н	2390.00	49.60	74.00	24.40	РК
	Н	2390.00	43.70	54.00	10.30	AV
	Н	4804.00	47.10	74.00	26.90	РК
L	V	2390.00	49.30	74.00	24.70	РК
	V	2390.00	43.80	54.00	10.20	AV
	V	4804.00	46.80	74.00	27.20	РК
N.4	н	4880.00	46.30	74.00	27.70	РК
M	V	4880.00	46.60	74.00	27.40	РК
	Н	4960.00	45.70	74.00	28.30	РК
	Н	2483.50	51.80	74.00	22.20	РК
	Н	2483.50	44.90	54.00	9.10	AV
Н	V	4960.00	45.80	54.00	8.20	РК
	V	2483.50	51.50	74.00	22.50	РК
	V	2483.50	45.30	54.00	8.70	AV

TTRF15.247-02_V1 © 2018 Intertek

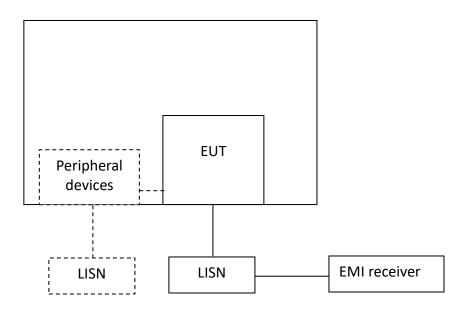
TEST REPORT

- Remark: 1. Correct Factor = Antenna Factor + Cable Loss (- Amplifier, for higher than 1GHz), the value was added to Original Receiver Reading by the software automatically.
 - 2. Corrected Reading = Original Receiver Reading + Correct Factor
 - 3. Margin = Limit Corrected Reading
 - 4. If the PK Corrected Reading is lower than AV limit, the AV test can be elided.

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,

Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10.00dBuV, Limit = 40.00dBuV/m. Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m; Corrected Reading = 10dBuV + 0.20dB/m = 10.20dBuV/m; Margin = 40.00dBuV/m - 10.20dBuV/m = 29.80dB.

TEST REPORT


8 Power line conducted emission

Test result: Pass

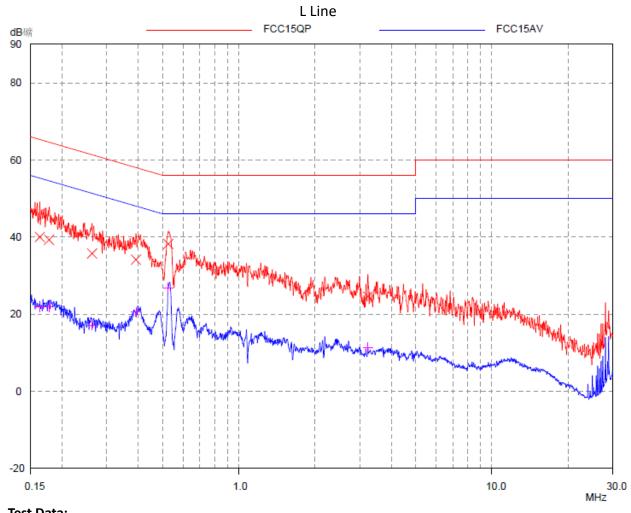
8.1 Limit

Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	QP	AV		
0.15-0.5	66 to 56*	56 to 46 *		
0.5-5	56	46		
5-30	60	50		
* Decreases with the logarithm of the frequency.				

8.2 Test Configuration

8.3 Measurement Procedure

Measured levels of ac power-line conducted emission shall be the emission voltages from the voltage probe, where permitted, or across the 50 Ω LISN port (to which the EUT is connected), where permitted, terminated into a 50 Ω measuring instrument. All emission voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord by the use of mating plugs and receptacles on the LISN, if used. Equipment shall be tested with power cords that are normally supplied or recommended by the manufacturer and that have electrical and shielding characteristics that are the same as those cords normally supplied or recommended by the manufacturer. For those measurements using a LISN, the 50 Ω measuring port is terminated by a measuring instrument having 50 Ω input impedance. All other ports are terminated in 50 Ω loads.

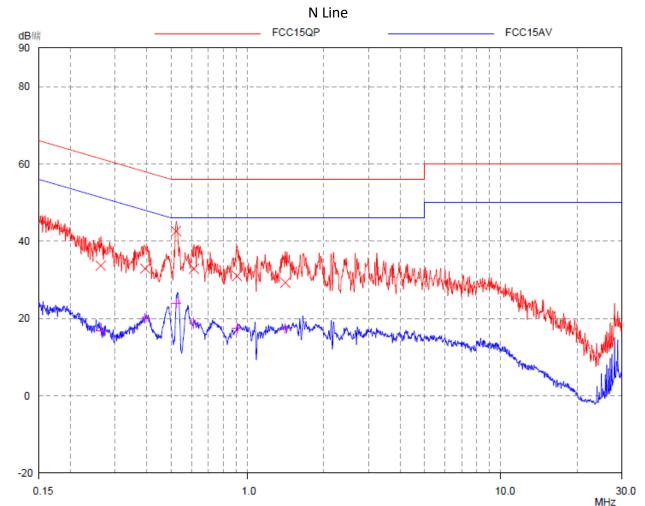

Tabletop devices shall be placed on a platform of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The vertical conducting plane or wall of an RF-shielded (screened) room shall be located 40 cm to the rear of the EUT. Floor-standing devices shall be placed either directly on the reference ground-plane or on insulating material as described in ANSI C63.4. All other surfaces of tabletop or floor-standing EUTs shall be at least 80 cm from any other grounded conducting surface, including the case or cases of one or more LISNs.

The bandwidth of the test receiver is set at 9 kHz.

intertek Total Quality. Assured. **TEST REPORT**

8.4 Test Results of Power line conducted emission

Test Curve:


Test Data:

Frequency	Frequency		Quasi-peak		Average		
(MHz)	level dB(μV)	Limit dB(µV)	Margin (dB)	level dB(μV)	limit dB(μV)	Margin (dB)	
0.16	40.03	65.30	25.27	21.82	55.30	33.48	
0.18	39.31	64.61	25.30	21.87	54.61	32.74	
0.26	35.75	61.36	25.61	17.12	51.36	34.24	
0.39	34.15	58.04	23.89	20.48	48.04	27.56	
0.53	38.23	56.00	17.77	26.76	46.00	19.24	
3.23	24.62	56.00	31.38	11.40	46.00	34.60	

Total Quality. Assured.

intertek

Test Curve:

Test Data:

Fraguancy		Quasi-peak		Average		
Frequency (MHz)	level dB(μV)	Limit dB(µV)	Margin (dB)	level dB(μV)	limit dB(μV)	Margin (dB)
0.26	33.67	61.33	27.66	16.88	51.33	34.45
0.39	32.93	57.98	25.05	20.04	47.98	27.94
0.52	42.59	56.00	13.41	23.97	46.00	22.03
0.61	32.89	56.00	23.11	18.83	46.00	27.17
0.91	30.97	56.00	25.03	17.50	46.00	28.50
1.41	29.28	56.00	26.72	17.44	46.00	28.56

Remark: 1. Correct Factor = LISN Factor + Cable Loss, the value was added to Original Receiver Reading by the software automatically.

- 2. Corrected Reading = Original Receiver Reading + Correct Factor
- 3. Margin = Limit Corrected Reading
- 4. If the PK Corrected Reading is lower than AV limit, the AV test can be elided.

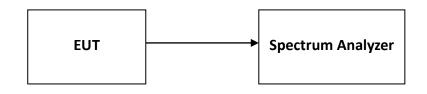
TEST REPORT

9 Occupied Bandwidth

Test result: Tested

9.1 Limit

None


9.2 Measurement Procedure

The occupied bandwidth per RSS-Gen was measured using the Spectrum Analyzer.

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3x RBW.

9.3 Test Configuration

9.4 The results of Occupied Bandwidth

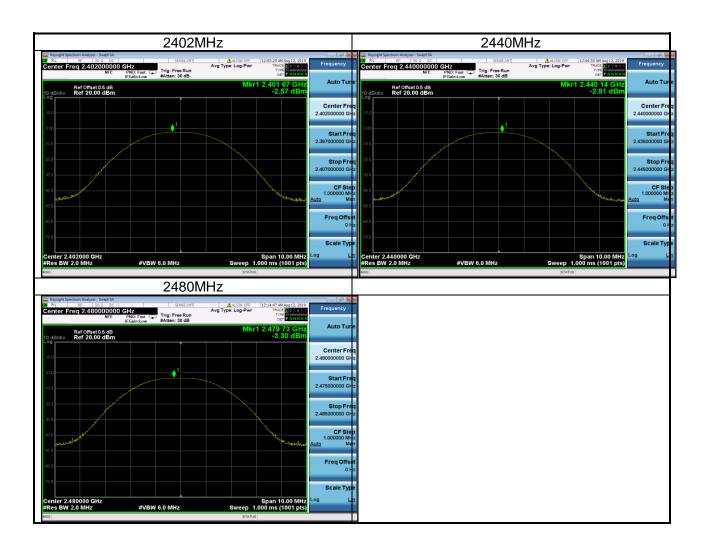
Please refer to Appendix A

10 Antenna requirement

Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Result:


EUT uses permanently internal PCB antenna to the intentional radiator, so it can comply with the provisions of this section.

Total Quality. Assured.

11 Appendix A: Test results

1、 RF Output Power

BLE Maximum Output Power					
Test Frequency (MHz) Power (dBm) Result					
2402	-2.57	Pass			
2440	-2.81	Pass			
2480	-3.30	Pass			

Total Quality. Assured.

2、 Power Spectral Density

BLE Peak Power Spectral Density					
Test Frequency (MHz) PSD (dBm/3kHz) Result					
2402	-2.94	Pass			
2440	-3.04	Pass			
2480	-3.54	Pass			

Intertek Total Quality. Assured. TEST REPORT

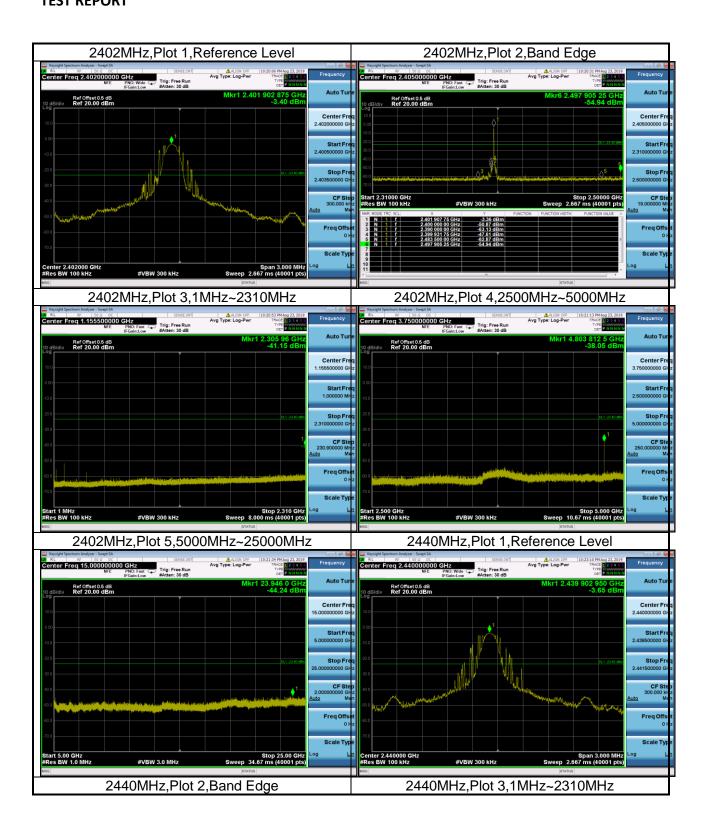
3、6dB BandWidth

BLE Occupied 6dB Bandwidth						
Test Frequency (MHz)	Occupied Bandwidth (kHz)	Min Limit (kHz)	Result			
2402	771.4	500	Pass			
2440	728.3	500	Pass			
2480	737.4	500	Pass			

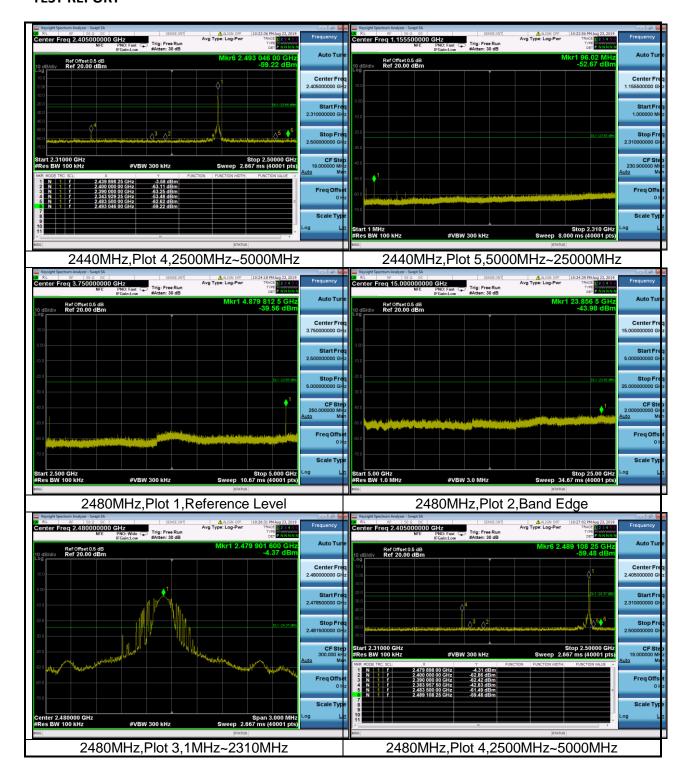
Intertek Total Quality. Assured. TEST REPORT

4、99% BandWidth

	BLE 99% Occupied Bandwidth	
Test Frequency (MHz)	99% Occupied Bandwidth (MHz)	Result
2402	1.0414	Pass
2440	1.0543	Pass
2480	1.0578	Pass



Total Quality. Assured. TEST REPORT


5、 Transmitter Spurious Emission

	BLE Transmitter Spurious Emission							
Test Frequency (MHz)	Test Range	Power (dBm)	Result					
2402	1MHz~2310MHz	-41.15	Pass					
2402	2500MHz~5000MHz	-38.05	Pass					
2402	5000MHz~25000MHz	-44.24	Pass					
2402	Band Edge	-47.61	Pass					
2402	Reference Level	-3.40	Pass					
2440	1MHz~2310MHz	-52.67	Pass					
2440	2500MHz~5000MHz	-39.56	Pass					
2440	5000MHz~25000MHz	-43.98	Pass					
2440	Band Edge	-53.48	Pass					
2440	Reference Level	-3.65	Pass					
2480	1MHz~2310MHz	-47.52	Pass					
2480	2500MHz~5000MHz	-41.84	Pass					
2480	5000MHz~25000MHz	-44.05	Pass					
2480	Band Edge	-42.83	Pass					
2480	Reference Level	-4.37	Pass					

intertek Total Quality. Assured. TEST REPORT

TEST REPORT

TEST REPORT

Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω DC enter Freq 1.155500000 GF	SENSE:INT	Aug Type: Log-Pwr	10:27:23 PM Aug 23, 2019 TRACE 2 3 4 5 6	Frequency	Cepter Fred 3	50 Ω DC .750000000 G	147	SENSE:INT	ALIGN OF Avg Type: Log-Pv	VE TRAC	M Aug 23, 2019 E 1 2 3 4 5 6	Frequenc
NFE P	NO: Fast Trig: Free Run Gain:Low #Atten: 30 dB		DET	Auto Tun		NFE	PNO: East	rig: Free Run Atten: 30 dB		DE	PNNNN	Auto
Ref Offset 0.5 dB dB/div Ref 20.00 dBm		N	47.52 dBm/	AutoTun	Ref	0ffset 0.5 dB 20.00 dBm			Mkr1	4.959 81: -41.	2 5 GHz 84 dBm	Adto
3				Center Fre 1.155500000 GH				Ĭ				Center 3.75000000
00				1.133300000 GP	0.00							3.73000000
				Start Fre 1.000000 MH	-10.0							Start 2.50000000
.0				Stop Fre	-20.0							Stop
			DL1 -24.37 dBm	2.310000000 GH							0L1 -24.37 dBn	5.00000000
1.0				CF Ste 230.900000 MH	-40.0							CF 250.00000
				Auto Ma	-50.0							Auto
	() year of high states of the second section of the state of the second section of the section	in the second	a de la contra de la contra	Freq Offse	t .60.0 	and all firmula in provide a life	le andre prices pri		a discharge generative das sy die te	and the second		Freq
				Scale Typ	-70.0	and the second						Scale
				scale Typ								
art 1 MHz			Stop 2.310 GHz	Log L	Start 2.500 GH	z				Stop 5	.000 GHz	LUY
art 1 MHz tes BW 100 kHz	#VBW 300 kHz	Sweep 8.0	Stop 2.310 GHz 000 ms (40001 pts)	Log L	Start 2.500 GH #Res BW 100 F	z KHz	#VBW 30	0 kHz		stop 5 10.67 ms (4	.000 GHz 0001 pts)	Log
tes BW 100 kHz		STATUS	000 ms (40001 pts) 1		Start 2.500 GH #Res BW 100 H	z (Hz	#VBW 30	00 kHz		10.67 ms (4	.000 GHz 0001 pts)	Log
tes BW 100 kHz 2480MH2 Keysight Spectrum Analyzer - Swept SA	z,Plot 5,500	oMHz~25	000 ms (40001 pts) 50000MH2		Start 2.500 GH #Res BW 100 H	z KHz	#VBW 30	00 kHz		10.67 ms (4	.000 GHz 0001 pts)	Loy
Res BW 1000 kHz 2480MHz Krysight Spectrum Analyzer - Swept SA Rt BF BF BF	z,Plot 5,500	oMHz~25	000 ms (40001 pts) 1	Z	Start 2.500 GH #Res BW 100 H	z Hz	#VBW 30	00 KHz		10.67 ms (4	.000 GHz .0001 pts)	
Republic Set 000 KHz 2480MHz Republic Set 000000000 Concernation Inter Freq 15.00000000 Concernation Ref Offset 0.5 dB	z,Plot 5,500	OMHZ~2	000 ms (40001 pts) 50000MH: 10:26:07 PM Aug 23, 2019 TRACE 12:14 4 51	Z	#Res BW 100 H	z Hz	#VBW 30	IO KHZ		10.67 ms (4	.000 GHz 0001 pts)	
2480 2480 2480 2480 2480 2480 260 2	z,Plot 5,500	OMHZ~2	000 ms (40001 pts) 50000MH2 10:28:07 PM Aug 23, 2019 THRACE 12 3 4000 TYPE 0 T 1 23,627 0 GHz	Z Frequency Auto Tur Center Fre	#Res BW 100 b	z Hz	#VBW 30	00 kHz		10.67 ms (4	.000 GHz 0001 pts)	
Republic Set 00 KHz 2480MHz Republic Set 00 C Republic Set 00 C Republic Set 00 C	z,Plot 5,500	OMHZ~2	000 ms (40001 pts) 50000MH2 10:28:07 PM Aug 23, 2019 THRACE 12 3 4000 TYPE 0 T 1 23,627 0 GHz	Z Frequency Auto Tur	#Res BW 100 b	z (Hz	#VBW 30	10 kHz		10.67 ms (4	.000 GHz 0001 pts)	
Republic Set 00 KHz 2480MHz Republic Set 00 C Republic Set 00 C Republic Set 00 C	z,Plot 5,500	OMHZ~2	000 ms (40001 pts) 50000MH2 10:28:07 PM Aug 23, 2019 THRACE 12 3 4000 TYPE 0 T 1 23,627 0 GHz	Z Frequency Auto Tur Center Fre 15.00000000 GP	#Res BW 100 H	z hz	#VBW 30	10 kHz		10.67 ms (4	.000 GHz 0001 pts)	
Republic Set 00 KHz 2480MHz Republic Set 00 C Republic Set 00 C Republic Set 00 C	z,Plot 5,500	OMHZ~2	000 ms (40001 pts) 50000MH2 10:28:07 PM Aug 23, 2019 THRACE 12 3 4000 TYPE 0 T 1 23,627 0 GHz	Z Frequency Auto Tur Center Fre 15.00000000 GH	#Res BW 100 H	X HZ	#VBW 30	10 kHz		10.67 ms (4	.000 GHz 0001 pts)	
Republic Set 00 KHz 2480MHz Republic Set 00 C Republic Set 00 C Republic Set 00 C	z,Plot 5,500	OMHZ~2	000 ms (40001 pts) 50000MH2 10:28:07 PM Aug 23, 2019 THRACE 12 3 4000 TYPE 0 T 1 23,627 0 GHz	Z Frequency Auto Tur Center Fre 15.00000000 GP	#Res BW 100 H	z tr	#VBW 30	10 kHz		10.67 ms (4	.000 GHz .0001 pts)	
Republic Set 00 KHz 2480MHz Republic Set 00 C Republic Set 00 C Republic Set 00 C	z,Plot 5,500	OMHZ~2	000 ms (40001 pts)	Z Erequency Auto Tur Center Fre 15.00000000 G+ Start Fre 5.00000000 G+ Start Fre 5.00000000 G+ Stop Fre 25.00000000 G+	#Res BW 100 H	z itz	#VBW 30	10 kHz		10.67 ms (4	.000 GHz 0001 pts)	
Republic Set 00 KHz 2480MHz Republic Set 00 C Republic Set 00 C Republic Set 00 C	z,Plot 5,500	OMHZ~2	000 ms (40001 pts)	Z Frequency Auto Tur Scenter Fre 15.00000000 GP Start Fre 5.00000000 GP	#Res BW 100 H	z Hz	#VBW 30	10 kHz		10.67 ms (4	.000 GHz 0001 pts)	
Republic Set 00 KHz 2480MHz Republic Set 00 C Republic Set 00 C Republic Set 00 C	z,Plot 5,500	OMHZ~2	000 ms (40001 pts)	Z Frequency Auto Tur Center Fre 15.00000000 G- Start Fre 5.00000000 G- Stop Fre 25.00000000 G- Auto M FreqOffse	#Res BW 100 H	z i i i i i i i i i i i i i i i i i i i	#VBW 30	10 kHz		10.67 ms (4	.000 GHz 0001 pts)	
Republic Set 00 KHz 2480MHz Republic Set 00 C Republic Set 00 C Republic Set 00 C	z,Plot 5,500	OMHZ~2	000 ms (40001 pts)	Z Frequency Auto Tur Center Fre 15.00000000 GH Start Fre 5.00000000 GH Stop Fre 2.00000000 GH Auto Ma	#Res BW 100 H	z Hz	#VBW 30	10 kHz		10.67 ms (4	.000 GHz 0001 pts)	
Les BW 100 kHz 2480MHz 2480MHz Contract of the second seco	z,Plot 5,500	OMHZ~2	000 ms (40001 pts) 50000MHz 10.2807 MAg 23.2019 The grad state of the state of t	Z FreqUency FreqUency Auto Tur Center Fre 15.00000000 Gr Start Fre 5.00000000 Gr Stop Fre 25.00000000 Gr CF Ste 2.000000000 Gr Auto Me Freq Offse 0 F Scale Typ	#Res BW 100 b uso	z Hz	#VBW 30	10 kHz		10.67 ms (4	.000 GHz 0001 pts)	
Republic Set 00 KHz 2480MHz Republic Set 00 C Republic Set 00 C Republic Set 00 C	z,Plot 5,500	Avg Type: Log-Per	000 ms (40001 pts)	Z FreqUency FreqUency Auto Tur Center Fre 15.00000000 Gr Start Fre 5.00000000 Gr Stop Fre 25.00000000 Gr CF Ste 2.000000000 Gr Auto Me Freq Offse 0 F Scale Typ	#Res BW 100 b uso	z Hz	#VBW 30	10 kHz		10.67 ms (4	.000 GHz 0001 pts)	