

Report No	CHTEW19070142	Report verification :	
Project No	SHT1901045502EW		
FCC ID:	2AT6UM4-HD	Reported: CHTW18070142	
Applicant's name:	Suzhou PeakSonic Medical	Fechnology Co.Ltd.	
Address	2A, West Side of Building G4, Industrial Park, Qiandeng Tow City, Jiangsu Prov.	Kunshan Hi-Tech Medical Device n,Kunshan City,Suzhou	
Manufacturer	Suzhou Lischka Medtech Co.,	Ltd.	
Address	2F, Building G4, Kunshan Hi-T Park	ech Medical Device Industrial	
	No.999 Qujia Road, Qiandeng Prov.	Town, Kunshan City, Jiangsu	
Test item description::	Bladder Scanner		
Trade Mark:	PEAKSONIC		
Model/Type reference	M4-HD		
Listed Model(s)	M4,M3-HD,M3		
Standard:	FCC CFR Title 47 Part 15 Subpart C Section 15.247		
Date of receipt of test sample:	Apr.09, 2019		
Date of testing	Apr.09, 2019- Jul.25, 2019		
Date of issue	Jul.26, 2019		
Result	PASS		
Compiled by (position+printedname+signature):	File administrators Echo Wei	Echo Wei Jerry rhaa Homsty	
Supervised by (position+printedname+signature):	Project Engineer Jerry Zhao	Jerry shaa	
Approved by (position+printedname+signature):	RF Manager Hans Hu	Homsty	
Testing Laboratory Name: :	Shenzhen Huatongwei Intern	national Inspection Co., Ltd.	
Address:	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China		

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1.	Test Standards	3
1.2.	Report version	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	6
3.4.	EUT configuration	6
3.5.	Modifications	6
<u>4.</u>	TEST ENVIRONMENT	7
4.1.	Address of the test laboratory	7
4.2.	Test Facility	7
4.3.	Environmental conditions	8
4.4.	Statement of the measurement uncertainty	8
4.5.	Equipments Used during the Test	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	11
5.1.	Antenna requirement	11
5.2.	Conducted Emissions (AC Main)	12
5.3.	Conducted Peak Output Power	15
5.4.	Power Spectral Density	16
5.5.	6dB bandwidth	19
5.6.	Restricted band	22
5.7.	Band edge and Spurious Emissions (conducted)	25
5.8.	Spurious Emissions (radiated)	34
<u>6.</u>	TEST SETUP PHOTOS	41
<u>7.</u>	EXTERANAL AND INTERNAL PHOTOS	43

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10:2013: American National Standard forTesting Unlicensed Wireless Devices

<u>KDB 558074 D01 15.247 Meas Guidance v05:</u> Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of The FCC Rules

1.2. Report version

Revision No.	Date of issue	Description
N/A	2019-07-26	Original

2. TEST DESCRIPTION

Test Item	FCC Rule	Result	Test Engineer	
Antenna requirement	15.203/15.247(c)	PASS	Jiosheng Feng	
Line Conducted Emissions (AC Main)	15.207	PASS	Bruce Wong	
Conducted Peak Output Power	15.247(b)(3)	PASS	Bruce Wong	
Power Spectral Density	15.247(e)	PASS	Bruce Wong	
6dB Bandwidth	15.247(a)(2)	PASS	Bruce Wong	
Restricted band	15.247(d)/15.205	PASS	Bruce Wong	
Spurious Emissions	15.247(d)/15.209	PASS	Bruce Wong	

Note: The measurement uncertainty is not included in the test result.

3. <u>SUMMARY</u>

3.1. Client Information

Applicant:	Suzhou PeakSonic Medical Technology Co.Ltd.
Address:	2A, West Side of Building G4, Kunshan Hi-Tech Medical Device Industrial Park, Qiandeng Town,Kunshan City,Suzhou City,Jiangsu Prov.
Manufacturer:	Suzhou Lischka Medtech Co., Ltd.
Address:	2F, Building G4, Kunshan Hi-Tech Medical Device Industrial Park No.999 Qujia Road, Qiandeng Town, Kunshan City, Jiangsu Prov.

3.2. Product Description

Name of EUT:	Bladder Scanner	
Trade Mark:	-	
Model No.:	M4-HD	
Listed Model(s):	M4,M3-HD,M3	
Power supply:	DC 8.4V	
Adapter information: INPUT: 100-240Va.c., 50/60Hz, 0.5A max OUTPUT: 8.4Vd.c., 1.5A		
Hardware version:	-	
Software version:	-	
WIFI		
Supported type:	802.11b/802.11g	
Modulation:	DSSS for 802.11b OFDM for 802.11g	
Operation frequency:	r: 2412MHz~2462MHz	
Channel number:	11	
Channel separation:	5MHz	
Antenna type:	external antenna	
Antenna gain:	3dbi	

3.3. Operation state

Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

802.11b/g			
Channel	Frequency (MHz)		
01	2412		
02	2417		
06	2437		
10	2457		
11	2462		

> <u>Test mode</u>

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit (duty cycle>98%).

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated suprious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit(duty cycle>98%). The EUT in each of three orthogonal axis emissions had been tested ,but only the worst case (X axis) data Recorded in the report.

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

supplied by the manufacturer

0	 supplied by the lab

		Manufacturer:	/
0	7	Model No.:	/
		Manufacturer:	/
0	1	Model No.:	/

3.5. Modifications

No modifications were implemented to meet testing criteria.

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

4.2. Test Facility

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files.

IC-Registration No.:5377A

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No.: 5377A.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C	
Relative Humidity:	30~60 %	
Air Pressure:	950~1050mba	

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors in calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd. quality system according to ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Here after the best measurement capability for Shenzhen Huatongwei International Inspection Co., Ltd. is reported:

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.51 dB	(1)
Conducted spurious emissions 9kHz~40GHz	0.51 dB	(1)
Conducted Disturbance 150kHz~30MHz	3.02 dB	(1)
Radiated Emissions below 1GHz	4.90 dB	(1)
Radiated Emissions above 1GHz	4.96 dB	(1)
Occupied Bandwidth	70 Hz	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4.5. Equipments Used during the Test

•	Conducted Emission					
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Shielded Room	Albatross projects	N/A	N/A	2018/09/28	2023/09/27
•	EMI Test Receiver	R&S	ESCI	101247	2018/10/27	2019/10/26
•	Artificial Mains	SCHWARZBECK	NNLK 8121	573	2018/10/27	2019/10/26
•	Pulse Limiter	R&S	ESH3-Z2	100499	2018/10/27	2019/10/26
•	RF Connection Cable	HUBER+SUHNER	EF400	N/A	2018/11/15	2019/11/14
•	Test Software	R&S	ES-K1	N/A	N/A	N/A
0	Single Balanced Telecom Pair ISN	FCC	FCC-TLISN-T2-02	20371	2018/10/28	2019/10/27
0	Two Balanced Telecom Pairs ISN	FCC	FCC-TLISN-T4-02	20373	2018/10/28	2019/10/27
0	Four Balanced Telecom Pairs ISN	FCC	FCC-TLISN-T8-02	20375	2018/10/28	2019/10/27
0	V-Network	R&S	ESH3-Z6	100211	2018/10/27	2019/10/26
0	V-Network	R&S	ESH3-Z6	100210	2018/10/27	2019/10/26
0	2-Line V-Network	R&S	ESH3-Z5	100049	2018/10/27	2019/10/26
•	Radiated Emissi	on-6th test site		<u> </u>		<u> </u>
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	SAC-3m-02	N/A	2018/09/30	2021/09/29
•	EMI Test Receiver	R&S	ESCI	100900	2018/10/28	2019/10/27
•	Loop Antenna	R&S	HFH2-Z2	100020	2017/11/20	2020/11/19
•	Ultra-Broadband	SCHWARZBECK	VULB9163	546	2017/04/05	2020/04/04
•	Antenna Pre-Amplifer	SCHWARZBECK	BBV 9742	N/A	2018/11/15	2019/11/14
•	RF Connection Cable	HUBER+SUHNER	N/A	N/A	2018/09/28	2019/09/27
•	RF Connection Cable	HUBER+SUHNER	SUCOFLEX104	501184/4	2018/09/28	2019/09/27
•	Test Software	R&S	ES-K1	N/A	N/A	N/A
•	Turntable	Maturo Germany	TT2.0-1T	N/A	N/A	N/A
•	Antenna Mast	Maturo Germany	CAM-4.0-P-12	N/A	N/A	N/A
•	Radiated emissi	on-7th test site	I	I		I
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	SAC-3m-01	N/A	2018/09/30	2021/09/29
•	Spectrum Analyzer	R&S	FSP40	100597	2018/10/27	2019/10/26
•	Horn Antenna	SCHWARZBECK	9120D	1011	2017/03/27	2020/03/26
•	Pre-amplifier	BONN	BLWA0160-2M	1811887	2018/11/14	2019/11/13
٠	Pre-amplifier	CD	PAP-0102	12004	2018/11/14	2019/11/13
•	Broadband Pre- amplifier	SCHWARZBECK	BBV 9718	9718-248	2019/04/26	2020/04/25
•	RF Connection Cable	HUBER+SUHNER	RE-7-FH	N/A	2018/11/15	2019/11/14
•	RF Connection Cable	HUBER+SUHNER	RE-7-FL	N/A	2018/11/15	2019/11/14
•	Test Software	Audix	E3	N/A	N/A	N/A
•	Turntable	Maturo Germany	TT2.0-1T	N/A	N/A	N/A
•	Antenna Mast	Maturo Germany	CAM-4.0-P-12	N/A	N/A	N/A

Shenzhen Huatongwei International Inspection Co., Ltd.

Report Template Version: V01 (2018-01)

•	RF Conducted Method										
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)					
•	Signal and spectrum Analyzer	R&S	FSV40	100048	2018/10/28	2019/10/27					
•	Spectrum Analyzer	Agilent	N9020A	MY50510187	2018/09/29	2019/09/28					
•	OSP	R&S	OSP120	101317	N/A	N/A					
0	Radio communication tester	R&S	CMW500	137688-Lv	2018/09/29	2019/09/28					
0	Test software	Tonscend	JS1120-1(LTE)	N/A	N/A	N/A					
0	Test software	Tonscend	JS1120-2(WIFI)	N/A	N/A	N/A					
0	Test software	Tonscend	JS1120-3(WCDMA)	N/A	N/A	N/A					
0	Test software	Tonscend	JS1120-4(GSM)	N/A	N/A	N/A					

5. TEST CONDITIONS AND RESULTS

5.1. Antenna requirement <u>REQUIREMENT:</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

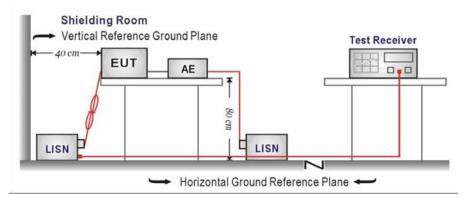
(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

TEST RESULTS

☑ Passed □ Not Applicable

The directional gain of the antenna less than 6 dBi, please refer to the below antenna photo.

5.2. Conducted Emissions (AC Main)


<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207:

	Limit (dBuV)			
Frequency range (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

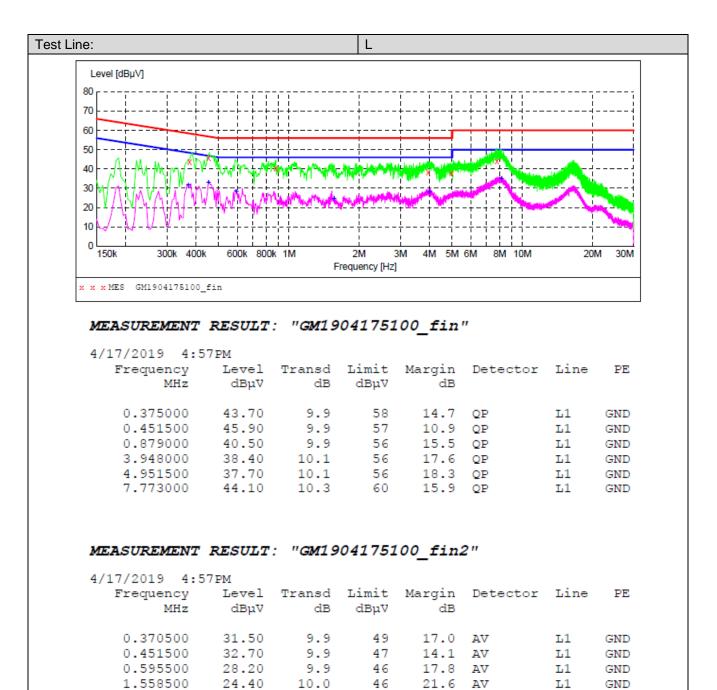
* Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:


Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable

Note:

- 1) Transd=Cable lose+ Pulse Limiter Factor + Artificial Mains Factor
- 2) Margin= Limit -Level

46

50

18.2 AV

15.2 AV

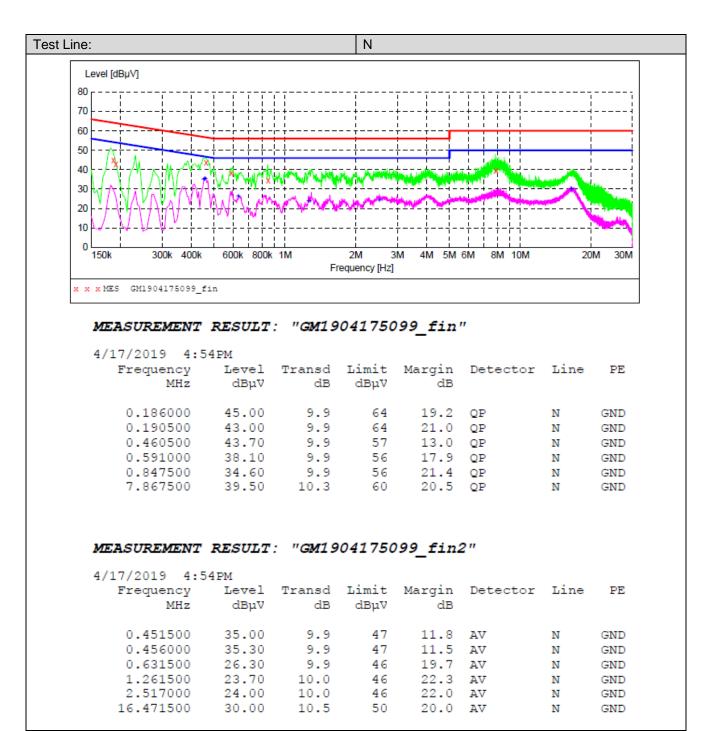
3.988500

8.133000

27.80

34.80

10.1


10.3

ь1

T.1

GND


GND

5.3. Conducted Peak Output Power LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3): 30dBm

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.10: 2013 and KDB 558074 D01 for compliance to FCC 47 CFR 15.247 requirements.
- 2. The maximum peak conducted output power may be measured using a broadband peak RF power meter.
- 3. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector
- 4. Record the measurement data.

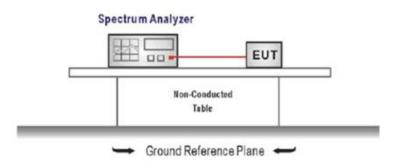
TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable

Туре	Channel	Peak Output power (dBm)	Limit (dBm)	Result	
	01	8.67			
802.11b	06	9.57	≤30.00	Pass	
	11	9.38			
	01	8.45			
802.11g	06	8.39	≤30.00	Pass	
	11	8.13			


5.4. Power Spectral Density

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e):

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST CONFIGURATION

TEST PROCEDURE

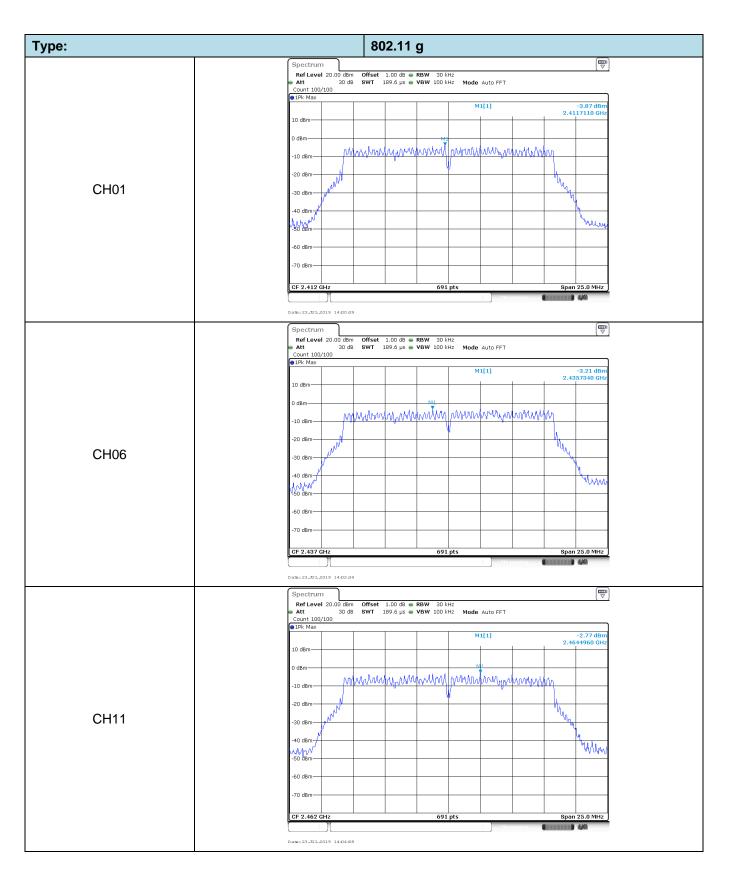
- 1. Connect the antenna port(s) to the spectrum analyzer input,
- Configure the spectrum analyzer as shown below: Center frequency=DTS channel center frequency Span =1.5 times the DTS bandwidth RBW = 3 kHz ≤ RBW ≤ 100 kHz, VBW ≥ 3 × RBW Sweep time = auto couple Detector = peak Trace mode = max hold
- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 4. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 5. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable

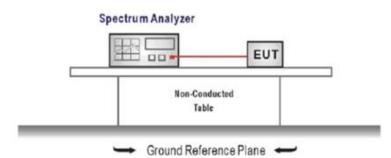

Туре	Channel	Power Spectral Density (dBm/30KHz)	Limit (dBm/3KHz)	Result
	01	-1.31		
802.11b	06	-0.35	≤8.00	Pass
	11	-0.65		
	01	-3.87		
802.11g	06	-3.21	≤8.00	Pass
	11	-2.77		

Test plot as follows:

Type: 802.11 b Spectrum Ref Level 20.00 dBm Att 30 dB Count 100/100 PIPk Max
 Offset
 1.00 dB
 ■ RBW
 30 kHz

 SWT
 126.4 μs
 ■ VBW
 100 kHz
 Mode
 Auto FFT
 -1.31 dE 2.4094990 G M1[1] LO dBm dBrr mynu Murupolum Junner Mupper Nho 10 dBm "Inhe -npm -20,08M-CH01 30 dBm -40 dBm 50 dBm 60 dBm 70 dBm 691 pts 16.0 MHz CF 2.412 GH Spa 1111 AX Date: 23_JUL_2019 13:54:0 Spectrum RefLevel 20.00 dBm Offset 1.00 dB ● RBW 30 kHz Att 30 dB SWT 126.4 µs ● VBW 100 kHz Mode Auto FFT Count 100/100 M1[1] -0.35 di 2.4344990 c 10 dBm M1 0 dBmyour open hundring with And when been when -10 dBm who -20.48m-CH06 -30 dBm 40 dBm 50 dBm -60 dBm 70 dBm-Span 16.0 MHz CF 2.437 GH 691 pts Date:23.JUL.2019 13:57:06 Spectrum
 RefLevel
 20.00
 dBm
 Offset
 1.00
 dB
 RBW
 30
 Hz

 Att
 30
 dB
 SWT
 126.4 µs
 SWW
 100
 Hz
 Mode
 Auto
 FFT
 Count 100/100 M1[1] -0.65 dB 2.4594990 GH 10 dBm-M 0 dBm why wend Manno mun Henne when 10 dBm Morry -20 dBm CH11 30 dBm 40 dBm -50 dBm -60 dBm 70 dBm 691 pts Span 16.0 MHz CF 2.462 G 110 AM Date:23.JUL.2019 13:58:36


5.5. 6dB bandwidth

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2):

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency =DTS channel center frequency Span=2 x DTS bandwidth RBW = 100 kHz, VBW ≥ 3 × RBW Sweep time= auto couple Detector = Peak Trace mode = max hold

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission, and record the pertinent measurements.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

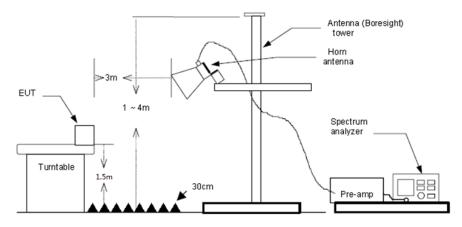
🛛 Passed	Not Applicable			
Туре	Channel	6dB Bandwidth (MHz)	Limit (kHz)	Result
	01	9.87		
802.11b	06	9.33	≥500	Pass
	11	9.99		
	01	16.53		
802.11g	06	16.53	≥500	Pass
	11	16.47		

Test plot as follows:

Shenzhen Huatongwei International Inspection Co., Ltd.

Гуре:	802.11 b
	Spectrum
	Att 30 dB SWT 75.9 μs VBW 300 kHz Mode Auto FFT Count 500/\$00 ●1Pk View
	10 dBm M2 M2[1] -3.73 dBm 2.4071400 GHz 3.02 dBm 2.4095400 GHz
	0 dBm 01 -2.979 dBm 01 -2.9799 dBm 01 -2.9799 dBm 01 -2.9799 dBm 01 -2.9799 dBm 01 -2.
	-20 dBm
CH01	-30 dBm
	-so delin
	-60 d8m
	-70 dBm
	Marker Type Ref Trc X-value Y-value Function Function Result
	M1 1 2.40714 GHz -3.73 dBm M2 1 2.40954 GHz 3.02 dBm O3 M1 1 9.87 MHz 0.12 dB
	Measuring
	Dabu:23.201.2019 13.63.87 Spectrum
	RefLevel 20.50 dBm Offset 1.00 dB ● RBW 100 kHz ● Att 30 dB SWT 75.9 μs ● VBW 300 kHz Mode Auto FFT
	Count 500/500
	10 dBm M2 M2[1]
	0 dBm 01 -1.975 dBm 11 -1.975 dBm 2.454 1.00 Gr2
	-20 dBm
CH06	
	-40 dam Man Andrew Andr
	-60 dBm
	-70 dBm- CF 2.437 GHz 1001 pts Span 30.0 MHz
	Marker Type Ref Trc X-value Y-value Function Function Result
	M1 1 2.43256 GHz -2.24 dBm M2 1 2.43451 GHz -4.02 dBm D3 M1 1 9.33 MHz -0.56 dB
	Date: 23.01.2019 136663
	Spectrum (
	Ref Level 20.50 dBm Offset 1.00 dB RBW 100 kHz Att 30 30 B WW 300 kHz Mode Auto FT Count 500/500
	●1Pk View M1[1] -2.80 dBm
	10 dBm 2:4569300 GHz 0 dBm 01:2:118 dBm 101:2:1595400 GHz
	0 dBm 01 -2.118 dBm
	-20 dBm
CH11	-30 dBm
	-50 dBm
	-60 dBm
	-// 0 clm CF 2.462 CHz 1001 pts Span 30.0 MHz
	Marker Type Ref Trc X-value Y-value Function Function Result
	M2 1 2.45954 GHz 3.88 dBm D3 M1 1 9.99 MHz -1.05 dB
	Date: 23.012.019 136923

Туре:	802.11 g
	Spectrum Image: Construction of the second se
	●JPk View 10 dBm
	-10 dBm
CH01	-50 d8m
	-70 d8m -70 d8m CF 2.412 GHz 1001 pts Span 30.0 MHz Marker -70 d8m -70 d8m Type Ref Trc X-value Function Function Function Result
	M1 1 2.40372 GHz -6.69 dBm M2 1 2.41074 GHz 1.02 dBm Data D3 M1 1 16.53 MHz 1.31 dB Max Data: 23.0UL2019 14.00 26 Max Max Max Max
	Spectrum Image: Constraint of the sector of t
CH06	-10 dBm
CHOO	-50 dBm
	CF 2.437 GHZ 1001 pts Span 30.0 MHz Marker
	Mic 1 2-1-0275 MHz 2-1-2.0001 0.3 M1 1 16.53 MHz -0.13 db Pate: 23_JUL2019 14.02.92 Measurement Main
	Spectrum (mm) Ref Level 20.50 dBm Offset 1.00 dB ● RBW 100 kHz (∀) Att 30 dB SWT 75.9 μs ● VBW 300 kHz Mode Auto FFT Count 500/500 (♥) (∀) (∀) (∀)
	M1[1] -4.57 dBm 10 dBm 2.4537200 GHz 0 dBm M2 0 dBm 1.63 dBm 0 dBm 2.4607100 GHz
	-20 dBm
CH11	1997 (k))
	-70 d8m Image: cross of the second seco
	M1 I 2.46372 kHz -4.57 dom M2 1 2.46071 GHz 1.63 dBm D3 M1 1 16.47 MHz 0.03 dB Date: 23.00L2019 14.03 d6 Max Max


5.6. Restricted band

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, Radiated Emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the Radiated Emissions limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

- 1) The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2) The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3) The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4) The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow: RBW=1MHz, VBW=3MHz PEAK detector for Peak value. RBW=1MHz, VBW=3MHz RMS detector for Average value.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable

Note:

1) Final level= Read level + Antenna Factor+ Cable Loss- Preamp Factor

Report No.: CHTEW19070142

2483.504

2483.504

2500.000

2500.000

15.77

15.40

15.45

14.82

1

2

3

4

Page: 23 of 50

Issued: 2019-07-26

802.1	1b			С	H01					
Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector		
1	2310.000	14.56	35.78	50.34	74.00	23.66	Horizontal	PK		
2	2310.000	14.45	35.78	50.23	54.00	3.77	Horizontal	AV		
3	2390.009	13.24	35.50	48.74	74.00	25.26	Horizontal	PK		
4	2390.009	12.49	35.50	47.99	54.00	6.01	Horizontal	AV		
Suspe	Suspected Data List									
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector		
1	2310.000	14.47	35.78	50.25	74.00	23.75	Vertical	PK		
2	2310.000	13.91	35.78	49.69	54.00	4.31	Vertical	AV		
3	2390.009	17.59	35.50	53.09	74.00	20.91	Vertical	PK		
4	2390.009	16.45	35.50	51.95	54.00	2.05	Vertical	AV		
802.1	1b			С	H11					
Susp	ected Data	List								
NO.	Freq. [MHz]	Reading [dBµ∨/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector		

NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Polarity	Detector
1	2483.504	16.07	35.31	51.38	74.00	22.62	Horizontal	PK
2	2483.504	15.58	35.31	50.89	54.00	3.11	Horizontal	AV
3	2500.000	13.87	35.28	49.15	54.00	4.85	Horizontal	AV
4	2500.000	14.93	35.28	50.21	74.00	23.79	Horizontal	PK
Suspe	ected Data	List						
10	Freq.	Reading	Factor	Level	Limit	Margin	Deleriti	Detector
NO.	[MHz]	[dBµ∨/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Polarity	Detector

51.08

50.71

50.73

50.10

74.00

54.00

74.00

54.00

22.92

3.29

23.27

3.90

Vertical

Vertical

Vertical

Vertical

PK

AV

PΚ

AV

35.31

35.31

35.28

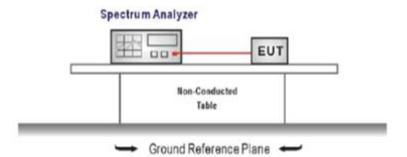
35.28

Page: 24 of 50

802.11g CH01										
Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector		
1	2310.000	14.97	35.78	50.75	74.00	23.25	Horizontal	PK		
2	2310.000	13.96	35.78	49.74	54.00	4.26	Horizontal	AV		
3	2390.009	15.05	35.50	50.55	74.00	23.45	Horizontal	PK		
4	2390.009	14.74	35.50	50.24	54.00	3.76	Horizontal	AV		

Suspe	Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµ∨/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector			
1	2310.000	16.38	35.78	52.16	74.00	21.84	Vertical	PK			
2	2310.000	15.69	35.78	51.47	54.00	2.53	Vertical	AV			
3	2390.009	14.63	35.50	50.13	54.00	3.87	Vertical	AV			
4	2390.009	15.81	35.50	51.31	74.00	22.69	Vertical	PK			

802.11g					CH11			
Suspected Data List								
NO.	Freq.	Reading	Factor	Level	Limit	Margin	Polarity	Detector
NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Folanty	Delector
1	2483.504	14.71	35.31	50.02	74.00	23.98	Horizontal	PK
2	2483.504	14.55	35.31	49.86	54.00	4.14	Horizontal	AV
3	2500.000	15.32	35.28	50.60	74.00	23.40	Horizontal	PK
4	2500.000	12.87	35.28	48.15	54.00	5.85	Horizontal	AV


Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµ∨/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector
1	2483.504	13.24	35.31	48.55	74.00	25.45	Vertical	PK
2	2483.504	12.29	35.31	47.60	54.00	6.40	Vertical	AV
3	2500.000	11.84	35.28	47.12	54.00	6.88	Vertical	AV
4	2500.000	13.45	35.28	48.73	74.00	25.27	Vertical	PK

5.7. Band edge and Spurious Emissions (conducted) <u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- Establish a reference level by using the following procedure Center frequency=DTS channel center frequency The span = 1.5 times the DTS bandwidth. RBW = 100 kHz, VBW ≥ 3 x RBW Detector = peak, Sweep time = auto couple, Trace mode = max hold

Allow trace to fully stabilize

Use the peak marker function to determine the maximum PSD level

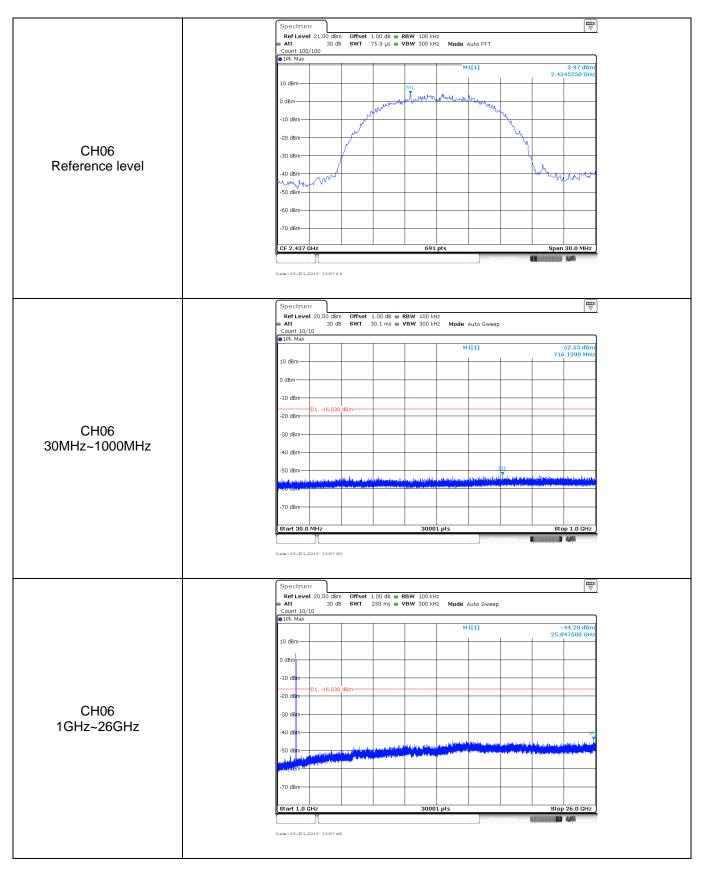
Note: the channel found to contain the maximum PSD level can be used to establish the reference level. Emission level measurement

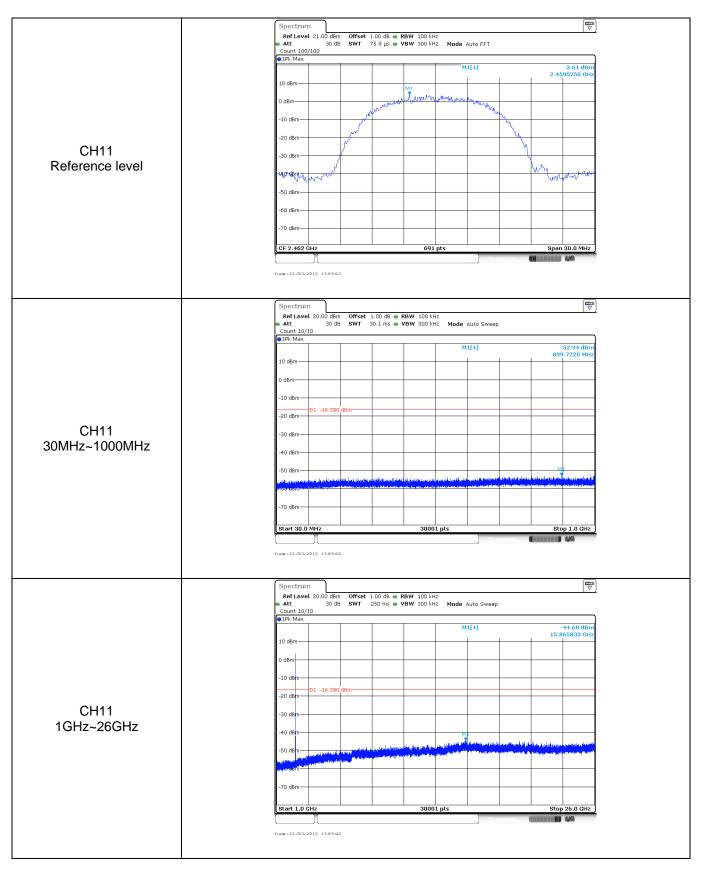
 Emission level measurement Set the center frequency and span to encompass frequency range to be measured RBW = 100 kHz, VBW ≥ 3 x RBW Detector = peak, Sweep time = auto couple, Trace mode = max hold Allow trace to fully stabilize Use the peak marker function to determine the maximum amplitude level.
 Place the radio in continuous transmit mode, allow the trace to stabilize view the transmit

- 4. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- Ensure that the amplitude of all unwanted emission outside of the authorized frequency band excluding restricted frequency bands) are attenuated by at least the minimum requirements specified (at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz). Report the three highest emission relative to the limit.

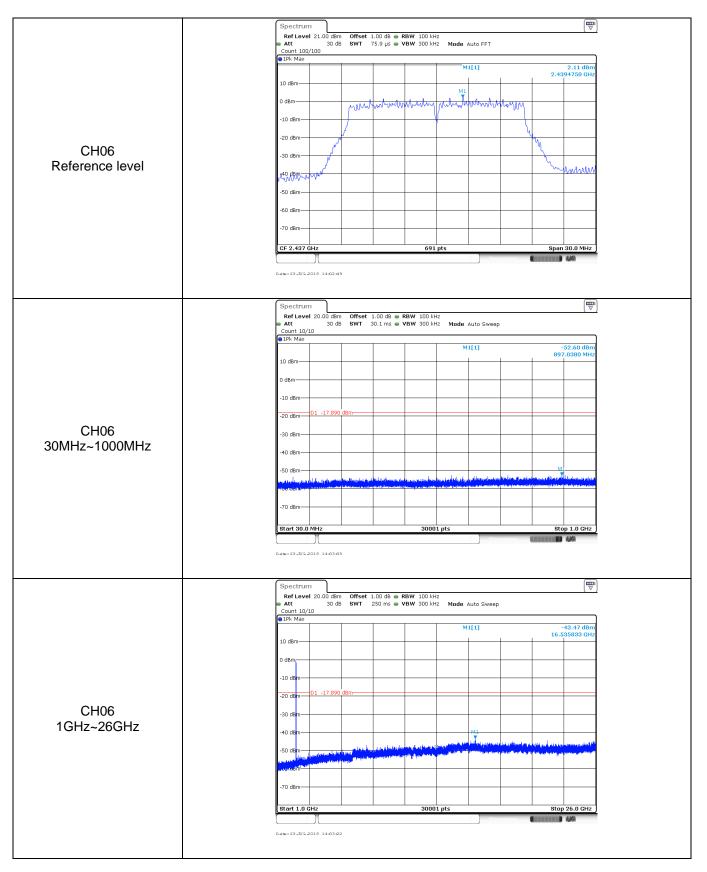
TEST MODE:

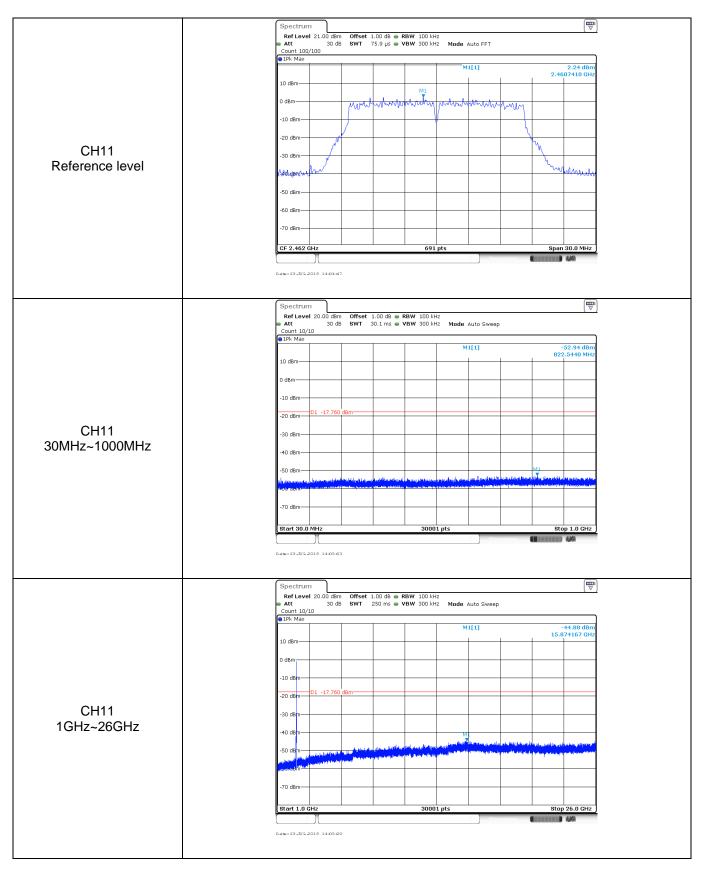
Please refer to the clause 3.3


TEST RESULTS


☑ Passed □ Not Applicable

Test Item:	Bandedge	Туре:	802.11 b
	Spectrum RefLevel 20.00 dBr Att 30 dl		
CH01	Count 300/300	X-value Y-value Function 2.4 GHz -4.5.49 dBm - 2.39 GHz -57.19 dBm - 2.39 GHz -43.73 dBm -	2.92 dBm 2.409600 GHz 415.99 dBm 2.400000 GHz 45.99 dBm 2.400000 GHz 45.99 dBm 2.40200 GHz 500 2.422 GHz Function Result
CH11	Ref Level 20.00 dBr	SWT 113.8 µs VBW 300 kHz Mode Auto FFT Image: Mark and the second secon	4.12 dBm 2.4595370 GHz -57.27 dBm 2.4833000 GHz -57.27 dBm 2.4833000 GHz -57.27 dBm 2.4833000 GHz -57.5 GHz -57.5 GHz -57.5 GHz

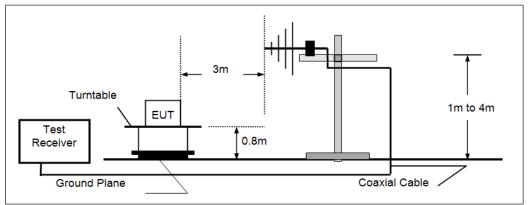

Test Item:	Bandedge	Туре:	802.11 g
	-	2000 2010 2010 2010 2010 2010 2010 2010	
CH01	с ●1 10 -1 -2 -3 -4	Duck 300/200 Pk Max dBm M1[1] dBm M2[1] JBm D D dBm D D dBm D	0.98 dBm 2.414460 GHz 0003 dBm
	4.6 -7 MM	Source Source Margin of the second s	Stop 2.422 GHz
CH11	C C € 11 7 7 	Note Note <th< td=""><td>1.69 dBm 2.4607180 GHz -41.53 dBm 2.4835000 GHz </td></th<>	1.69 dBm 2.4607180 GHz -41.53 dBm 2.4835000 GHz
	Dat	1:23.201.2019 14.94.18	


		ffset 1.00 dB ● RBW 100 kHz WT 75.9 µs ● VBW 300 kHz Mode Auto Ff	
	●1Pk Max		Т
	10 dBm	M1[1]	2.61 dBm 2.4125210 GHz
	0 dBm	MI MI MANNA LAMANA MANNA WAL	Anology and a second se
CH01	-20 dBm		- X.
Reference level	-40 dBm -50 dBm		Whankar
	-60 dBm		
	-70 dBm	691 pts	Span 30.0 MHz
	Dama: 23.JUL.2019 13:54:18		
	Att 30 dB S Count 10/10	iffset 1.00 dB ⊜ RBW 100 kHz WT 30.1 ms ⊜ YBW 300 kHz Mode Auto S	(International State Sta
	● 1Pk Max 10 dBm	M1[1]	-52.99 dBm 654.5780 MHz
	0 dBm		
CH01	-20 dBm D1 -17.390 dBm		
30MHz~1000MHz	-40 dBm	м	
	sa tagtan gana di kana da gana gana kana da ka Na ber teter ti na kana da kana	ing dan selanti kitan pantan kan pantan kan pantan sebahan separa pantan bahara da pila. Bana pantan kan pantan kan pantan kan pantan kan pantan pantan pantan pantan pantan pantan pantan pantan pantan Bana pantan kan pantan kan pantan p	straffe de la constitución de la constitución esta de la constitución de la constitución de la constitución de Esta de la constitución de la const Esta de la constitución de la const
	-70 dBm	30001 pts	Stop 1.0 GHz
	Data: 23.JUL.2019 1354:34		
	Spectrum Ref Level 20.00 dBm 0 Att 30 dB S Count 10/10 50 50	ffset 1.00 dB ● RBW 100 kHz WT 250 ms ● VBW 300 kHz Mode Auto Sv	weep
	● 1Pk Max	M1[1]	-44.26 dBm 15.708333 GHz
	0 dBm		
CH01	-20 dBmD117.390 dBm		
1GHz~26GHz	-40 dBm	1	and the term of the product of the second
	-70 dBm	Real-Adjunt and Anna Anna Anna Anna Anna Anna Anna	The second
	-70 dBm	30001 pts	Stop 26.0 GHz

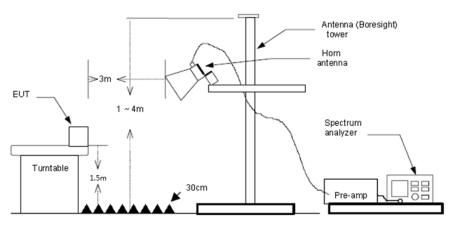
Test Item:	SE	Type: 802.11 g
		Spectrum Image: Spectrum Ref Level 21.00 dBm Offset 1.00 dB RBW 100 kHz Att 30 dB SWT 75.9 µS VBW 300 kHz Count 100/100 SWT 75.9 µS VBW 300 kHz
CH01		
		-10 dBm
Reference level		-30 dBm
		-60 d8m
		Spectrum Image: Constraint of the sector of th
		10 d8m 628.2280 MHz 0 d8m 0 d8m
CH01		-10 d8m
30MHz~1000MHz		-40 dBm
		-70 dBm
		Maxwining Maxwining Data: 23.JUL2019 14:01:26
		Spectrum Image: Constraint of the second secon
		10 dBm
CH01		-10 dBm
1GHz~26GHz		-40 dBm
		-70 dBm
		Data 123,2012 14:01:42


5.8. Spurious Emissions (radiated) LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.209


Frequency	Limit (dBuV/m @3m)	Value	
30MHz-88MHz	40.00	Quasi-peak	
88MHz-216MHz	43.50	Quasi-peak	
216MHz-960MHz	46.00	Quasi-peak	
960MHz-1GHz	54.00	Quasi-peak	
Above 1GHz	54.00	Average	
	74.00	Peak	

TEST CONFIGURATION


> 9kHz ~30MHz

> 30MHz ~ 1GHz

Above 1GHz

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

 (3) From 1 GHz to 10th harmonic: RBW=1MHz, VBW=3MHz Peak detector for Peak value. RBW=1MHz, VBW=3MHz RMS detector for Average value.

TEST MODE:

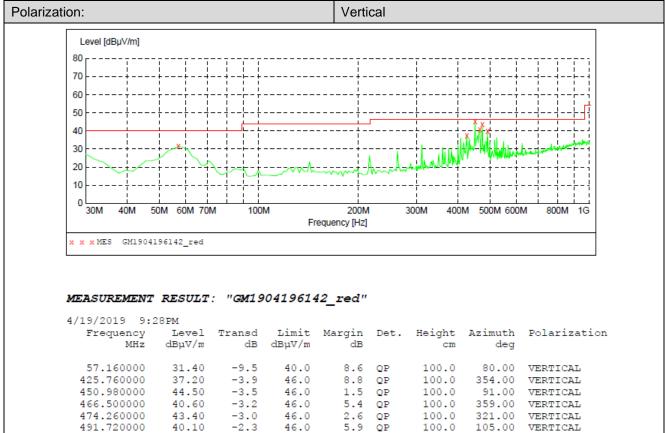
Please refer to the clause 3.3

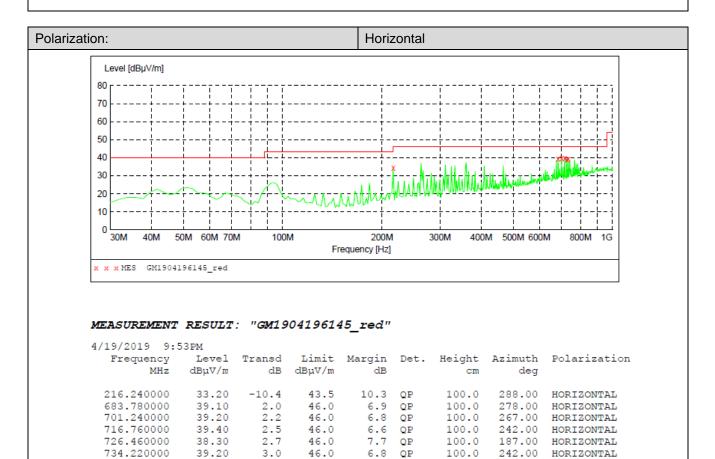
TEST RESULTS

☑ Passed □ Not Applicable

Note:

- 1) Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2) The emission levels of other frequencies are very lower than the limit and not show in test report.


> 9kHz ~ 30MHz


The EUT was pre-scanned the frequency band (9kHz~30MHz), found the radiated level lower than the limit, so don't show on the report.

➢ 30MHz ~1000MHz

Have pre-scan all modulation mode, found the 802.11b mode CH01 which it was worst case, so only the worst case's data on the test report.

30MHz ~ 1GHz \triangleright

39.20

3.0

46.0

734.220000

242.00 HORIZONTAL

100.0

> 1 GHz ~ 25 GHz

802.11b CH01												
Suspected Data List												
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector				
1	3197.250	42.43	0.83	43.26	74.00	30.74	Horizontal	PK				
2	4482.406	37.10	5.27	42.37	74.00	31.63	Horizontal	PK				
3	5235.875	34.68	8.79	43.47	74.00	30.53	Horizontal	PK				
4	7679.875	30.88	17.33	48.21	74.00	25.79	Horizontal	PK				
Susp	ected Data	List										

NO.	Freq. [MHz]	Reading [dBµ∨/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector				
1	3191.375	45.90	0.80	46.70	74.00	27.30	Vertical	PK				
2	4479.468	38.49	5.26	43.75	74.00	30.25	Vertical	PK				
3	5225.593	35.60	8.84	44.44	74.00	29.56	Vertical	PK				
4	7068.875	31.95	15.35	47.30	74.00	26.70	Vertical	PK				

802.11b

Suspe	Suspected Data List											
NO.	Freq. [MHz]	Reading [dBµ∨/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector				
1	3191.375	41.34	0.80	42.14	74.00	31.86	Horizontal	PK				
2	3740.687	37.30	1.75	39.05	74.00	34.95	Horizontal	PK				
3	4485.343	37.23	5.29	42.52	74.00	31.48	Horizontal	PK				
4	5227.062	33.91	8.84	42.75	74.00	31.25	Horizontal	PK				

CH06

Susp	Suspected Data List											
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector				
1	3189.906	45.19	0.79	45.98	74.00	28.02	Vertical	PK				
2	3734.812	37.63	1.73	39.36	74.00	34.64	Vertical	PK				
3	4483.875	38.09	5.28	43.37	74.00	30.63	Vertical	PK				
4	5247.625	34.90	8.73	43.63	74.00	30.37	Vertical	PK				

802.11b CH11												
Suspected Data List												
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector				
1	3186.968	42.28	0.77	43.05	74.00	30.95	Horizontal	PK				
2	4494.156	36.32	5.32	41.64	74.00	32.36	Horizontal	PK				
3	5238.812	33.60	8.77	42.37	74.00	31.63	Horizontal	PK				
4	6710.500	31.84	13.44	45.28	74.00	28.72	Horizontal	PK				

Suspected Data List

NO.	Freq. [MHz]	Reading [dBµ∨/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector				
1	2996.031	40.77	-0.10	40.67	74.00	33.33	Vertical	PK				
2	3191.375	46.08	0.80	46.88	74.00	27.12	Vertical	PK				
3	4491.218	35.70	5.31	41.01	74.00	32.99	Vertical	PK				
4	5230.000	34.04	8.82	42.86	74.00	31.14	Vertical	PK				

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.

3. The emission levels of other frequencies(test frequency band is 1GHz to 25GHz) are very lower than the limit and not show in test report.

802.	11g			С	H01			
Susp	ected Data	List						
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector
1	3191.375	40.60	0.80	41.40	74.00	32.60	Horizontal	PK
2	3740.687	36.92	1.75	38.67	74.00	35.33	Horizontal	PK
3	4482.406	36.34	5.27	41.61	74.00	32.39	Horizontal	PK
4	5225.593	34.07	8.84	42.91	74.00	31.09	Horizontal	PK
Susp	ected Data	List						
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector
1	3185.500	45.50	0.76	46.26	74.00	27.74	Vertical	PK
2	3589.406	39.32	1.41	40.73	74.00	33.27	Vertical	PK
3	4497.093	36.65	5.34	41.99	74.00	32.01	Vertical	PK
4	5108.093	34.27	8.81	43.08	74.00	30.92	Vertical	PK
802.7	11g			C	H06			
Susp	ected Data	List						
	Freq.	Reading	Factor	Level	Limit	Margin		
NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Polarity	Detector
1	3195.781	41.84	0.82	42.66	74.00	31.34	Horizontal	PK
2	3742.156	37.42	1.76	39.18	74.00	34.82	Horizontal	PK
3	4492.687	37.27	5.32	42.59	74.00	31.41	Horizontal	PK
4	5231.468	35.17	8.81	43.98	74.00	30.02	Horizontal	PK
Susp	ected Data	List						
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector
1	3185.500	45.28	0.76	46.04	74.00	27.96	Vertical	PK
2	4483.875	37.52	5.28	42.80	74.00	31.20	Vertical	PK
3	5241.750	36.23	8.76	44.99	74.00	29.01	Vertical	PK

4

6548.937

31.37

12.83

44.20

74.00

29.80

Vertical

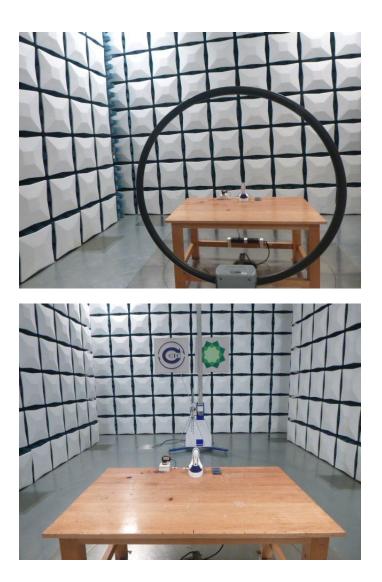
ΡK

802.11g CH11											
Suspected Data List											
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector			
1	3186.968	41.14	0.77	41.91	74.00	32.09	Horizontal	PK			
2	3746.562	37.25	1.78	39.03	74.00	34.97	Horizontal	PK			
3	4483.875	37.08	5.28	42.36	74.00	31.64	Horizontal	PK			
4	5240.281	33.31	8.77	42.08	74.00	31.92	Horizontal	PK			
Susp	ected Data	List									
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector			
1	3185.500	45.11	0.76	45.87	74.00	28.13	Vertical	PK			
2	3742.156	37.40	1.76	39.16	74.00	34.84	Vertical	PK			
3	4482.406	36.77	5.27	42.04	74.00	31.96	Vertical	PK			
4	5231.468	35.52	8.81	44.33	74.00	29.67	Vertical	PK			

Remark:

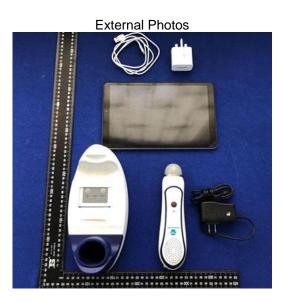
1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.


3. The emission levels of other frequencies(test frequency band is 1GHz to 25GHz) are very lower than the limit and not show in test report.

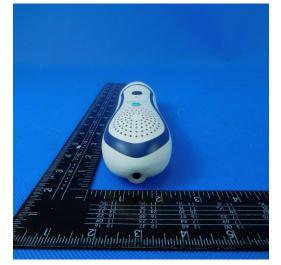

6. TEST SETUP PHOTOS

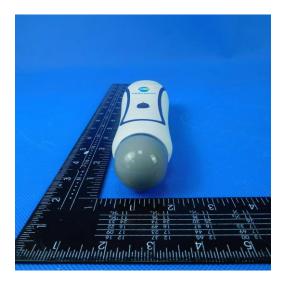
Conducted Emissions (AC Mains)



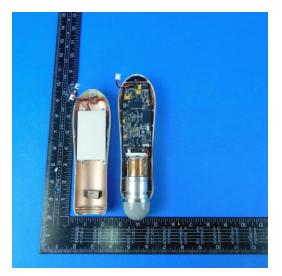
Radiated Emissions

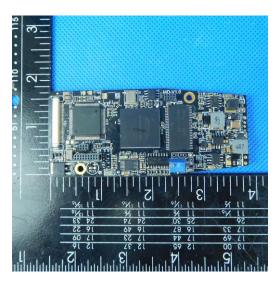


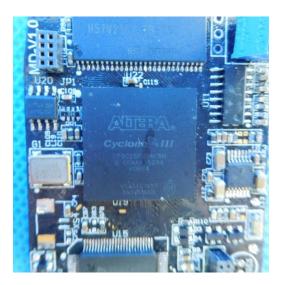

7. EXTERANAL AND INTERNAL PHOTOS



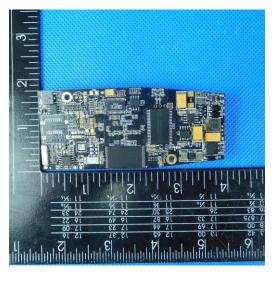
Shenzhen Huatongwei International Inspection Co., Ltd.

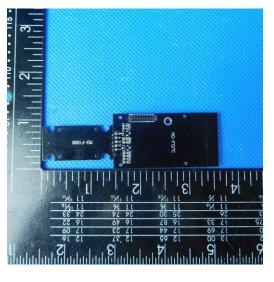


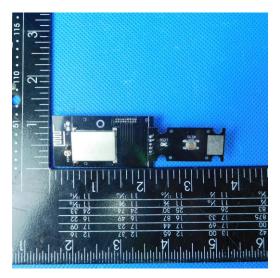


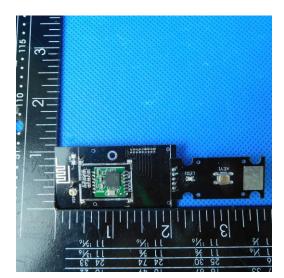


Internal Photos

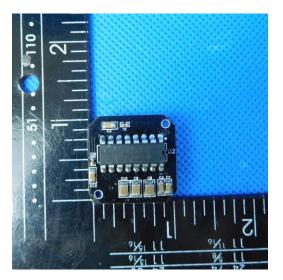


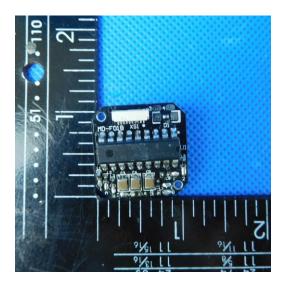






Shenzhen Huatongwei International Inspection Co., Ltd.





Shenzhen Huatongwei International Inspection Co., Ltd.

-----End of Report------