

Compliance Engineering Ireland Ltd Clonross Lane, Derrockstown, Dunshaughlin Co. Meath, Ireland A85 XN59 Ph +353 1 8017000, 8256722 www.cei.ie

Project Num	21E9185-4a				
Quotation	Q21-1401-1				
Prepared For	Alps Electric (Ireland) Limited				
Company Address	Clara Road, Mountleader,				
	Millstreet, Co. Cork , Ireland				
Contact	Donal O'Shea				
Contact Email	Donal.oshea-1@alps.ie				
Contact Phone	+ 353(29)70677				
Prepared By	Compliance Engineering Ireland				
Test Lab Address	Clonross Lane, Derrockstown,				
	Dunshaughlin, Co. Meath, Ireland				
Tested By	Michael Kirby / Joy Dalayap				
Test Report By	Michael Kirby				
FCC Test Firm Registration	409640				
ISED CAB identifier:	IE0001				
Date	26 th Aug 2021				
EUT Description	Asset Tracker				
FCC ID	2AT4VSKALLI1RM				
IC ID	26629-SKALLIR2				
Authorised by	Paul Reilly				
Authorised Signature:	Part Ruly				

TEST SUMMARY

The equipment complies with the requirements according to the following standards.

FCC 15.247 Section	RSS-247 Section	TEST PARAMETERS	Test Result
15.205 15.209	RSS Gen 8.9 RSS Gen 8.10	Radiated Spurious Emissions	Pass

RSS 247-2 (Feb 2017) RSS Gen Issue5 Amd 2 (Feb 2021)

RSS 247-2 (Feb 2017) RSS Gen Issue5 Amd 2 (Feb 2021)

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL, WITHOUT THE WRITTEN APPROVAL OF COMPLIANCE ENGINEERING IRELAND LTD

Exhibit A – Technical Report

Table	of Contents	
1.0	EUT DESCRIPTION	
1.1	EUT OPERATION	5
1.2	MODIFICATIONS	
1.3	DATE OF TEST	5
1.4	DESCRIPTION OF TEST MODES	
2.0	EMISSIONS MEASUREMENTS	7
3.0	SPURIOUS EMISSIONS	8
4.0	LIST OF TEST EQUIPMENT	
5.0	MEASUREMENT UNCERTAINTY	15
APPEN	NDIX A SCANS FOR RADIATED SPURIOUS EMISSIONS	
APPEN	NDIX B SCANS FOR RADIATED BAND EDGE /RESTRICTED BAND	
APPEN	NDIX C EUT ORIENTATIONS	
APPEN	NDIX D BLOCK DIAGRAM OF TEST SETUPS	

1.0 EUT Description

FCC ID	2AT4VSKALLI1RM				
IC ID	26629-SKALLI1RM				
Model:	2EE-2707AB				
HVIN:	2EE-2707AB				
PMN:	Skalli1RM				
Туре:	Asset Tracker				
Type of radio:	Stand-alone				

Sigfox				
Transmitter Type:	D-BPSK			
Classification:	DSS			
Operating Frequency Range(s):	902.138MHz -904.663 MHz			
Number of Channels:	Hopping on 54 channels (902.138 – 904.663 MHz)			
Antenna:	Integral			
Transmitter power configuration:	n: 3.6 VDC Internal Battery (non-rechargeable)			
Sigfox Antenna Type :	Folded metal antenna			
Sigfox Antenna Gain Max:	3.86dBi			
Sigfox Antenna Impedance:	50 ohms			
Test Standards:	15.247 RSS-247			
Test Methodology:	Measurements performed according to the procedures in			
	ANSI C63.10-2013			
	KDB 558074 V5 R02			

BLE	
Type of radio:	Stand-alone
Transmitter Type:	BLE
Operating Frequency Range(s):	2.402 GHz - 2.480GHz
Number of Channels:	40
Power configuration:	3.7v Battery.
Ports:	None
Classification:	DTS
BLE Antenna Type :	Pcb printed antenna
BLE Antenna Gain Max:	0.9 dBi
Antenna Impedance:	50 ohms
Test Standards:	15.247 RSS-247
Test Methodology:	Measurements performed according to the procedures in
	ANSI C63.10-2013
	KDB 558074 V5 R02

The EUT was an asset tracker reporting on the 915 MHz band over the Sigfox network

The EUT also contained a custom BLE radio.

.

This report details test carried out on the Sigfox and BLE transmitters transmitting simultaneously.

1.1 EUT Operation Operating Conditions during Test:

The EUT was operated in test mode where the channel and modulation was set via USB connection from the EUT to a laptop.

The EUT was powered from a bench PSU set to 3.6Vdc. for all conducted tests

Radiated measurements were performed on a sample (Sample #Z) with standard internal antennas with the EUT powered from its (new) internal battery with Sigfox and BLE transmitting simultaneously.

Environmental conditions

	Temperature	Relative Humidity
Test	°C	%
Conducted Emissions	21.2	49
Radiated Emissions <1GHz	18	42
Radiated Emissions >1GHz	19	47

1.2 Modifications

No modifications were required in order to pass the test specifications.

1.3 Date of Test

The tests were carried out on 7th 8th 27th Jul and 13th 16th Aug 2021.

1.4 Description of Test modes

Channel	Channel	Freq MHz 2402 2404 2404 2440	
Low	1	2402	
	2	2404	
Mid	19	2440	
High	39	2480	

All tests were performed with the EUT on the low mid and high channels.

2 Emissions Measurements

2.1 Radiated Emissions Measurements

Radiated Power measurements were made at the Compliance Engineering Ireland Ltd anechoic chamber located in Dunshaughlin, Co. Meath, Ireland to determine the radio noise radiated from the EUT. A "Description of Measurement Facilities" has been submitted to the FCC and approved pursuant to Section 2.948 of CFR 47 of the FCC rules.

The EUT was centred on a motorized turntable, which allows 360 degree rotation.

Emissions below 1GHz were measured using a test antenna positioned at a distance of 3 metres from the EUT (as measured from the closest point of the EUT). The radiated emissions were maximised by configuring the EUT, by rotating the EUT, and by raising and lowering the antenna from 1 to 4 metres. In this case the resolution bandwidth was 100kHz. Emissions in the 1GHz-3.6GHz range were measured using a horn antenna located at 3 metres distance from the EUT in a fully anechoic chamber.

The radiated emissions were maximised by configuring the EUT and by rotating the EUT, and by raising and lowering the test antenna from 1 to 4 metres.

Emissions above 3.6GHz were measured using a horn antenna located at 1 metre distance from the EUT in a fully anechoic chamber. The radiated emissions were maximised by configuring the EUT and by rotating the EUT and raising the test and antenna from 1 to 4 metres.

In this case the resolution bandwidth was 1MHz and video bandwidth was 3 MHz. for peak measurements. The Video bandwidth was changed to 10Hz for Average measurements (as per ANSI 63.10 2013 Section 4.1.4.2.3)

A pre-scan was performed to determine the worst case EUT orientation for the radiated measurements.

All radiated tests were performed with the EUT in orientation O3 for Horizontal polarization measurements and with the EUT in orientation O2 for Vertical polarisation measurements.

Ref Appendix D for orientations.

3

A number of co-location tests were performed, and the worst case are reported here.

For the restricted band at 2.4835GHz it was found that the worst case results were achieved with BLE at 2.48GHz and Sigfox transmitting at 902.138 MHz

For the restricted band below 2.39GHz it was found that the worst case results were achieved with BLE at 2.402 GHz and Sigfox at 902.138MHz

A full scan was performed with BLE operating at 2.402GHz and Sigfox operating at 902.138MHz

3.2. Spurious Emissions Measurements

3.2.1. Radiated Spurious Emissions in Restricted bands

3.2.1 Test Method

As per Ansi63.10 Section 11.12.1 and 6.10.5

Ansi63.10 Section 11.12.1 Radiated emission measurements

Because the typical emission requirements are specified in terms of radiated field strength levels, measurements performed to determine compliance have traditionally relied on a radiated test configuration.⁹² Radiated measurements remain the principal method for determining compliance to the specified requirements; however antenna-port conducted measurements are also now acceptable to determine compliance (see 11.12.2 for details). When radiated measurements are utilized, test site requirements and procedures for maximizing and measuring radiated emissions that are described in 6.3, 6.5, and 6.6 shall be followed

6.10.5 Restricted-band band-edge measurements

These procedures are applicable for determining compliance at band edges of restricted bands. **6.10.5.1 Test setup**

Restricted-band band-edge tests shall be performed as radiated measurements, on a test site meeting the specifications in 5.2 at the measurement distances specified in 5.3.57

The instrumentation shall meet the requirements in 4.1.1 using the bandwidths and detectors specified in 4.1.4.2. Considering the requirements of 5.8, the antenna(s) shall be connected to the antenna ports. When performing radiated measurements, the measurement antenna(s) shall meet the specifications in 4.3. The EUT shall be connected to an antenna and operated at the highest power settings following procedures in 6.3, and the relevant procedure in 6.4, 6.5, or 6.6

As per Ansi 63.10 Section 11.12.2.5.2

11.12.2.5.2 Trace averaging across ON and OFF times of the EUT transmissions followed by duty cycle correction

If continuous transmission of the EUT ($D \ge 98\%$) cannot be achieved and the duty cycle is constant (duty

cycle variations are less than $\pm 2\%$), then the following procedure shall be used:

a) The EUT shall be configured to operate at the maximum achievable duty cycle.

b) Measure the duty cycle D of the transmitter output signal as described in 11.6.

c) RBW = 1 MHz (unless otherwise specified).

d) VBW ≥ [3 *RBŴ].

e) Detector = RMS (power averaging), if span / (# of points in sweep) \leq (RBW / 2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak. f) Averaging type = power (i.e., rms):

1) As an alternative, the detector and averaging type may be set for linear voltage averaging.

2) Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.

g) Sweep time = auto.

h) Perform a trace average of at least 100 traces.

i) A correction factor shall be added to the measurement results prior to comparing with the emission limit to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:

1) If power averaging (rms) mode was used in step f), then the applicable correction factor is $[10 \log (1 / D)]$, where D is the duty cycle. 2) If linear voltage averaging mode was used in step f), then the applicable correction factor is $[20 \log (1 / D)]$, where D is the duty cycle.

3) If a specific emission is demonstrated to be continuous ($D \ge 98\%$) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

Reduction of the measured emission amplitude levels to account for operational duty cycle is not permitted. Determining compliance is based on emission levels occurring during transmission; it is not based on an average across ON and OFF times of the transmitter

One Period uS	Pulse Width uS	Duty Cycle	10 log duty cycle for Power Averaging (dB)
626.09	95.65	0.153	-8.16

Duty cycle correction factor =8.16dB for average measurements

Frequency	Measured Peak Level	Antenna Factor	Preamp Gain	Cable Loss	Antenna Polarity	Duty Cycle Correction	Final Peak Level	Average Limit +20dB	Margin
4.804	46.6	32.4	37.1	5.2	Vertical	0.00	47.1	74	26.9
5.412	46.7	33.5	37.5	5.6	Vertical	0.00	48.3	74	25.7
4.804	46.7	32.4	37.1	5.2	Horizontal	0.00	47.2	74	26.9
5.412	46.7	33.5	37.5	5.6	Horizontal	0.00	48.3	74	25.7

Note the final average measurements include the duty cycle correction factor (which has been added to the measured result)

Test Result: - Pass

3.3 Radiated Band Edge / Restricted band Measurements

11.13.3.2 Peak detection

When using a peak detector to measure unwanted emissions at or near the band edge (within 2 MHz of the authorized band), the following integration procedure can be used:

a) Set instrument center frequency to the frequency of the emission to be measured (must be within 2 MHz of the authorized band edge).

b) Set span to 2 MHz.

c) RBW = 100 kHz.

d) VBW \geq [3 × RBW].

e) Detector = peak.

f) Sweep time = auto.

g) Trace mode = max hold.

h) Allow sweep to continue until the trace stabilizes (required measurement time may increase for low-duty-cycle applications).

i) Compute the power by integrating the spectrum over 1 MHz using the analyzer's band power measurement function with band limits set equal to the emission frequency ($f_{emission}$) ± 0.5 MHz. If the instrument does not have a band power function, then sum the amplitude levels (in power units) at 100 kHz intervals extending across the 1 MHz spectrum defined by $f_{emission} \pm 0.5$ MHz.

11.13.3.4 Trace averaging across ON and OFF times of the EUT transmissions followed by duty cycle correction

If continuous transmission of the EUT ($D \ge 98\%$) cannot be achieved and the duty cycle is constant (duty cycle variations are less ±2%), then the following procedure may be used to measure the average power of unwanted emssions within 2 MHz of the authorized band edge:

a) The EUT shall be configured to operate at the maximum achievable duty cycle.

b) Measure the duty cycle D of the transmitter output signal as described in 11.6.

c) Set instrument center frequency to the frequency of the emission to be measured.

d) Set span to 2 MHz.

e) RBW = 100 kHz.

f) VBW \geq 3 × RBW.

g) Detector = RMS (power averaging), if [span / (# of points in sweep)] \leq (RBW / 2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.

h) Averaging type = power (i.e., rms):

1) As an alternative, the detector and averaging type may be set for linear voltage averaging.

2) Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.

i) Sweep time = auto.

j) Perform a trace average of at least 100 traces.

k) Compute the power by integrating the spectrum over 1 MHz using the instrument's band power measurement function with band limits set equal to the emission frequency ($f_{emission}$) ± 0.5 MHz. If the spectrum analyzer does not have a band power function, then sum the amplitude levels (in power units) at 100 kHz intervals extending across the 1 MHz spectrum defined by $f_{emission}$ ± 0.5 MHz.

I) A correction factor shall be added to the measurement results prior to comparing with the emission limit to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:

1) If power averaging (rms) mode was used in step f), then the applicable correction factor is $[10 \log (1 / D)]$, where D is the duty cycle.

2) If linear voltage averaging mode was used in step f), then the applicable correction factor is $[20 \log (1 / D)]$, where D is the duty cycle.

3) If a specific emission is demonstrated to be continuous ($D \ge 98\%$) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

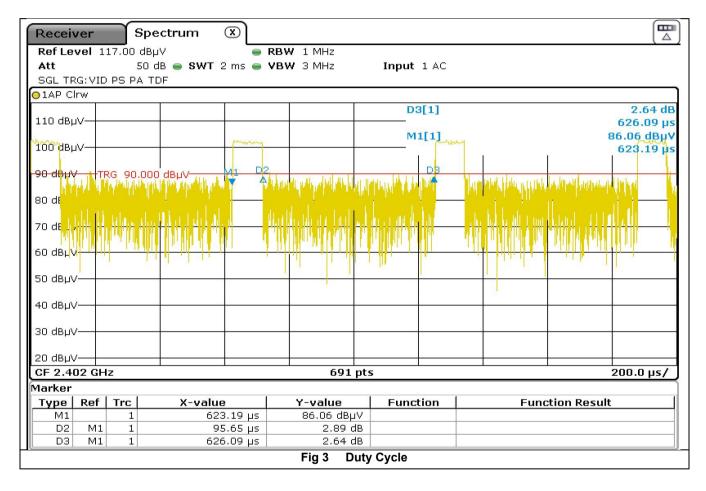
Reduction of the measured emission amplitude levels to account for operational duty cycle is not permitted. Determining compliance is based on emission levels occurring during transmission—it is not based on an average across ON and OFF times of the transmitter.

Frequency	Measured Peak Level dBuV/m	Antenna Factor dB	Preamp Gain dB	Cable Loss dB	Antenna Polarity V/H	Duty Cycle Correction dB	Final Peak Level dBuV/m	Average Limit +20dB dBuV/m	<u>Margin</u> dB
2.310	53.6	27.4	39.2	3.4	Vertical	0.00	45.2	74	28.8
2.390	61.9	27.4	38.5	3.5	Vertical	0.00	54.3	74	19.7
2.400	80.2	27.4	38.5	3.5	Vertical	0.00	72.6	74	1.5
2.310	55.6	27.4	39.2	3.4	Horizontal	0.00	47.2	74	26.8
2.390	63.0	27.4	38.5	3.5	Horizontal	0.00	55.4	74	18.6
2.400	81.0	27.4	38.5	3.5	Horizontal	0.00	73.4	74	0.6

3.3.1 Result Radiated Restricted Band and band edge near 2.4 GHz band

Frequency	Measured Average Level	Antenna Factor	Preamp Gain	Cable Loss	Antenna Polarity	Duty Cycle Correction	Final Average Level	Average Limit	Margin
GHz	dBuV/m	dB	dB	dB	V/H	dB	dBuV/m	dBuV/m	dB
2.310	39.1	27.4	39.2	3.4	Vertical	8.16	38.9	54	15.1
2.390	39.4	27.4	38.5	3.5	Vertical	8.16	40.0	54	14.0
2.400	51.6	27.4	38.5	3.5	Vertical	8.16	52.1	54	1.9
2.310	39.2	27.4	39.2	3.4	Horizontal	8.16	38.9	54	15.1
2.390	39.6	27.4	38.5	3.5	Horizontal	8.16	40.1	54	13.9
2.400	51.4	27.4	38.5	3.5	Horizontal	8.16	52.0	54	2.0

Frequency	Measured Peak Level	Antenna Factor	Preamp Gain	Cable Loss	Antenna Polarity	Duty Cycle Correction	Final Peak Level	Average Limit +20dB	Margin
GHz	dBuV/m	dB	dB	dB	V/H	dB	dBuV/m	dBuV/m	dB
2.4835	70.1	28.7	38.3	3.4	Vertical	0.00	63.9	74	10.1
2.500	55.7	28.7	38.3	3.4	Vertical	0.00	49.5	74	24.5
2.4835	66.9	28.7	38.3	3.4	Horizontal	0.00	60.7	74	13.3
2.500	54.4	28.7	38.3	3.4	Horizontal	0.00	48.2	74	25.8


Frequency	Measured Average Level	Antenna Factor	Preamp Gain	Cable Loss	Antenna Polarity	Duty Cycle Correction	Final Average Level	Average Limit	Margin
GHz	dBuV/m	dB	dB	dB	V/H	dB	dBuV/m	dBuV/m	dB
2.4835	43.9	28.7	38.3	3.4	Vertical	8.16	45.9	54	8.1
2.500	38.8	28.7	38.3	3.4	Vertical	8.16	40.7	54	13.3
2.4835	46.2	28.7	38.3	3.4	Horizontal	8.16	48.2	54	5.8
2.500	39.0	28.7	38.3	3.4	Horizontal	8.16	40.9	54	13.1

Note the final average measurements include the duty cycle correction factor (which has been added to the measured result) Test Result: - Pass Duty Cyckle 3.4 Test Method As per Ansi 63.10 Section 11.6 KDB 558074 zero span measurement method

Ansi63.10 Section **11.6 Duty cycle (***D***), transmission duration (***T***), and maximum power control level**

Preferably, all measurements of maximum conducted (average) output power will be performed with the EUT transmitting continuously (i.e., with a duty cycle of greater than or equal to 98%). When continuous operation cannot be realized, then the use of sweep triggering/signal gating techniques can be used to ensure that measurements are made only during transmissions at the maximum power control level. Such sweep triggering/signal gating techniques will require knowledge of the minimum transmission duration (T) over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Sweep triggering/signal gating techniques can then be used if the measurement/sweep time of the analyzer can be set such that it does not exceed T at any time that data are being acquired (i.e., no transmitter OFF-time is to be considered).

KDB 558074 D01 FAQ section

Duty Cycle =

Note the duty cycle results above shows how the sample operated during testing.

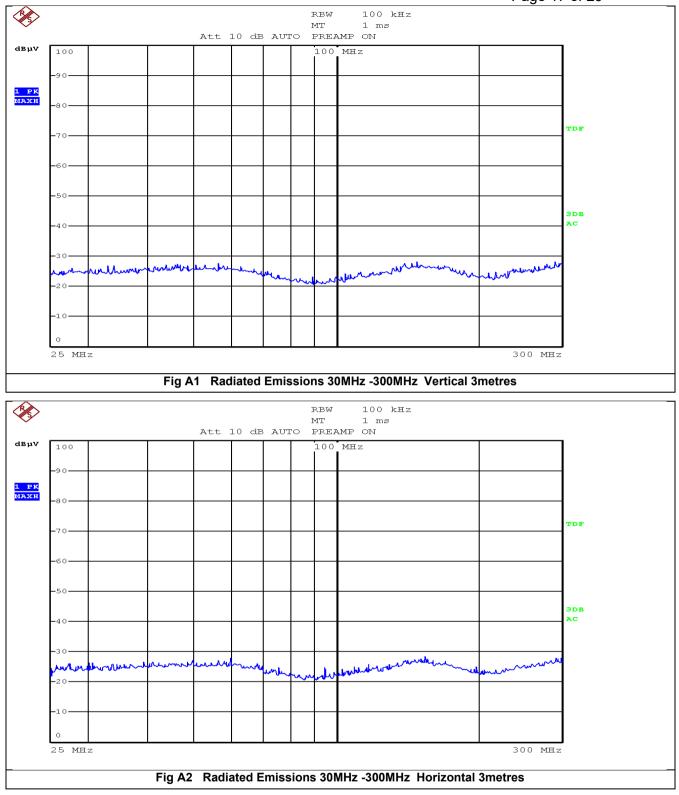
One Period uS	Pulse Width uS	Duty Cycle	10 log duty cycle for Power Averaging (dB)
626.09	95.65	0.153	-8.16

4 List of Test Equipment

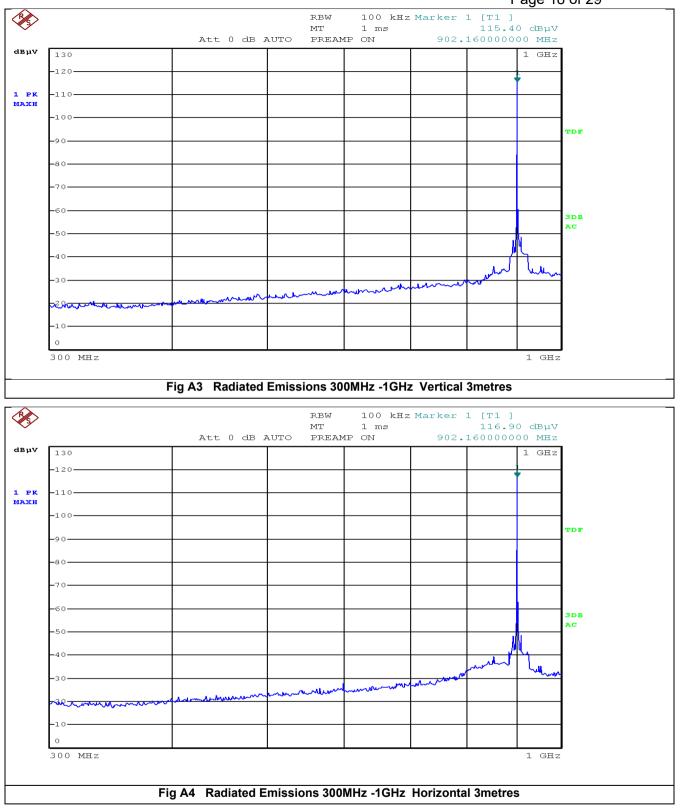
Instrument	Manufacturer	Model	Serial Num	CEI Ref	Cal Due Date	Cal Interval Months
Spectrum Analyser 30Hz-40GHz	Rohde & Schwarz	FSP40	100053	850	11-Dec-21	36
Test Receiver 3.6GHz	Rohde & Schwarz	ESR	1316.3003k03- 101625-s	869	28-May-23	36
Antenna Biconical	Schwarzbeck	VHBB 9124	9124 667	871	30-Sep-21	36
Antenna Horn	EMCO	3115	9905-5809	655	13-Dec-21	24
Anechoic Chamber	CEI	SAR 10M	845	845	16-May-22	36
Antenna Log Periodic	Chase	UPA6108	1072	609	03-Sep-21	36
Fully Anechoic Chamber	CEI	FAR 3M	906	906	23-Jul-22	36
Microwave Preamplifier	Hewlett Packard	83017A	3123A00175	805	30-Sep-21	12
Antenna Horn Standard Gain 18- 26.5GHz	A-Info	LB-42-25-C-KF	J2021091103028	877	16-May-22	12

5 Measurement Uncertainties

Measurement	Uncertainty
Radio Frequency	+/- 5x10 ⁻⁷
Maximum Frequency Deviation	+/- 1.7 %
Conducted Emissions	+/- 1 dB
Radiated Emission 30MHz-100MHz	+/- 5.3 dB
Radiated Emission 100MHz-300MHz	+/- 4.7 dB
Radiated Emission 300MHz-1GHz	+/- 3.9 dB
Radiated Emission 1GHz-40GHz	+/- 3.8 dB
Modulation bandwidth	+/- 5x10 ⁻⁷
Duty Cycle	+/- 5 %
Power supply	±0.1 VDC
Temperature	±0.2 °C
Frequency	±0.01 ppm


The measurement uncertainties stated were calculated with a k=2 for a confidence level of over 95% as per ETS TR100 028.

The test data can be compared directly to the specification limit to determine compliance, as the calculated measurement uncertainty meets the requirements of the applicable specification.


Appendix A

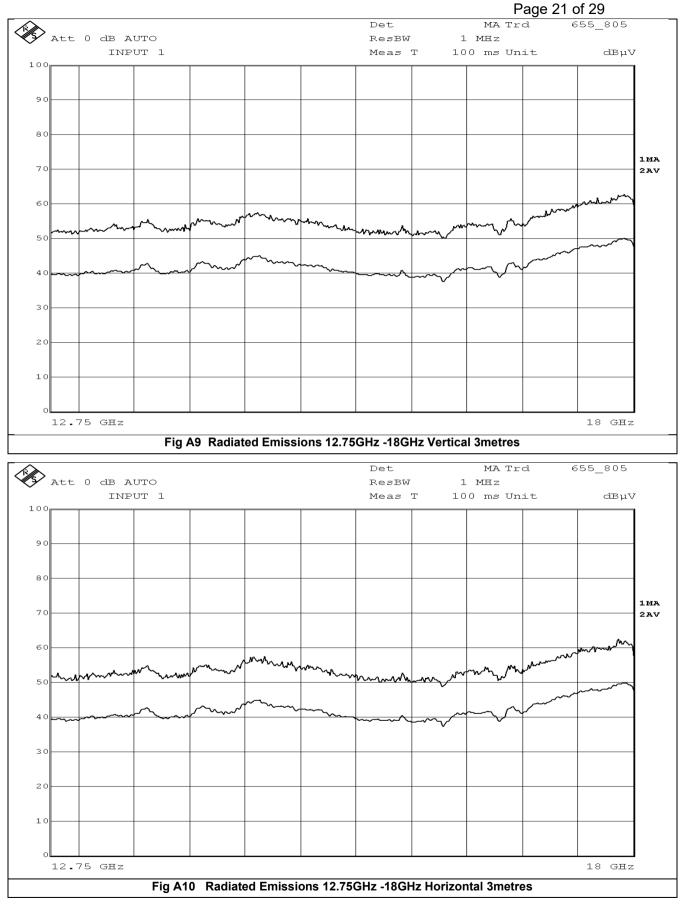
Radiated Spurious Emissions

Report Ref: 21E9185-4a Page 17 of 29

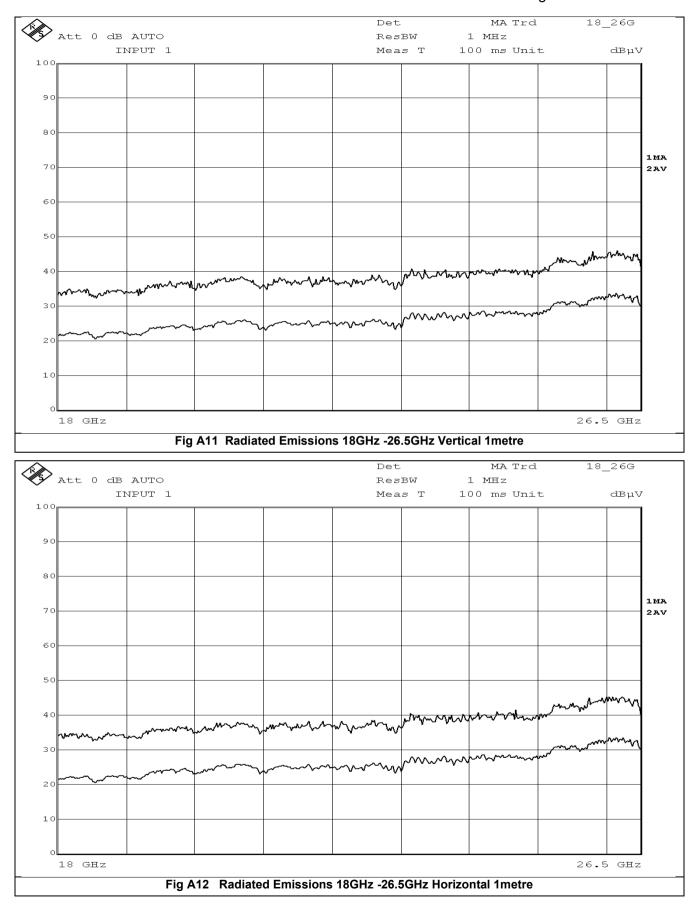
Report Ref: 21E9185-4a Page 18 of 29

Report Ref: 21E9185-4a Page 19 of 29

Spectrum Receiver 🗵	
RBW 1 MHz MT 100 ms 655Rx	
Input 1 AC Att 0 dB Preamp ON Step TD Scan	
Scan O1Pk Max	
100 dBµV	
90 dBµV-	
80 dBµv	
70 dBµv	
60 dBuv	
50 dBµV	mannen
40 dBuv	
30 dBµV	
20 dвµv	
10 dBµV	
0 dвµV	TF
Start 1.0 GHz	Stop 3.6 GHz


Fig A5 Radiated Emissions 1GHz -3.6GHz Vertical 3metres

Spectrum Receiver 🛞	
RBW 1 MHz MT 100 ms	655Rx
Input 1 AC 👄 Att 0 dB Preamp ON Step TD Scan	
Scan O1Pk Max	
100 dBµV	
90 dBµV	
80 dBµV	
70 dBµV	
60 dвµV	
50 dBµV	the man the man and the man and the second s
40 dBUV	hhmmedit
30 dBµV	
20 dBµV	
10 dBµV	
0 двµV	ТЕ
Start 1.0 GHz	Stop 3.6 GHz
Fig A6 Radiated Emissions 1GHz	


Report Ref: 21E9185-4a

							F	age 20) of 29	
					Det		MA Tr	d	655_805	
×>	Att 0	de auto			ResBW		MHZ			_
100		INPUT 1			Meas T		ms Un		dBµV	
							10	GHz ∥		
90										
20										
80										
										1 MA
70										2AV
60										
50				mannon	walk	www.ww	to and the	r w		
	mm	mannow								
40					h_	\sim	~~~~	<u></u>	~~~~~	
		hand				-				
30		- martine week								
20										
10										
0	3.6 GE								12.75 GHz]
_	5.0 GE		D		40 75011	Madaal	0		12.75 GHZ	
		FIG A/	Radiated Emis	ISIONS 3.6GH	Z -12.75GH	z vertical	smetres	5		
		•								
					Det		MA Tr		655_805	
	Att 0	db auto			Det ResBW	1	MA Tr MEz	d		
, The second sec					Det	1	MA Tr MHz ms Un	d	655_805 dBµV	7
100		db auto			Det ResBW	1	MA Tr MHz ms Un	d		
100	,	db auto			Det ResBW	1	MA Tr MHz ms Un	d		
, The second sec	,	db auto			Det ResBW	1	MA Tr MHz ms Un	d		
100 90		db auto			Det ResBW	1	MA Tr MHz ms Un	d		
100		db auto			Det ResBW	1	MA Tr MHz ms Un	d		
100 90 80		db auto			Det ResBW	1	MA Tr MHz ms Un	d		1MA
100 90		db auto			Det ResBW	1	MA Tr MHz ms Un	d		
100 90 80 70	·	db auto			Det ResBW	1	MA Tr MHz ms Un	d		1MA
100 90 80	·	db auto			Det ResBW	1	MA Tr MHz ms Un	d		1MA
100 90 80 70 60		db auto			Det ResBW	1	MA Tr MHz ms Un	d		1MA
100 90 80 70		db auto			Det ResBW	1	MA Tr MHz ms Un	d		1MA
100 90 80 70 60 50		db auto	unkumman		Det ResBW	1	MA Tr MHz ms Un	d		1MA
100 90 80 70 60		db auto			Det ResBW	1	MA Tr MHz ms Un	d		1MA
100 90 80 70 60 50 40		db auto			Det ResBW	1	MA Tr MHz ms Un	d		1MA
100 90 80 70 60 50		db auto		•••••••	Det ResBW	1	MA Tr MHz ms Un	d		1MA
100 90 80 70 60 50 40 30	 	db auto			Det ResBW	1	MA Tr MHz ms Un	d		1MA
100 90 80 70 60 50 40	 	db auto			Det ResBW	1	MA Tr MHz ms Un	d		1MA
100 90 80 70 60 50 40 30 20		db auto			Det ResBW	1	MA Tr MHz ms Un	d		1MA
100 90 80 70 60 50 40 30		db auto		••••••••••••••••••••••••••••••••••••••	Det ResBW	1	MA Tr MHz ms Un	d		1MA
100 90 80 70 60 50 40 30 20 10		db auto	nen MMM mm hom		Det ResBW	1	MA Tr MHz ms Un	d		1MA
100 90 80 70 60 50 40 30 20		dB AUTO INPUT 1			Det ResBW	1	MA Tr MHz ms Un	d it GHz		1MA 2AV
100 90 80 70 60 50 40 30 20 10		dB AUTO INPUT 1	Radiated Em		Det ResBW Meas T		MA Tr MHz ms Un 10	d it GHz		1MA 2AV

Report Ref: 21E9185-4a

Report Ref: 21E9185-4a Page 22 of 29

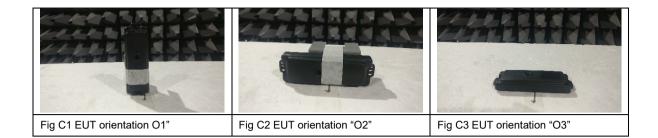
Appendix B

Radiated tests for Band Edges /Restricted band

Receiver	Spectrum	Spectrum	2 🗴 Spec	trum 3 🛛 🗴	
RE Input 1 AC 🖷 At	BWIMHZMT tt OdBPrea	100 ms mp ON Step	655Rx TD Scan		
Level			Frequency	/ [2.4000000 GHz
	72.30	(72	6		2.4000000 GHz)
-10	10	(72	30	5	0 70
Scan 01Pk Ma	, ,	ł	I		
90 dBµV					
80 dBµV					Ma
70.dBµV					
60 dBµV					Ma
50 dBµV_ <u>M2</u>					~~~~
40 dBμV					
30 dBµV					
20 dBµV					
10 dBµV					
					TF
Start 2.3 GHz Marker					Stop 2.402 GHz
	Ref Trc	Stimulus	Response	Function	Function Result
Scan N1	1	2.4 GHz	72.55 dBµV		
Scan N2 Scan N3	1	2.31 GHz 2.39 GHz	45.23 dBµV 54.32 dBµV		
			d Band /Band Edg	e Vertical pea	k at 3 metres
	0		0	•	
Receiver	Spectrum	Spectrum	2 🗶 Spec	trum 3 🛛 🗴	[₩
	BW 1 MHz MT	100 ms	655Rx		
Input 1 AC 👄 At		mp ON Step			
Level	19 T		Frequency		2.4000000 GHz
Max Peak	73.41	(73.	6		2.4000000 GHz)
-10	10		30	5	0 70
Scan 👴1Pk Ma>	×				

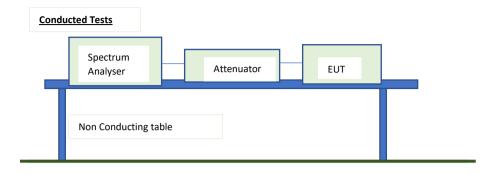
90 dBµV-								
80 dBµV-								
70 dBµV-								
60 dBµV-			-					M3
50 dBµV-	M2				~		<u> </u>	
40 dBµV-	-	~	$\left\{ \right\}$					
30 dBµV-								
20 dBµV-								
10 dBµV-			-					
			2					TF
Start 2.	3 GHZ							Stop 2.402 GHz
Marker	[.		Tree 1	0.1		D	l constant l	
Diagr	Туре	Ref	Trc	Stim	a na su a	Response	Function	Function Result
Scan	N1		1		2.4 GHz	73.42 dBµV		
Scan	N2		1		2.31 GHz	47.16 dBμV		
Scan	N3				2.39 GHz	55.44 dBµV		
	F	ig B2	Lov	w Channel	Restricted	Band /Band Edge	Horizontal pe	eak at 3 metres

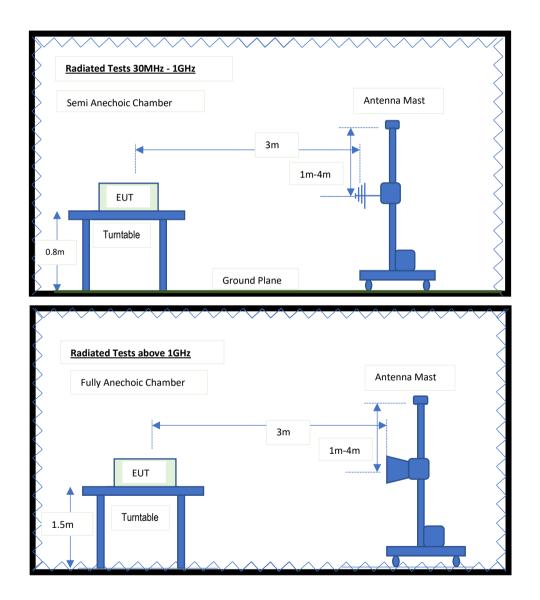
Report Ref: 21E9185-4a Page 25 of 29


Receiver	s	pectrum	X						[₩
Ref Leve Att				RBW 1 MHz VBW 3 MHz	Mode Aut		nut 1.40		
SGL Count	100/100	PS PA			MOUE AU	UFFI IN	put IAC		
∋1Rm AvgP	wr		-	1					
65 dBµV									
60 dBµV									
55 dBµV									1
50 dBµV									M
45 dBµV	с								
40 dBµV									- /
35 dBµV M	2		~					M3	\sim
30 dBµV									
25 dBµV									
Start 2.3 C	GHZ			691	nts			Ston 2	2.402 GHz
larker					P-2				
Type Re	f Trc	X-valu		Y-value	Func	tion	Fun	ction Result	
M1	1		2.4 GHz	43.96 dB					
CONTRACTOR OF A									
M2	1		2.31 GHz	30.74 dBj 31.84 dBi	IV IV				
M2 M3	1 1 Fig E	2	.39 GHz	30,74 dBj 31,84 dBj tricted Band	IV	• Vertical	average at	3 metres	
M2 M3 Receiver Ref Leve Att SGL Count	1 Fig E S 1 71.00 c 100/100	2 3 Low Cha pectrum IBµV	2.39 GHz innel Res (X) 633 µs • 1	31.84 dBµ	i∨ Band Edge			3 metres	T)
M2 M3 Receiver Ref Leve Att SGL Count	1 Fig E S 1 71.00 c 100/100	2 3 Low Cha pectrum 18µV 0 dB ● SWT	2.39 GHz innel Res (X) 633 µs • 1	31.84 dBj tricted Band	i∨ Band Edge			3 metres	
M2 M3 Receiver Ref Leve Att SGL Count	1 Fig E S 1 71.00 c 100/100	2 3 Low Cha pectrum 18µV 0 dB ● SWT	2.39 GHz innel Res (X) 633 µs • 1	31.84 dBj tricted Band	i∨ Band Edge			3 metres	
M2 M3 Receiver Ref Leve Att SGL Count IRm AvgP	1 Fig E S 1 71.00 c 100/100	2 3 Low Cha pectrum 18µV 0 dB ● SWT	2.39 GHz innel Res (X) 633 µs • 1	31.84 dBj tricted Band	i∨ Band Edge			3 metres	
M2 M3 Receiver Ref Leve Att SGL Count SGL Count SGL Count	1 Fig E S 1 71.00 c 100/100	2 3 Low Cha pectrum 18µV 0 dB ● SWT	2.39 GHz innel Res (X) 633 µs • 1	31.84 dBj tricted Band	i∨ Band Edge			3 metres	
M2 M3 Receiver Ref Leve Att SGL Count IRm AvgP 35 dBµV	1 Fig E S 1 71.00 c 100/100	2 3 Low Cha pectrum 18µV 0 dB ● SWT	2.39 GHz innel Res (X) 633 µs • 1	31.84 dBj tricted Band	i∨ Band Edge			3 metres	
M2 M3 Receiver Ref Leve Att SGL Count SGL Count IRm AvgP S5 dBµV	1 Fig E S 1 71.00 c 100/100	2 3 Low Cha pectrum 18µV 0 dB ● SWT	2.39 GHz innel Res (X) 633 µs • 1	31.84 dBj tricted Band	i∨ Band Edge			3 metres	
M2 M3 Receiver Ref Leve Att SGL Count IRm AvgP 55 dBµV	1 Fig E S 1 71.00 c 100/100	2 3 Low Cha pectrum 18µV 0 dB ● SWT	2.39 GHz innel Res (X) 633 µs • 1	31.84 dBj tricted Band	i∨ Band Edge			3 metres	
<u>М2</u> <u>M3</u> Receiver Ref Leve Att SGL Count SGL Count 1Rm AvgP 65 dBµV— 60 dBµV— 55 dBµV— 50 dBµV— 45 dBµV—	1 Fig E S 1 71.00 c 100/100	2 3 Low Cha pectrum 18µV 0 dB ● SWT	2.39 GHz innel Res (X) 633 µs • 1	31.84 dBj tricted Band	i∨ Band Edge			3 metres	
<u>M2</u> M3 Receiver Ref Leve Att SGL Count SGL Count IRm AvgP 55 dBµV— 55 dBµV— 55 dBµV— 50 dBµV— 45 dBµV— 40 dBµV—	1 Fig E S 1 71.00 c 100/100	2 3 Low Cha pectrum 18µV 0 dB ● SWT	2.39 GHz innel Res (X) 633 µs • 1	31.84 dBj tricted Band	i∨ Band Edge				
<u>М2</u> <u>M3</u> Receiver Ref Leve Att SGL Count D IRm AvgP 55 dBµV 55 dBµV 55 dBµV 50 dBµV 45 dBµV 40 dBµV М	1 1 Fig E 5 1 71.00 c 100/100 wr	2 3 Low Cha pectrum 18µV 0 dB ● SWT	2.39 GHz innel Res (X) 633 µs • 1	31.84 dBj tricted Band	i∨ Band Edge			3 metres	
M2 M3 Receiver Ref Leve Att SGL Count IRm AvgP 55 dBµV 55 dBµV 50 dBµV 45 dBµV 40 dBµV 35 dBµV	1 1 Fig E 5 1 71.00 c 100/100 wr	2 3 Low Cha pectrum 18µV 0 dB ● SWT	2.39 GHz innel Res (X) 633 µs • 1	31.84 dBj tricted Band	i∨ Band Edge			M3	
M2 M3 Receiver Ref Leve Att SGL Count Difference Att SGL Count Difference Att SGL Count Difference Att SGL Count Difference SG dBµV SG dBµV SG dBµV SG dBµV SG dBµV SG dBµV M3 M40 dBµV M30 dBµV M30 dBµV	1 1 Fig E 5 1 71.00 c 100/100 wr	2 3 Low Cha pectrum 18µV 0 dB ● SWT	2.39 GHz innel Res (X) 633 µs • 1	31.84 dB _i tricted Band A RBW 1 MHz VBW 3 MHz	Mode Aut			M3	
M2 M3 Receiver Ref Leve Att SGL Count 1Rm AvgP 55 dBµV 50 dBµV 50 dBµV 50 dBµV 50 dBµV 30 dBµV 30 dBµV 25 dBµV Start 2.3 C	1 1 Fig E 5 1 71.00 c 100/100 wr	2 3 Low Cha pectrum 18µV 0 dB ● SWT	2.39 GHz innel Res (X) 633 µs • 1	31.84 dBj tricted Band	Mode Aut			M3	
<u>М2</u> <u>M3</u> Receiver Ref Leve Att SGL Count SGL Count IRm AvgP 65 dBµV 60 dBµV 55 dBµV 50 dBµV 45 dBµV 40 dBµV 35 dBµV	1 1 Fig E S 1 71.00 c 100/100 wr 2 3Hz	2 3 Low Cha pectrum 18µV 0 dB ● SWT	2.39 GHz	31.84 dB, tricted Band A RBW 1 MHz VBW 3 MHz VBW 3 MHz 691 Y-value	Mode Aut	OFFT In	put 1 AC	M3	M 2.402 GHz
M2 M3 Receiver Ref Leve Att SGL Count 1Rm AvgP 65 dBµV 60 dBµV 55 dBµV 50 dBµV 40 dBµV 30 dBµV 25 dBµV Start 2.3 C 1arker Type M1	1 1 Fig E S 100/100 S wr I 3Hz I f Trc 1 1	23 Low Cha	2.39 GHz	31.84 dB, tricted Band A RBW 1 MHz VBW 3 MHz VBW 3 MHz 691 691 Y-value 43.82 dB,	Mode Aut	OFFT In	put 1 AC	M3 Stop 2	M 2.402 GHz
M2 M3 Receiver Ref Leve Att SGL Count IRm AvgP S5 dBµV S5 dBµV S5 dBµV S6 dBµV S6 dBµV S6 dBµV S6 dBµV S6 dBµV S6 dBµV S7 dBµV S7 dBµV S8 dBµV S7 dBµV S7 dBµV S8 dBµV	1 1 Fig E S 1 71.00 c 100/100 wr 3Hz f Trc	23 Low Cha pectrum IBµV 0 dB • SWT PS PA	2.39 GHz	31.84 dB, tricted Band A RBW 1 MHz VBW 3 MHz VBW 3 MHz 691 Y-value	Mode Aut Mode Aut	OFFT In	put 1 AC	M3 Stop 2	M 2.402 GHz

	Spectrum 🛛 🛛					
RBV Input 1 AC = Att	W 1 MHz MT O dB Preamp	100 ms ON Step TE	655Rx) Scan			
Level	dBµV	•	Frequency		2 510	0000 GHz
		(65.4				
-10	47.94	(05.4	30		50	5000 GHz)
Scan O1Pk Max		l.		1		
'90 dBµV						
80 авпл						
70 dBµV						
60 dBµV						
50 dBµV				M2		
40 dBµV						
30 dBµV						
20 dBµV						
10 dBµV						
10 000						TF
Start 2.48 GHz						Stop 2.51 GHz
Marker Diagr Type I	Ref Trc S	timulus	Response	Function	Fun	ction Result
Scan N1 Scan N2	1	2.4835 GHz 2.5 GHz	63.93 dBµV 49.53 dBµV			
		inel Restricted I		e Vertical p	eak at 3 met	res
	<u> </u>		•	•		
	Spectrum 🛛 🛛					
RBV	N 1 MHz MT	100 ms	655Rx			
RBV Input 1 AC • Att	W 1 MHz MT 0 dB Preamp	100 ms) Scan		2 510	
RBV Input 1 AC • Att Level	M 1 MHz MT OdB Preamp dBµV	100 ms ON Step TE	Frequency			0000 GHz
RBV Input 1 AC • Att	dBµV	100 ms	Frequency		2.483	0000 GHz
RBV Input 1 AC • Att Level Max Peak -10	M 1 MHz MT OdB Preamp dBµV	100 ms ON Step TE	Frequency			0000 GHz
RBV Input 1 AC • Att Level	dBµV	100 ms ON Step TE	Frequency		2.483	0000 GHz
RBV Input 1 AC • Att Level Max Peak	dBµV	100 ms ON Step TE	Frequency		2.483	0000 GHz
RBV Input 1 AC Att Level Max Peak 10 Scan IPk Max	dBµV	100 ms ON Step TE	Frequency		2.483	0000 GHz
RBV Input 1 AC ● Att Level Max Peak -10 Scan ●1Pk Max 90 dBµV- 80 dBµV- 70 dBµV-	dBµV	100 ms ON Step TE	Frequency		2.483	0000 GHz
RBV Input 1 AC ● Att Level Max Peak •10 Scan ●1Pk Max 90 dBµV 80 dBµV 70 dBµV	dBµV	100 ms ON Step TE	Frequency		2.483	0000 GHz
RBV Input 1 AC ● Att Level Max Peak 10 Scan ● 1Pk Max 90 dBµV 80 dBµV 70 dBµV 60 dBµV	dBµV	100 ms ON Step TE	Frequency	M2	2.483	0000 GHz
RBV Input 1 AC ● Att Level Max Peak ●10 Scan ●1Pk Max 90 dBµV 80 dBµV 70 dBµV 70 dBµV 50 dBµV	dBµV	100 ms ON Step TE	Frequency		2.483	0000 GHz
RBV Input 1 AC ● Att Level Max Peak =10 Scan ● 1Pk Max 90 dBµV 80 dBµV 70 dBµV 70 dBµV 50 dBµV 40 dBµV	dBµV	100 ms ON Step TE	Frequency		2.483	0000 GHz
RBV Input 1 AC ● Att Level Max Peak =10 Scan ● 1Pk Max 90 dBµV 80 dBµV 80 dBµV 70 dBµV 50 dBµV 50 dBµV 30 dBµV	dBµV	100 ms ON Step TE	Frequency		2.483	0000 GHz
RBV Input 1 AC ● Att Level Max Peak =10 Scan ●1Pk Max 90 dBµV 80 dBµV 70 dBµV 70 dBµV 50 dBµV 50 dBµV 40 dBµV 20 dBµV	dBµV	100 ms ON Step TE	Frequency		2.483	0000 GHz
RBV Input 1 AC ● Att Level Max Peak =10 Scan ● 1Pk Max 90 dBµV 80 dBµV 80 dBµV 70 dBµV 50 dBµV 50 dBµV 30 dBµV	dBµV	100 ms ON Step TE	Frequency		2.483	0000 GHz
RBV Input 1 AC ● Att Level Max Peak •10 Scan ● 1Pk Max 90 dBµV 80 dBµV 70 dBµV 70 dBµV 50 dBµV 30 dBµV 20 dBµV 10 dBµV 10 dBµV Start 2.48 GHz	dBµV	100 ms ON Step TE	Frequency		2.483	0000 GHz 5000 GHz) 70
RBV Input 1 AC ● Att Level Max Peak •10 Scan ● 1Pk Max 90 dBµV 80 dBµV 80 dBµV 70 dBµV 90 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV 10 dBµV Start 2.48 GHz Marker		100 ms ON Step TE	so so	M2	2.483	0000 GHz 5000 GHz) 70 70 70 70 70 70 70 70 70 70
RBV Input 1 AC ● Att Level Max Peak =10 Scan ● 1Pk Max 90 dBµV 80 dBµV 80 dBµV 70 dBµV 90 dBµV 50 dBµV 50 dBµV 30 dBµV 20 dBµV 10 dBµV Start 2.48 GHz Marker Diagr Type	Ref Trc S	100 ms ON Step TE	Scan Frequency 30		2.483	0000 GHz) 5000 GHz) 70
RBV Input 1 AC ● Att Level Max Peak =10 Scan ● 1Pk Max 90 dBµV 80 dBµV 80 dBµV 70 dBµV 90 dBµV 30 dBµV 30 dBµV 30 dBµV 10 dBµV Start 2.48 GHz Marker Diagr Type Scan N1 Scan N1	W 1 MHz MT 0 dB Preamp dBµV 46.26 10 10 Ref Trc S 1 1	100 ms ON Step TE	Scan Frequency 30 30 80 <tr< td=""><td>M2</td><td>2.483</td><td>0000 GHz 5000 GHz) 70 70 70 70 70 70 70 70 70 70</td></tr<>	M2	2.483	0000 GHz 5000 GHz) 70 70 70 70 70 70 70 70 70 70

Report Ref: 21E9185-4a Page 27 of 29


Ref Level 7.10 dBy/ RBW 1 MHz Att 0 dB SWT 633 ps VBW 3 MHz Mode Auto FFT Input 1 AC SGL count 100/100 PS PA TOP PS PA TOP PS PA TOP PS PA TOP SGL count 100/100 PS PA TOP PS PA TOP PS PA TOP PS PA TOP SGL count 100/100 PS PA TOP PS PA TOP PS PA TOP PS PA TOP SGL count 100/100 PS PA TOP PS PA TOP PS PA TOP PS PA TOP SGL count 100/100 PS PA TOP PS PA TOP PS PA TOP PS PA TOP SGL count 100/100 PS PA TOP PS PA TOP PS PA TOP PS PA TOP SGL count 100/100 PS PA TOP PS PA TOP PS PA TOP PS PA TOP SGL count 100/100 PS PA TOP PS PA TOP PS PA TOP PS PA TOP SGL count 100/100 PS PA TOP PS PA TOP PS PA TOP PS PA TOP SGL count 100/100 PS PA TOP PS PA TOP PS PA TOP PS PA TOP SGL count 100/100 PS PA TOP PS PA TOP PS PA TOP PS PA TOP P	Receiver	Sp	ectrum	\otimes							
SGL Count 100/100 PS PA TDF 91m AvgPvr										<u>, , ,</u>	
BIR AvgBwr 65 dBµV 65 dBµV 60 dSµV 60 dSµV 55 dBµV 60 dSµV 56 dBµV 60 dSµV 56 dBµV 60 dSµV 56 dBµV 60 dSµV 56 dBµV 60 dSµV 45 dBµV 60 dSµV 45 dBµV 60 dSµV 46 dBµV 60 dSµV 47 dBµV 60 dBµV 48 dBµV 60 dBµV 49 dBµV 60 dBµV 40 dBµV 60 dBµV 40 dBµV 60 dBµV 57 dBµV 60 dBµV 57 dBµV 60 dBµV 57 dBµV 60 dBµV 70 dBµV 7.71 dBµV 71 1 2.488 dHz 72 dBµV 60 dBµV 71 1 2.488 dHz 72 dBµV 60 dBµV 71 1 2.488 dHz 71 1 7.71 dBµV		0 100/100			• VBW 3 MHz	Mode Auto I	FFT Inp	out 1 AC			
b0 db,V 55 db,V 1			-								
b0 db,V 55 db,V 1											
S5 dBUV 50 dBuV 1 <	65 d <mark></mark> BµV—						,				
S5 dBUV 50 dBuV 1 <	60 dPut										
SD dBµv Image: state in the st	1										
45 dBµ/ 40 dBµ/ 41 40 dBµ/ 41											
40 dBµV 41		6									
35 dBµV m2 m2 30 dBµV g m2 30 dBµV g g stort 2.48 GHz 691 pts Stop 2.51 GHz Marker Trpe [Ref Trc X-value 37.71 dBµV Function Function Result M1 1 2.4835 GHz 37.71 dBµV M1 1 2.4835 GHz 37.71 dBµV M2 1 2.55 dBµV m2 Fig B7 High Channel Restricted Band /Band Edge Vertical average at 3 metres Receiver Spectrum (8) Ref Level 71.000 dBµV e RBW 1 MHz Att 0 dB sWT 633 µs v BW 3 MHz Mode Auto FFT Input 1 AC SGL Gount 100/100 PS PA TDF IRm AvgPwr stop 2.51 GHz S0 dBµV stop 2.51 GHz 30 dBµV stop 2.51 GHz Marker Trz Stop 2.51 GHz Marker 1 2.4335 GHz 40.01 dpµV Marker Trob 1 Function Result </td <td>45 dBµV—</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	45 dBµV—										
30 dB _µ V 25 dB _µ V 691 pts Step 2.51 GHz Stert 2.48 GHz 691 pts Step 2.51 GHz Marker Trc X-value Y-value Function M1 1 2.48 GHz 691 pts Step 2.51 GHz Marker Trc X-value Y-value Function Function Result M1 1 2.4835 GHz 37.71 dBµV Function Function Result M2 1 2.5 GHz 32.71 dBµV Function Function Result M2 1 2.5 GHz 37.71 dBµV Function Function Result M2 1 2.6 GHz 37.71 dBµV Function Function Result Fig B7 High Channel Restricted Band /Band Edge Vertical average at 3 metres Stort 2.000 dBµV 0 dBµV PS PA TOF PBW 1 MHz Function Fig B7 91Rm AvgPwr 0 dBµV PS PA TOF PBW 1 MHz Function Fig B7 91Rm AvgPwr 0 dBµV PS PA TOF PS PA TOF Function Fig B7 91 dB B0V PS PA TOF PS PA TOF PS PA TOF Function Fig B7 <td>40 dBµV-</td> <td>M1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	40 dBµV-	M1									
25 dBµV	35 dBµV—										
Start 2.48 GHz 691 pts Stop 2.51 GHz Type Ref Trc X-value Y-value Function Function Result M1 1 2.4835 GHz 37.71 dByV Function Function Result M2 1 2.5 GHz 32.56 dBµV Function Result Function Result M2 1 2.6 GHz 32.56 dBµV Function Result Function Result M2 1 2.6 GHz 32.56 dBµV Function Result Function Result M2 1 2.6 GHz 32.56 dBµV Function Result Function Result Stop 2.51 GHz 8W 1 MHz Function Result Function Result Function Result Att 0 db e SWT 633 µs VBW 3 MHz Mode Auto FFT Input 1 AC SGL Count 100/100 PS PA TDF Function Result Function Result Function Result Function Result 65 dBµV 0 Function Result Function Result Function Result Function Result 50 dBµV Function Result Function Result	30 dBµV—										
Marker Yuge Ref Trc X-value Y-value Function Function Result M1 1 2.4835 GHz 37.71 dbµV Fige	25 dBµV—										
Marker Yuge Ref Trc X-value Y-value Function Function Result M1 1 2.4835 GHz 37.71 dbµV Fild Function Result Functio	Start 7 40	CH-7			601	nte			Stor	2 51 CHz	
Type Ref Trc X-value Y-value Function Function Result M1 1 2.4835 GHz 37.71 dBµV Image: Section Control (Section Result) Image: Section Result) Image: Secti	<u> </u>				091	pes			300	72.01 012	
M2 1 2.5 GHz 32.56 dBµV Fig B7 High Channel Restricted Band /Band Edge Vertical average at 3 metres Receiver Spectrum Image: Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Receiver Spectrum Colspan="2">Colspan="2" Ref Level 71.00 dBµV RBW 1 MHz Of db SWT 633 µs VBW 3 MHz Mode Auto FFT Input 1 AC Sol count 100/100 PS PA TDF Image: Colspan="2">Of dBµV Colspan="2" 65 dBµV Colspan="2" Colspan="2" Stat 2 Mage: Colspan="2" Mit 1 Colspan="2" Stat 2.48 GHz Mage: Colspan="2" Marker Type Ref Trc X-value Y-value Function Function Result Mit 1 2.4835 GHz Marker Toto colspan="2" <th cols<="" td=""><td>Type Re</td><td></td><td></td><td></td><td></td><td></td><td>in </td><td>Fund</td><td>tion Result</td><td>t I</td></th>	<td>Type Re</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>in </td> <td>Fund</td> <td>tion Result</td> <td>t I</td>	Type Re						in	Fund	tion Result	t I
Fig B7 High Channel Restricted Band /Band Edge Vertical average at 3 metres Receiver Spectrum Image: Spectrum											
Receiver Spectrum Ref Level RBW 1 MHz RBW 1 MHz Att 0 dB SWT 633 µS VBW 3 MHz Mode Auto FFT Input 1 AC SGL Count 100/100 PS PA TDF Input 1 AC SGL 60 HL Input 1 AC 9 1Rm AvgPwr Imput 1 AC Imput 1 AC Imput 1 AC Imput 1 AC 65 dBuV Imput 1 AC Imput 1 AC Imput 1 AC Imput 1 AC 50 dBuV Imput 1 AC Imput 1 AC Imput 1 AC Imput 1 AC 50 dBuV Imput 1 AC Imput 1 AC Imput 1 AC Imput 1 AC 50 dBuV Imput 1 AC Imput 1 AC Imput 1 AC Imput 1 AC 50 dBuV Imput 1 AC Imput 1 AC Imput 1 AC Imput 1 AC 50 dBuV Imput 1 AC Imput 1 AC Imput 1 AC Imput 1 AC 50 dBuV Imput 1 AC Imput 1 AC Imput 1 AC Imput 1 AC 50 dBuV Imput 1 AC 50 dBuV Imput 1 AC Imput 1 AC Imput 1 AC <td>IMZ</td> <td>1 1</td> <td></td> <td></td> <td></td> <td></td> <td>Vertical a</td> <td>average at</td> <td>3 metres</td> <td>]</td>	IMZ	1 1					Vertical a	average at	3 metres]	
Ref Level 71.00 dBµV RBW 1 MHz Att 0 dB SWT 633 µS VBW 3 MHz Mode Auto FFT Input 1 AC SGL Count 100/100 PS PA TDF											
Att 0 dB SWT 633 µs VBW 3 MH2 Mode Auto FFT Input 1 AC SGL Count 100/100 PS PA TDF PS PA TDF PS PA TDF PS PA TDF ●1Rm AvgPwr ●1 ●1 ●1 ●1 ●1 65 dBµV ●1 ●1 ●1 ●1 ●1 60 dBµV ●1 ●1 ●1 ●1 ●1 50 dBµV ●1 ●1 ●1 ●1 ●1 50 dBµV ●1 ●1 ●1 ●1 ●1 50 dBµV ●1 ●1 ●1 ●1 ●1 45 dBµV ●1 ●1 ●1 ●1 ●1 ●1 40 dBµV ●1	-	_		_		· · J					
SGL Count 100/100 PS PA TDF IRm AvgPwr	Receiver	Sp	ectrum	_							
● 1Rm AvgPwr 65 dBµV <td>Ref Leve</td> <td> 71.00 dB</td> <td>μV</td> <td>×</td> <td>RBW 1 MHz</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Ref Leve	71.00 dB	μV	×	RBW 1 MHz						
60 dBµV - </td <td>Ref Leve Att</td> <td>I 71.00 dB 0</td> <td>µ∨ dB ● SWT 6</td> <td>(Х) 133 µs</td> <td>RBW 1 MHz</td> <td></td> <td></td> <td>out 1 AC</td> <td></td> <td></td>	Ref Leve Att	I 71.00 dB 0	µ∨ dB ● SWT 6	(Х) 133 µs	RBW 1 MHz			out 1 AC			
60 dBµV - </td <td>Ref Leve Att SGL Count</td> <td>I 71.00 dB 0 100/100</td> <td>µ∨ dB ● SWT 6</td> <td>(Х) 133 µs</td> <td>RBW 1 MHz</td> <td></td> <td></td> <td>out 1 AC</td> <td></td> <td></td>	Ref Leve Att SGL Count	I 71.00 dB 0 100/100	µ∨ dB ● SWT 6	(Х) 133 µs	RBW 1 MHz			out 1 AC			
55 dBµV - </td <td>Ref Leve Att SGL Count</td> <td>I 71.00 dB 0 100/100</td> <td>µ∨ dB ● SWT 6</td> <td>(Х) 133 µs</td> <td>RBW 1 MHz</td> <td></td> <td></td> <td>out 1 AC</td> <td></td> <td></td>	Ref Leve Att SGL Count	I 71.00 dB 0 100/100	µ∨ dB ● SWT 6	(Х) 133 µs	RBW 1 MHz			out 1 AC			
55 dBµV - </td <td>Ref Leve Att SGL Count IRm AvgP</td> <td>I 71.00 dB 0 100/100</td> <td>µ∨ dB ● SWT 6</td> <td>(Х) 133 µs</td> <td>RBW 1 MHz</td> <td></td> <td></td> <td>out 1 AC</td> <td></td> <td></td>	Ref Leve Att SGL Count IRm AvgP	I 71.00 dB 0 100/100	µ∨ dB ● SWT 6	(Х) 133 µs	RBW 1 MHz			out 1 AC			
50 dBµV 45 dBµV 40 dBµV	Ref Leve Att SGL Count 1Rm AvgF 65 dBµV-	I 71.00 dB 0 100/100	µ∨ dB ● SWT 6	(Х) 133 µs	RBW 1 MHz			out 1 AC			
45 dBµV M1 M1 M1 M1 M1 M1 M1 M1 M1 M2	Ref Leve Att SGL Count O 1Rm AvgF 65 dBµV- 60 dBµV-	I 71.00 dB 0 100/100	µ∨ dB ● SWT 6	(Х) 133 µs	RBW 1 MHz			out 1 AC			
40 dBµV 1<	Ref Leve Att SGL Count O 1Rm AvgF 65 dBµV- 60 dBµV-	I 71.00 dB 0 100/100	µ∨ dB ● SWT 6	(Х) 133 µs	RBW 1 MHz			out 1 AC			
40 dBμV 35 dBμV M2 M2 30 dBμV M2 M2 M2 30 dBμV M2 M2 M2 25 dBμV G91 pts Stop 2.51 GHz Stop 2.51 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.4835 GHz 40.01 dBµV H2	Ref Leve Att SGL Count O 1Rm AvgF 65 dBµV- 60 dBµV- 55 dBµV-	I 71.00 dB 0 100/100	µ∨ dB ● SWT 6	(Х) 133 µs	RBW 1 MHz			out 1 AC			
30 dBµV 30 dBµV 25 dBµV 691 pts Start 2.48 GHz 691 pts Marker 1 M1 1 M1 1 2.5 GHz 32.77 dBµV	Ref Leve ■ Att SGL Count ● 1Rm AvgF 65 dBµV 60 dBµV 55 dBµV 50 dBµV	V 71.00 dB 0 100/100 Wr	µ∨ dB ● SWT 6	(Х) 133 µs	RBW 1 MHz			out 1 AC			
25 dBµV Image: Constraint of the second	Ref Leve ■ Att SGL Count 0 1Rm AvgF 65 d8µV- 60 d8µV- 55 d8µV- 50 d8µV- 45 d8µV-	V 71.00 dB 0 100/100 Wr	µ∨ dB ● SWT 6	(Х) 133 µs	RBW 1 MHz			put 1 AC			
Start 2.48 GHz 691 pts Stop 2.51 GHz Marker Ype Ref Trc X-value Y-value Function Function Result M1 1 2.4835 GHz 40.01 dBµV M2 1 2.5 GHz 32.77 dBµV	Ref Leve ● Att SGL Count 0 1Rm AvgF 65 d8µV 60 d8µV 55 d8µV 50 d8µV 45 d8µV 40 d8µV	V 71.00 dB 0 100/100 Wr	µ∨ dB ● SWT 6	(Х) 133 µs	RBW 1 MHz		FFT Inp	Dut 1 AC			
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.4835 GHz 40.01 dBμV 40.	Ref Leve ■ Att SGL Count 0 1Rm AvgF 65 dBµV 60 dBµV 55 dBµV 50 dBµV 45 dBµV 40 dBµV 35 dBµV	V 71.00 dB 0 100/100 Wr	µ∨ dB ● SWT 6	(Х) 133 µs	RBW 1 MHz		FFT Inp	Dut 1 AC			
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.4835 GHz 40.01 dBµV M2 1 2.5 GHz 32.77 dBµV	Ref Leve ● Att <u>SGL Count</u> 61Rm AvgF 65 dBµV 60 dBµV 55 dBµV 50 dBµV 45 dBµV 45 dBµV 35 dBµV 30 dBµV	V 71.00 dB 0 100/100 Wr	µ∨ dB ● SWT 6	(Х) 133 µs	RBW 1 MHz		FFT Inp	Dut 1 AC			
Type Ref Trc X-value Y-value Function Function Result M1 1 2.4835 GHz 40.01 dBµV M2 1 2.5 GHz 32.77 dBµV	Ref Leve ■ Att <u>SGL Count</u> 9 1Rm AvgF 65 dBµV 60 dBµV 55 dBµV 50 dBµV 45 dBµV 45 dBµV 35 dBµV 30 dBµV 25 dBµV	M1	µ∨ dB ● SWT 6	(Х) 133 µs	RBW 1 MHz VBW 3 MHz	Mode Auto I	FFT Inp	Dut 1 AC			
M1 1 2.4835 GHz 40.01 dBμV M2 1 2.5 GHz 32.77 dBμV	Ref Leve Att SGL Count SGL Count 65 dBµV 60 dBµV 50 dBµV 50 dBµV 45 dBµV 35 dBµV 30 dBµV 25 dBµV Start 2.48	M1	µ∨ dB ● SWT 6	(Х) 133 µs	RBW 1 MHz VBW 3 MHz	Mode Auto I	FFT Inp	out 1 AC	Stop		
	Ref Leve Att SGL Count SGL Count 65 dBµV 60 dBµV 50 dBµV 50 dBµV 45 dBµV 35 dBµV 30 dBµV 25 dBµV Start 2.48	M1 GHz	μV dB • SWT 6 PS PA *	8 105 105 105 105 105 105 105 105	RBW 1 MHz VBW 3 MHz	Mode Auto I	FFT Inp			(∇)	
Fig B8 High Channel Restricted Band /Band Edge Horizontal average at 3 metres	Ref Leve Att SGL Count SGL Count 65 dBµV 60 dBµV 50 dBµV 50 dBµV 40 dBµV 35 dBµV 30 dBµV 25 dBµV Start 2.48 Marker Type M1	M1 GHz f Trc 100/100	μV dB • SWT 6 PS PA ⁻	8 33 μs TDF	■ RBW 1 MHz ■ VBW 3 MHz ■ 1 ■ 1 ■ 1 ■ 1 ■ 1 ■ 1 ■ 1 ■ 1	Mode Auto I	FFT Inp			(∇)	
	Ref Leve Att SGL Count ● 1Rm AvgF 65 dBµV 60 dBµV 50 dBµV 50 dBµV 45 dBµV 40 dBµV 30 dBµV 25 dBµV Start 2.48 Marker	M1 GHz	μV dB • SWT 6 PS PA *	8 105 105 105 105 105 105 105 105	RBW 1 MHz VBW 3 MHz	Mode Auto I	FFT Inp			(∇)	


Appendix C

Orientations for Radiated Emissions

Appendix D Block Diagrams of test set up

End of Report