

Compliance Engineering Ireland Ltd Clonross Lane, Derrockstown, Dunshaughlin Co. Meath, Ireland A85 XN59 Ph +353 1 8017000, 8256722 www.cei.ie

Test Report Num	24E10894-1a Part 1 of 2		
Quotation	Q24-2009-1		
Prepared For	Alps Electric (Ireland) Limited		
Company Address	Clara Road, Mountleader,		
	Millstreet, Co. Cork , Ireland		
Contact	Donal O'Shea		
Contact Email	Donal.oshea-1@alps.ie		
Contact Phone	+ 353(29)70677		
Prepared By	Compliance Engineering Ireland		
Test Lab Address	Clonross Lane, Derrockstown,		
	Dunshaughlin, Co. Meath, Ireland		
Tested By	Michael Kirby / Joy Dalayap		
Test Report By	Michael Kirby		
FCC Test Firm Registration	IE0002		
ISED CAB identifier:	IE0001		
Date	15 th Oct 2024		
EUT Description	Asset Tracker		
FCC ID	2AT4V-HATI		
IC ID	26629-HATI		
Authorised by	Paul Reilly		
Authorised Signature:	Par Ruly		

TEST SUMMARY

FCC 15.247 Section	RSS-247 Section	TEST PARAMETERS	Test Result
15.247 (a)2	RSS-247 5.2a	6dB bandwidth	Pass
15.247 (e)	RSS-247 5.2b	Power Spectral Density	Pass
15.247 (b)3	RSS-247 5.4d	Output power Conducted	Pass
15.247 (d)	RSS-247 5.5	Conducted Spurious Emissions	Pass
15.205 15.209	RSS Gen 8.9 RSS Gen 8.10	Radiated Spurious Emissions	Pass
	RSS Gen 6.7	99% bandwidth	Pass

The equipment complies with the requirements according to the following standards.

 RSS 247
 Issue 3
 Aug 2023

 RSS-Gen
 Issue 5 Apr 2018 + Amd1 Mar 2019 + Amd2 Feb 2021

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL, WITHOUT THE WRITTEN APPROVAL OF COMPLIANCE ENGINEERING IRELAND LTD

Exhibit A – Technical Report

Tab	ble of Contents	
1.0	EUT DESCRIPTION	4
1. 1.	.1 EUT OPERATION	5 5
2	EMISSIONS MEASUREMENTS	7
2. 2.		
3.0	RESULTS FOR CONDUCTED EMISSIONS ON THE MAINS	8
4.	CONDUCTED MEASUREMENTS	9
4. 4. 5. 5. 5. 5.	SPURIOUS EMISSIONS MEASUREMENTS	
6	LIST OF TEST EQUIPMENT	21
7	MEASUREMENT UNCERTAINTIES	22
	Appendix AConducted Measurements on the Antenna PortAppendix BRadiated tests for Band Edges /Restricted bandAppendix CRadiated Spurious EmissionsAppendix DConducted Emissions on the MainsAppendix EEUT Orientations for Radiated EmissionsAppendix FBlock Diagrams of test set up	

Ref report "Alps 24E10894-1a Hati BLE FCCIC Part 2 of 2 for appendices C,D,E",F

1.0 EUT Description

FCC ID	2AT4V-HATI
IC ID	26629-HATI
Туре:	Asset Tracker
Type of radio:	Stand-alone

BLE

Type of radio:	Stand-alone
Transmitter Type:	BLE
Operating Frequency Range(s):	2.402 GHz - 2.480GHz
Number of Channels:	40
Power configuration:	3.7v Battery.
Ports:	None
Classification:	DTS
BLE Antenna Type :	Chip antenna
BLE Antenna Gain Max:	5 dBi
Antenna Impedance:	50 ohms
Test Standards:	15.247 RSS-247
Test Methodology:	Measurements performed according to the procedures in
	ANSI C63.10-2013

The EUT was an asset tracker reporting on the BLE and cellular networks.

The EUT contains a custom BLE radio and a pre certified cellular module from Quectel FCC ID: XMR2021BC660KGL, IC: 10224A-2021BC660GL

This report details test carried out on the custom BLE transmitter with the cellular module off.

There are multiple EUT models based on the same artwork and firmware and the only difference is in how the EUT is powered,

i.e. a) battery only,

b) powered from battery and external dc source and

c) powered from battery / external mains adapter.

All models were tested and the worst case results are reported here.

1.1 EUT Operation Operating Conditions during Test:

Conducted measurements were carried out on a sample (labelled "EVA2KV") where the antenna was replaced by cable and SMA.

The EUT was powered from mains to DC power adapter from CUI INC model: SW16-12-E.

The EUT was operated in test mode where the channel and modulation was set via USB connection from the EUT to a laptop.

Radiated measurements were performed on one sample of the of EUT (labelled "C6MZLK"), with BLE active and the cellular switched off. The EUT was powered from mains to DC power adapter from CUI INC model: SW16-12-E. Radiated Emissions were performed in CE mode

Environmental conditions

	Temperature	Relative Humidity
Test	°C	%
Conducted Emissions	21.2	49
Radiated Emissions <1GHz	18	42
Radiated Emissions >1GHz	19	47

1.2 Modifications

No modifications were required in order to pass the test specifications.

1.3 Date of Test

The tests were carried out on 27th and 30th Sept and 10th Oct 2024.

1.4 Description of Test modes Channel List

Channel	Channel	Freq MHz
Low	1	2402
Mid	19	2426
High	39	2480

All tests were performed with the EUT on the low mid and high channels.

2 Emissions Measurements

2.1 Conducted Emissions Measurements

Radio Conducted measurements were carried out on the EUT as per section 1.1 above.

All results were measured as conducted on the antenna except radiated spurious emissions.

2.2 Radiated Emissions Measurements

Radiated Power measurements were made at the Compliance Engineering Ireland Ltd anechoic chamber located in Dunshaughlin, Co. Meath, Ireland to determine the radio noise radiated from the EUT. A "Description of Measurement Facilities" has been submitted to the FCC and approved pursuant to Section 2.948 of CFR 47 of the FCC rules.

The EUT was centred on a motorized turntable, which allows 360 degree rotation.

Emissions below 1GHz were measured using a test antenna positioned at a distance of 3 metres from the EUT (as measured from the closest point of the EUT). The radiated emissions were maximised by configuring the EUT, by rotating the EUT, and by raising and lowering the antenna from 1 to 4 metres. In this case the resolution bandwidth was 100kHz.

Emissions in the 1GHz-18GHz range were measured using a horn antenna located at 3 metres distance from the EUT in a fully anechoic chamber.

The radiated emissions were maximised by configuring the EUT and by rotating the EUT, and by raising and lowering the test antenna from 1 to 4 metres.

Emissions above 18GHz were measured using a horn antenna located at 1 metre distance from the EUT in a fully anechoic chamber. The radiated emissions peaks where detected were maximised by configuring the EUT and by rotating the EUT and raising the test and antenna from 1 to 4 metres.

In this case the resolution bandwidth was 1MHz and video bandwidth was 3 MHz. for peak measurements. The Video bandwidth was changed to 10Hz for Average measurements (as per ANSI 63.10 2013 Section 4.1.4.2.3)

A pre-scan was performed to determine the worst case EUT orientation for the radiated measurements.

All radiated tests were performed with the EUT in orientation O3 for Horizontal polarization measurements and with the EUT in orientation O2 for Vertical polarisation measurements.

Ref Appendix D for orientations.

3.0 Results for Conducted emissions on the mains

Detector	Frequency	Reading	Margin	Phase
QP/ Ave	MHz	dBuV	dB	L/N
Quasi-Peak	0.1500	27.03	-38.97	Live
Average	0.5055	11.61	-34.39	Live
Quasi-Peak	0.5100	39.27	-16.73	Live
Quasi-Peak	1.6823	29.13	-26.87	Live
Quasi-Peak	2.753	28.05	-27.95	Live
Quasi-Peak	3.824	25.77	-30.23	Live
Average	28.685	6.30	-43.7	Live
Quasi-Peak	29.949	9.85	-50.15	Live

Test not performed as the host for the EUT is battery powered only

Detector Frequency Reading Margin Phase QP/ Ave MHz dBuV dB L/N Quasi-Peak 0.1500 36.82 -29.18 Neutral 0.5055 12.14 -33.86 Neutral Average -16.38 Neutral Quasi-Peak 0.5100 39.62 Quasi-Peak 1.6823 -27.12 28.88 Neutral

27.04

24.30

6.34

11.39

-28.96

-31.7

-43.66

-48.61

Neutral

Neutral

Neutral

Neutral

Quasi-Peak 29.9490

2.7533

3.8243

28.6845

Test Result: Pass

Quasi-Peak

Quasi-Peak

Average

4. Conducted Measurements

4.1 Bandwidth 4.1.1 6dB bandwidth

Test Method As per Ansi 63.10 Section 11.8.2

Ansi63.10 Section 11.8.2 Option 2

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW \ge 3 × RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \ge 6 dB. Limit for 6dB Bandwidth = 500KHz min

₽ ന്നി (X) Spectrum 3 **(X)** \mathbf{x} Spectrum Spectrum 2 Spectrum 4 Receiver Ref Level 20.00 dBm Offset 10.00 dB 👄 RBW 100 kHz 30 dB SWT 18.9 µs 👄 **VBW** 300 kHz Att Mode Auto FFT Input 1 AC ∋1Pk Max ndB 6.00 dB 723.60000000 kHz Bw 10 dBm· Q factor 3427.4 Τ2 T1/ 0 dBm -10 dBm -20 dBm -30 dBm· 40 dBm -50 dBm· -60 dBm -70 dBm· CF 2.48 GHz 691 pts Span 5.0 MHz Marker Type | Ref | Trc <u>X-value</u> Y-value Function **Function Result** 6.42 dBm M1 1 2.48 GHz ndB down 723.6 kHz 2.4796454 GHz 0.42 dBm ndB 6.00 dB Τ1 1 2.480369 GHz 0.54 dBm Q factor Τ2 1 3427.4 Fig 1 6dB Bandwidth

Frequency	6dB Bandwidth	Limit Min	Margin
GHz	KHz	KHz	KHz
2.402	723.60	500	223.60
2.426	709.1	500	209.10
2.48	723.6	500	223.60

Result :- Pass

4.1.2 99% bandwidth

Test	Method	
1031	Mothou	

As per Ansi 63.10 Section 6.9.3

Ansi63.10 Section 6.9.3 Occupied bandwidth—power bandwidth (99%) measurement procedure

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

The following procedure shall be used for measuring 99% power bandwidth:

a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.

b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.

c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.

d) Step a) through step c) might require iteration to adjust within the specified range.

e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.

f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.

g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

Receiv	er	s	pectrum	xs	pectrum 2	🗴 Spe	ectrum	3 X S	pectrum 4	× 🕎
Ref Lev	el 20	0.00 dB	m Offset	10.00 dB	🔵 RBW 20 kH	z				
Att		25 d	ib SWT	189.5 µs	🔵 VBW 50 kH	z Mode A	Auto FFT	Input 1 A	с	
PS										
⊖1Pk Ma	Х					-				
						C	CC BW		1.0750	000000 MHz
10 dBm-										
10 dbm						MI				
0 dBm—					200	AL	_			_
-10 dBm·					T1 Walnanthanthant	. www.	T2			
					X		N.			
-20 dBm·					1'					
-30 dBm·				my	/			man		
-40 dBm·	_		J	V			V	h		
-50 dBm·			monor					N.	m	
-50 dBm·	- M	marian	and a second						mour	mannen
-60 dBm	V-M									a mar rollinger
-70 dBm·							-			
CF 2.48	GHz			I	500	0 pts		L	Spa	an 5.0 MHz
Marker						•			1/160 •	
Type	Ref	Trc	X-va	lue	Y-value	Fund	tion	Fu	inction Resul	t
M1		1		0695 GHz	2.44 d					
Τ1		1	2.479	4645 GHz	-13.06 d	Bm C	Doc Bw			1.075 MHz
T2		1	2,480	5395 GHz	-12.58 d	Bm				
					Fig 2 999	% Bandwidth				

Frequency	99% Bandwidth
GHz	MHz
2.402	1.06
2.426	1.067
2.48	1.075

4.2 Duty Cycle

Test Method

As per Ansi 63.10 Section 11.6 zero span measurement method

Ansi63.10 Section **11.6 Duty cycle (***D***), transmission duration (***T***), and maximum power control level Preferably, all measurements of maximum conducted (average) output power will be performed with the EUT transmitting continuously (i.e., with a duty cycle of greater than or equal to 98%). When continuous operation cannot be realized, then the use of sweep triggering/signal gating techniques can be used to ensure that measurements are made only during transmissions at the maximum power control level. Such sweep triggering/signal gating techniques will require knowledge of the minimum transmission duration (***T***) over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Sweep triggering/signal gating techniques can then be used if the measurement/sweep time of the analyzer can be set such that it does not exceed** *T* **at any time that data are being acquired (i.e., no transmitter OFF-time is to be considered).**

Receiv	/er	<u> </u>	Spectrum	🗴 Spe	ctrum 2	X	Spe	ctrum	з 🗴	Spec	ctrum 4	× T	
Ref Le Att TRG: VI			Bm Offset dB 🖷 SWT	10.00 dB 🖷 3 ms	RBW 5 MH VBW 5 MH		In	put 1 A	٨C				
O1AP C	2872.2												
10 dBm·) dBm Mle					D3[1] M1[1] D3					0.00 dB 2.14638 ms 3 6.76 dBm		
0 dBm—	A							+[+]				-34.78 µs	
-10 dBm	ı 												
-20 dBm	ı — ———												
-30 dBm	Ţ ŢŢŢ ŢŖ	RG -29	9.000 dBm====										
-40 dBm	1			,		-							
-50 dBm	ı— <mark> </mark> —												
-60 dBm	1 <mark>/</mark>												
-70 dBm	1 <mark></mark>					-							
CF 2.43	26 GH	z			69	1 pts						300.0 μs/	
Marker													
Туре	Ref	Trc	X-valu		Y-value		Func	tion		Funct	ion Resul	t	
M1		1		4.78 µs	6.76 d								
D2 D3	M1 M1	1		3.33 µs 638 ms	-0.13 -0.00								
					Fig 3	Duty	Cycle						

Duty Cycle =

Note the duty cycle results above shows how the sample operated during testing.

One Period uS	Pulse Width uS	Duty Cycle	Duty Cycle
2146.38	33.3	0.9845	98.45%

4.3 Power Spectral Density

Test Method As per Ansi 63.10 Section 11.10.2

Ansi63.10 Section Section 11.10.2 Method PKPSD (peak PSD)

The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz \leq RBW \leq 100 kHz.
- d) Set the VBW ≥ [3 × RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

Receiver	Spe	ctrum	🗴 Spe	ctrum	2 🛛	Spe	ctrum 3	×	Spectrum 4	× 🖫
Ref Level	20.00 dBm	Offset	10.00 dB 🧉	RBW	100 kHz					
Att	30 dB	SWT	3 ms 🦷	VBW	300 kHz	Mode	Auto FFT	Input	1 AC	
⊖1Pk Max										Ì
					27					
10 dBm					N41					
				1000	V					
0 dBm										
0 dbiii										
-10 dBm—										
10 dbiii										
-20 dBm—										
20 0.011										
-30 dBm										
00 00										
-40 dBm										
-50 dBm				_						
-60 dBm			-							
-70 dBm				_						
CF 2.48 GH	17				1001 pt	c	-		Qna	1 1.0 MHz
Marker					1001.ht				օրո	1 1.0 10112
Type Ref	Trc	X-valu	e	Y-va	lue	Func	tion		Function Result	1
M1	1		0 14 GHz		60 dBm	1 4110				
<u> </u>				Fig 4 P	ower Spec	tral Dens	itv			

Frequency	Conducted Peak	Limit	Margin
GHz	dBm	dBm	dB
2.402	6.69	8	1.31
2.426	6.68	8	1.32
2.48	6.6	8	1.40

Result :- Pass

4.4 Output power Conducted

4.4.1 Test Method

As per Ansi 63.10 Section 11.9..1.1

Ansi63.10 Section 11.9.1.1 RBW ≥ DTS bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

a) Set the RBW \geq DTS bandwidth.

b) Set VBW ≥ [3 × RBW].

c) Set span ≥ [3 × RBW].

d) Sweep time = auto couple.

e) Detector = peak.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use peak marker function to determine the peak amplitude level.

4.4.2 Results

Receiver	Spe	ctrum	🗴 Spe	ctrum 2	🗴 Spe	ctrum 3	🗴 Sp	ectrum 4	× T
Ref Level	20.00 dBm	Offset 1	0.00 dB 👄	RBW 5 MHz					
Att	30 dB	SWT	1 ms	VBW 5 MHz	Mode Au	uto Sweep	Input 1 A	С	
😑 1Pk Max									
10 dBm				M	1				
						-			
0 40									
0 dBm——									
10 10									
-10 dBm									
oo daas									
-20 dBm									
-30 dBm									d
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm			1						
CF 2.48 GF	lz		1	691	pts	1	1	 Span	20.0 MHz
Marker					-				6
Type Re	f Trc	X-valu	e	Y-value	Func	tion	Euno	ction Result	
M1	1	2.4799	42 GHz	6.72 dB	m				
				Fig 5 Output	power Peak				

	 P • • • •	

	Conducted		
Frequency	Measurement Peak	Limit	Margin
GHz	dBm	dBm	dB
2.402	6.74	30	23.26
2.426	6.79	30	23.21
2.48	6.72	30	23.28

Test Result :- Pass

5. Spurious Emissions Measurements

5.1 Conducted Spurious Emissions

5.1.1 Test Method

As per Ansi63.10 Section 11.11.1 and 6.10.4

Ansi63.10 Section 11.11.1 General

Typical regulatory requirements specify that in any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions89: a) If the maximum peak conducted output power procedure was used to determine compliance as described in 11.9.1, then the peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz (i.e., 20 dBc).

Ansi63.10 Section 6.10.4 Authorized-band band-edge measurements (relative method)

These procedures are applicable for determining compliance at authorized-band band-edges where the requirements are expressed as a value relative to the in-band signal level. Procedures for determining compliance with field strength limits at or close to the band-edges are given in 6.10.6 (see also Table A.2).

5.1.2 Results

Frequency	Peak 100KHz RBW	dBc Limit Min	Margin	Result
GHz	dBm	dB	dB	P/F
2.402	6.83	20	-	-
4.804	-63.89	20	50.72	Pass
7.206	-73.51	20	60.34	Pass
9.608	-75.78	20	62.61	Pass
12.01	-50.82	20	37.65	Pass
2.529	-42.27	20	29.1	Pass
2.274	-43.26	20	30.09	Pass

Frequency	Peak 100KHz RBW	dBc Limit Min	Margin	Result
GHz	dBm	dB	dB	P/F
2.426	6.61	20	-	-
4.852	-61.65	20	48.26	Pass
7.278	-70.43	20	57.04	Pass
9.704	-75.49	20	62.1	Pass
12.13	-51.08	20	37.69	Pass
2.298	-42.74	20	29.35	Pass
2.554	-43.03	20	29.64	Pass

Frequency	Peak 100KHz RBW	dBc Limit Min	Margin	Result						
GHz	dBm	dB	dB	P/F						
2.48	6.67	20	-	-						
4.96	-68.96	20	55.63	Pass						
7.44	-65.32	20	51.99	Pass						
9.92	-70.51	20	57.18	Pass						
12.4	-56.95	20	43.62	Pass						
2.532	-42.85	20	29.52	Pass						
2.608	-41.92	20	28.59	Pass						
Ref Appendix A	Ref Appendix A for Scans									

Test Result: - Pass

5.2 Radiated Spurious Emissions in Restricted bands

5.2.1 Test Method

As per Ansi63.10 Section 11.12.1 and 6.10.5

Ansi63.10 Section 11.12.1 Radiated emission measurements

Because the typical emission requirements are specified in terms of radiated field strength levels, measurements performed to determine compliance have traditionally relied on a radiated test configuration.⁹² Radiated measurements remain the principal method for determining compliance to the specified requirements; however antenna-port conducted measurements are also now acceptable to determine compliance (see 11.12.2 for details). When radiated measurements are utilized, test site requirements and procedures for maximizing and measuring radiated emissions that are described in 6.3, 6.5, and 6.6 shall be followed

6.10.5 Restricted-band band-edge measurements

These procedures are applicable for determining compliance at band edges of restricted bands. **6.10.5.1 Test setup**

Restricted-band band-edge tests shall be performed as radiated measurements, on a test site meeting the specifications in 5.2 at the measurement distances specified in 5.3.57

The instrumentation shall meet the requirements in 4.1.1 using the bandwidths and detectors specified in 4.1.4.2. Considering the requirements of 5.8, the antenna(s) shall be connected to the antenna ports. When performing radiated measurements, the measurement antenna(s) shall meet the specifications in 4.3. The EUT shall be connected to an antenna and operated at the highest power settings following procedures in 6.3, and the relevant procedure in 6.4, 6.5, or 6.6

As per Ansi 63.10 Section 11.12.2.5.2

Report Ref: 24E10894-1a Part 1 of 2 Page 16 of 34

5.2.2 Low Channel

Frequency	Reading Peak dBuV/m	EUT Orientation	Antenna Polarity V/H	Antenna Factor dB	Preamp Gain dB	Cable loss dB	Final Field Strength Peak dBuV/m	Average Limit dBuV/m	Margin for Peak v Average Limit +20dB dB	Result P/F
				-		-			-	
2.258	27.3	02	Vertical	28	0	4.7	60.0	54.0	14.0	Pass
2.274	28.3	O1	Horizontal	28	0	4.7	61.0	54.0	13.0	Pass
4.804	47.9	O2	Vertical	33.1	39.3	7.8	49.5	54.0	24.5	Pass
12.010	44.7	O2	Vertical	39.2	37.3	10.9	57.5	54.0	16.5	Pass
4.804	50.1	01	Horizontal	33.1	39.3	7.8	51.7	54.0	22.3	Pass
12.010	44.9	01	Horizontal	39.2	37.3	10.9	57.7	54.0	16.3	Pass

Final Field Strength Peak (dBuV/m) =Reading Peak (dBuV/m) + Antenna Factor (dB)- Pre-amp Gain (dB) +Cable Loss (dB) Calculation Example 60 = 27.3 + 28 - 0 + 4.7

Frequency	Reading Average	EUT Orientation	Antenna Polarity	Antenna Factor	Preamp Gain	Cable loss	Final Field Strength Average	Average Limit	Margin	Result
GHz	dBuV/m		V/H	dB	dB	dB	dBuV/m	dBuV/m	dB	P/F
2.258	1.7	02	Vertical	28	0	4.7	34.4	54.0	19.6	Pass
2.274	11.0	O1	Horizontal	28	0	4.7	43.7	54.0	10.3	Pass
12.010	34.6	O2	Vertical	39.2	37.3	10.9	47.4	54.0	6.5	Pass
12.010	34.8	01	Horizontal	39.2	37.3	10.9	47.6	54.0	6.3	Pass

Final Field Strength Average (dBuV/m) =Reading Average (dBuV/m) + Antenna Factor (dB)- Pre-amp Gain (dB) + Cable Loss (dB) Calculation Example 34.4 = 1.7 + 28 - 0 + 4.7

Test Result Pass

5.2.3 Mid Channel

Frequency	Reading Peak	EUT Orientation	Antenna Polarity	Antenna Factor	Preamp Gain	Cable loss	Final Field Strength Peak	Average Limit	Margin for Peak v Average Limit +20dB	Result
GHz	dBuV/m		V/H	dB	dB	dB	dBuV/m	dBuV/m	dB	P/F
2.282	14.4	O2	Vertical	28	0	4.7	47.1	54.0	26.9	Pass
2.282	18.5	01	Horizontal	28	0	4.7	51.2	54.0	22.8	Pass
4.852	48.2	O2	Vertical	33.2	39	7.8	50.2	54.0	23.8	Pass
7.278	49.4	02	Vertical	36.2	40.6	10.1	55.1	54.0	18.9	Pass
12.130	44.1	02	Vertical	39.1	37	10.9	57.1	54.0	16.9	Pass
4.852	48.2	O1	Horizontal	33.2	39	7.8	50.2	54.0	23.8	Pass
7.278	49.8	O1	Horizontal	36.2	40.6	10.1	55.5	54.0	18.5	Pass
12.130	44.7	O1	Horizontal	39.1	37	10.9	57.7	54.0	16.3	Pass

Final Field Strength Peak (dBuV/m) =Reading Peak (dBuV/m) + Antenna Factor (dB)- Pre-amp Gain (dB) + Cable Loss (dB) Calculation Example 47.1 = 14.4 + 28 - 0 + 4.7

Report Ref: 24E10894-1a Part 1 of 2 Page 17 of 34

Frequency	Reading Average	EUT Orientation	Antenna Polarity	Antenna Factor	Preamp Gain	Cable loss	Final Field Strength Average	Average Limit	Margin	Result
GHz	dBuV/m		V/H	dB	dB	dB	dBuV/m	dBuV/m	dB	P/F
7.278	42.4	O2	Vertical	36.2	40.6	10.1	48.1	54.0	5.9	Pass
12.130	34.4	O2	Vertical	39.1	37	10.9	47.4	54.0	6.6	Pass
7.278	45.2	O1	Horizontal	36.2	40.6	10.1	50.9	54.0	3.1	Pass
12.130	34.6	O1	Horizontal	39.1	37	10.9	47.6	54.0	6.3	Pass

Final Field Strength Average (dBuV/m) =Reading Average (dBuV/m) + Antenna Factor (dB)- Pre-amp Gain (dB) +Cable Loss (dB)

Calculation Example 48.1 = 42.4 + 36.2 - 40.6 + 10.1

Test Result Pass

Frequency	Reading Peak	EUT Orientation	Antenna Polarity	Antenna Factor	Preamp Gain	Cable loss	Final Field Strength Peak	Average Limit	Margin for Peak v Average Limit +20dB	Result
GHz	dBuV/m		V/H	dB	dB	dB	dBuV/m	dBuV/m	dB	P/F
2.352	24.4	02	Vertical	28.4	0	4.8	57.6	54.0	16.4	Pass
4.960	48.7	02	Vertical	33.5	39.2	8	51.0	54.0	23.0	Pass
7.440	49.8	O2	Vertical	36.6	40.8	10.4	56.0	54.0	18.0	Pass
12.400	43.0	01	Vertical	39	37.1	11.3	56.2	54.0	17.8	Pass
2.352	24.2	O1	Horizontal	28.4	0	4.8	57.4	54.0	16.6	Pass
4.960	49.2	O1	Horizontal	33.5	39.2	8	51.5	54.0	22.5	Pass
7.440	50.4	O1	Horizontal	36.6	40.8	10.4	56.6	54.0	17.4	Pass
12.400	43.4	O1	Horizontal	39	37.1	11.3	56.6	54.0	17.4	Pass

5.2.4 High Channel

Final Field Strength Peak (dBuV/m) =Reading Peak (dBuV/m) + Antenna Factor (dB)- Pre-amp Gain (dB) +Cable Loss (dB) Calculation Example 57.6 = 24.4 + 28.4 - 0 + 4.8

Frequency	Reading Average	EUT Orientation	Antenna Polarity	Antenna Factor	Preamp Gain	Cable loss	Final Field Strength Average	Average Limit	Margin	Result
GHz	dBuV/m		V/H	dB	dB	dB	dBuV/m	dBuV/m	dB	P/F
2.352	7.0	O2	Vertical	28.4	0	4.8	40.2	54.0	13.8	Pass
7.440	43.0	O2	Vertical	36.6	40.8	10.4	49.2	54.0	4.8	Pass
12.400	32.8	O1	Vertical	39	37.1	11.3	46.0	54.0	8.0	Pass
2.352	7.1	O1	Horizontal	28.4	0	4.8	40.3	54.0	13.7	Pass
7.440	46.4	O1	Horizontal	36.6	40.8	10.4	52.6	54.0	1.4	Pass
12.400	33.3	O1	Horizontal	39	37.1	11.3	46.5	54.0	7.5	Pass

Final Field Strength Average (dBuV/m) =Reading Average (dBuV/m) + Antenna Factor (dB)- Pre-amp Gain (dB) +Cable Loss (dB) (dB) Calculation Example 40.2 = 7 + 28.4 - 0 + 4.8

Salculation Example 40.2 = 7 + 28.4 - 0 + 4

Test Result Pass

5.3 Radiated Band Edge / Restricted band Measurements

11.13.3.2 Peak detection

When using a peak detector to measure unwanted emissions at or near the band edge (within 2 MHz of the authorized band), the following integration procedure can be used:

a) Set instrument center frequency to the frequency of the emission to be measured (must be within 2 MHz of the authorized band edge).

b) Set span to 2 MHz.

c) RBW = 100 kHz.

d) VBW \geq [3 × RBW].

e) Detector = peak.

f) Sweep time = auto.

g) Trace mode = max hold.

h) Allow sweep to continue until the trace stabilizes (required measurement time may increase for low-duty-cycle applications).

i) Compute the power by integrating the spectrum over 1 MHz using the analyzer's band power measurement function with band limits set equal to the emission frequency ($f_{emission}$) ± 0.5 MHz. If the instrument does not have a band power function, then sum the amplitude levels (in power units) at 100 kHz intervals extending across the 1 MHz spectrum defined by $f_{emission} \pm 0.5$ MHz.

11.12.2.5.1 Trace averaging with continuous EUT transmission at full power

If the EUT can be configured or modified to transmit continuously ($D \ge 98\%$), then the average emission levels shall be measured using the following method (with EUT transmitting continuously):

a) RBW = 1 MHz (unless otherwise specified).

b) VBW \geq [3 × RBW].

c) Detector = RMS (power averaging), if [span / (# of points in sweep)] \leq (RBW / 2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.

d) Averaging type = power (i.e., rms):

1) As an alternative, the detector and averaging type may be set for linear voltage averaging.

2) Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.

e) Sweep time = auto.

f) Perform a trace average of at least 100 traces.

5.3.1 Result Radiated Restricted Band and band edge near 2.4 GHz band

The EUT meets the Peak limit of 74 dBuV/m and the Average limit of 54dBuV/m.

Ref Appendix B for scans and results

Test Result: - Pass

5.4 Radiated Power at fundamental

Frequency GHz	Reading Peak dBuV/m	EUT Orientation	Antenna Polarity V/H	Antenna Factor dB	Preamp Gain dB	Cable loss dB	Final Field Strength Peak dBuV/m	Transmitted Power dBm	Limit	Margin dB	Result P/F
2.402	66.9	O2	Vertical	28.6	0	4.8	100.3	5.1	36.0	30.9	Pass
2.402	67.9	O1	Horizontal	28.6	0	4.8	101.3	6.1	36.0	29.9	Pass
2.426	66.5	O2	Vertical	28.6	0	4.8	99.9	4.7	36.0	31.3	Pass
2.426	66.5	O1	Horizontal	28.6	0	4.8	99.9	4.7	36.0	31.3	Pass
2.480	65.6	O2	Vertical	28.6	0	4.9	99.1	3.9	36.0	32.1	Pass
2.480	66.6	01	Horizontal	28.6	0	4.9	100.1	4.9	36.0	31.1	Pass

Final Field Strength Peak (dBuV/m) =Reading Peak (dBuV/m) + Antenna Factor (dB)- Pre-amp Gain (dB) +Cable Loss (dB) Calculation Example 100.1 = 66.6 + 28.6 - 0 + 4.9

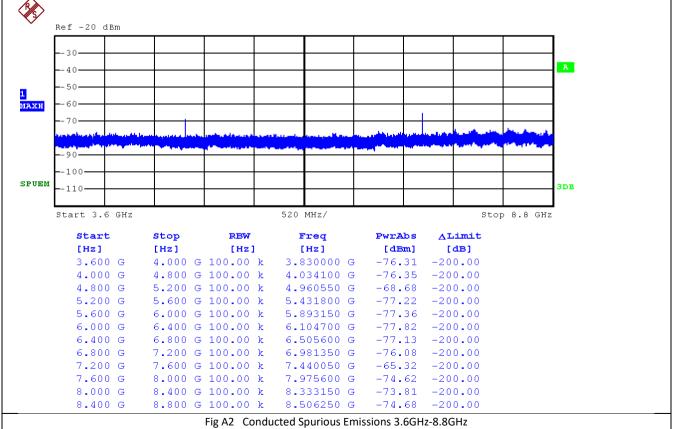
Transmitted power (dBm) = Final Field Strength Peak (dBuV/m) -95.2 dB Calculation Example 5.1 = 100.3 - 95.2

Note the Radiated field strength was measured at 3 metres and the conversion formula below was used to determine the EIRP in dBm $EIRP (dBm) = E_{3m} (dBuV/m) - 95.2$

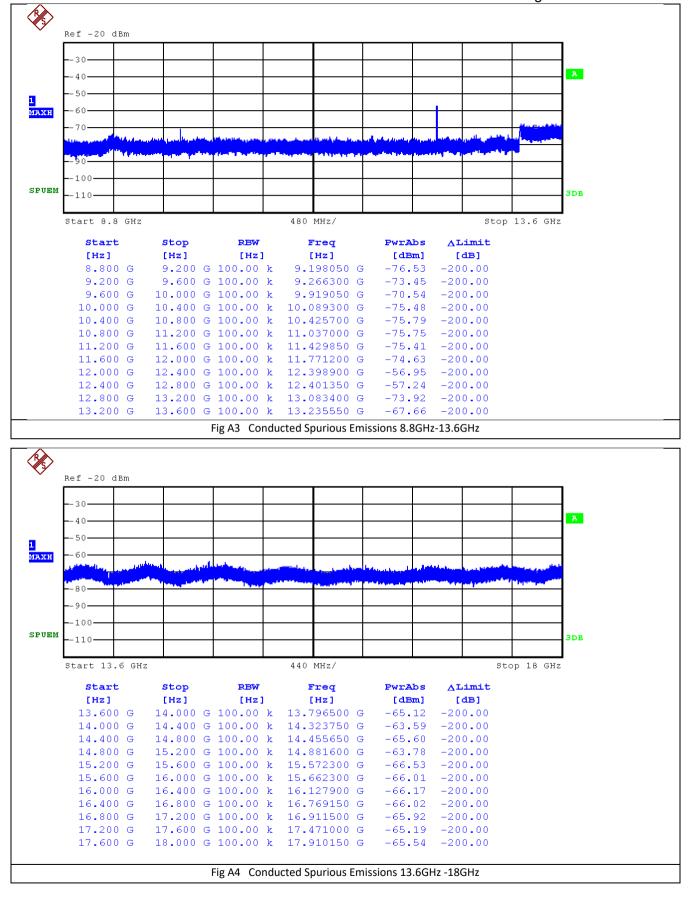
6 List of Test Equipment

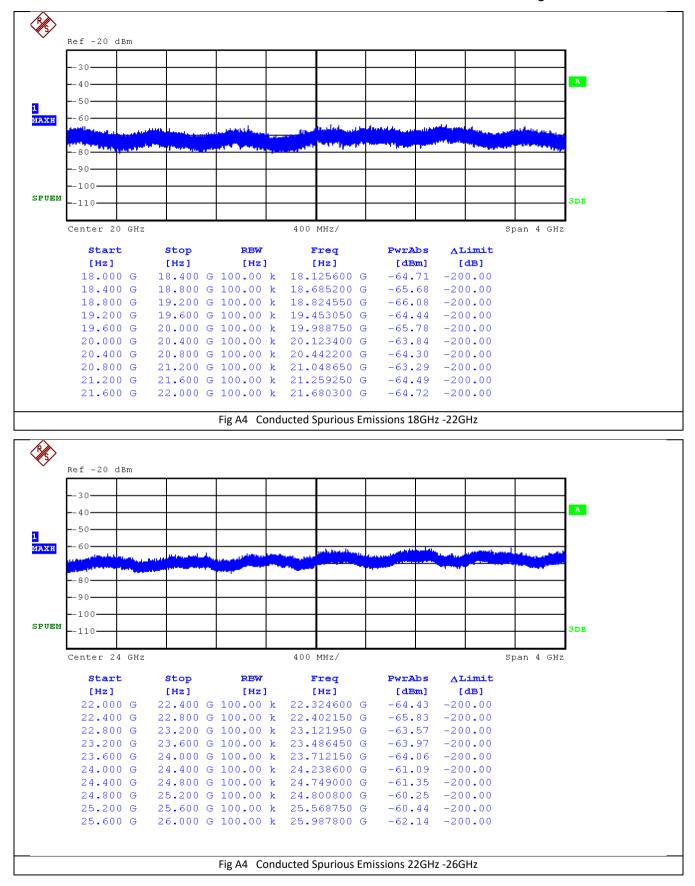
Instrument	Manufacturer	Model	Serial Num	CEI Ref	Cal Date	Cal Interval Months
Microwave Preamplifier	Hewlett Packard	83017A	3123A00175	805	29-Sep-23	12
Spectrum Analyser 30Hz-40GHz	Rohde & Schwarz	FSP40	100053	850	08-Dec-21	36
Test Receiver 3.6GHz Antenna Horn	Rohde & Schwarz EMCO	ESR 3115	1316.3003k03- 101625-s 2363	869 1100	23-May-23 19-Feb-23	36
Fully Anechoic Chamber	CEI	FAR 3M	906	906	11-May-23	36
Anechoic Chamber	CEI	SAR 10M	845	845	10-Sep-22	36
Antenna Biconical	Schwarzbeck	VHBB 9124	9124 667	871	04-Oct-21	36
Antenna Log Periodic	AH Systems	SAS200/510	1001	784	14-Nov-22	36
Antenna Horn Standard Gain 18- 26.5GHz	A-Info	LB-42-25-C- KF	J2021091103028	877	29-Sep-23	12
Cable 20m				1213	02-Aug-24	12
Cable purple Ktype 1.8m				917	02-Aug-24	12
Cable HF Ktype 1.5m				705	02-Aug-24	12
LISN	Rohde & Schwarz	ESH3-Z5	825460/003	604	22-Feb-23	36

7 Measurement Uncertainties


Measurement	Uncertainty
Radio Frequency	+/- 5x10 ⁻⁷
Maximum Frequency Deviation	+/- 1.7 %
Conducted Emissions	+/- 1 dB
Radiated Emission 30MHz-100MHz	+/- 5.3 dB
Radiated Emission 100MHz-300MHz	+/- 4.7 dB
Radiated Emission 300MHz-1GHz	+/- 3.9 dB
Radiated Emission 1GHz-40GHz	+/- 3.8 dB
Modulation bandwidth	+/- 5x10 ⁻⁷
Duty Cycle	+/- 5 %
Power supply	±0.1 VDC
Temperature	±0.2 °C
Frequency	±0.01 ppm

The measurement uncertainties stated were calculated with a k=2 for a confidence level of over 95% as per ETS TR100 028.


The test data can be compared directly to the specification limit to determine compliance, as the calculated measurement uncertainty meets the requirements of the applicable specification.


Report Ref: 24E10894-1a Part 1 of 2 Page 24 of 34

Receive		-	ctrun									[₩
		BW 10		MT	100 ms			1 10dB	3_att			
Input 1			10 dB	Preamp	OFF	Step	TD Scan					
Scan O	1Pk Ma;	×			,		_,	·				·
		ł	100	MHz	1 1 1		1			1	GHz I	
20 dBm—							-					
10 dBm—				-			1					M1
0 dBm												
-10 dBm-		1										
-20 dBm-							-					
-30 dBm-												
-40 dBm-							1					
-50 dBm-							1					_/ <mark>1</mark>
-60 dBm-		1		nA.			-				1	
-70 dBm-	Mark W	-All	m	P' You	u i	100	-					A M
-80 dBm-					a abounded	m	moun	manna	~~~~~~~	(~~~)WPMW	hange brill many toll	• • • •
-90 dBm-							1					
		1			Ì		1					т
Start 30	.0 MHz				· · ·		Ċ.					Stop 3.6 GHz
1arker												
Diagr	Туре	Ref			mulus		Respo		Fur	nction	Function	Result
Scan	N1		1		480025			46 dBm				
Scan	D2	N1	1]	100.01			9.31 dB				
Scan	D3	N1	1		-128.0	1		3.38 dB				
				Fig A	1 Condu	cted Spu	rious Emi	ssions 30	MHz -3	.6GHz		
RA												

Report Ref: 24E10894-1a Part 1 of 2 Page 25 of 34

Report Ref: 24E10894-1a Part 1 of 2 Page 27 of 34

Recei	ver	Sp	ectrum 🗵									
Att PS TD	="	0.00 dBn 40 dB		-	✔ 100 kHz ✔ 300 kHz	Ma	de Auti	D FFT	Inp	ut 1 AC		
O1Pk M	ах]
10 dBm 0 dBm- -10 dBr -20 dBn -30 dBn -40 dBn -50 dBn -60 dBn		h L	M2		umand		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~		hankan	M3
100 5000 5000-0000												
Start 2	.478	GHz			691	pts					Stop	2.501 GHz
Marker		ne ne 10000									Service of the St	i
Туре		Trc	X-value		Y-value	1	Funct	tion		Fur	nction Result	: 1
M1		1	2.480014 G	Hz	6.67 dB	m						
M2		1	2.4835 G	Hz	-46.59 dB	m						
MЗ		1	2.5 G	Hz	-47.04 dB	m						
				Fig A	5 Carrier po	wer	100KHz	RBW				

Report Ref: 24E10894-1a Part 1 of 2 Page 28 of 34

Receiver	Spe	ctrum	(X)						
Ref Level	20.00 dBm		e RBV	V 100 kHz					(.
Att	40 dB	SWT 19 µ	is 👄 VBV	V 300 kHz 🛛 M	ode Auto	FFT Inp u	at 1 AC		
PS TDF 1Pk Max									
10 10						5	MI		
10 dBm						Δ.			
0 dBm						1~	-1		
						1			
-10 dBm							1		
-20 dBm									
20 4211					1	\sim	V	N	
-30 dBm—								1	
40 d8m				M2				M	
-40 dBm	3			Amerik	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			5	man
-50 dBm									
-60 dBm									
-70 dBm									
56 5433 5436-L36282313									
CF 2.4 GH	z		I	691 p	its			Span	10.0 MHz
Marker								-	
	f Trc	X-value		Y-value	Func	tion	Fund	tion Result	
M1 M2	1		12 GHz	6.83 dBn -42.40 dBn					
M2 M3	1		96 GHz	-46.57 dBn					
ι[1	ower Band Edge I		l Conducted]
			•						
			_						
Receiver	Spe	ctrum	®						
	Spe 20.00 dBm	ctrum		3W 100 kHz					
Ref Level Att	20.00 dBm		e Ri	3W 100 kHz BW 300 kHz	Mode Aut	oFFT In	put 1 AC		
Ref Level Att PS TDF	20.00 dBm		e Ri		Mode Aut	o FFT In	put 1 AC		
Ref Level Att	20.00 dBm		e Ri		Mode Aut	o FFT In	put 1 AC		V
Ref Level Att PS TDF 0 1Pk Max	20.00 dBm		e Ri		Mode Aut	o FFT In	put 1 AC		♥
Ref Level Att PS TDF	20.00 dBm		e Ri		Mode Aut	o FFT In	put 1 AC		♥
Ref Level Att PS TDF IPk Max 10 dBm M1	20.00 dBm		e Ri		Mode Aut	o FFT In	put 1 AC		
Ref Level Att PS TDF 1Pk Max 10 dBm-M1 0 dBm	20.00 dBm		e Ri		Mode Aut	o FFT In	put 1 AC		
Ref Level Att PS TDF IPk Max 10 dBm M1	20.00 dBm		e Ri		Mode Aut	o FFT In	put 1 AC		
Ref Level Att PS TDF 1Pk Max 10 dBm 0 dBm -10 dBm	20.00 dBm		e Ri		Mode Aut	o FFT In	put 1 AC		
Ref Level Att PS TDF 1Pk Max 10 dBm-M1 0 dBm	20.00 dBm		e Ri		Mode Aut	o FFT In	put 1 AC		
Ref Level Att PS TDF 1Pk Max 10 dBm 0 dBm -10 dBm	20.00 dBm 40 dB		e Ri		Mode Aut	o FFT In	put 1 AC		
Ref Level Att PS TDF 1Pk Max 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm-	20.00 dBm 40 dB	SWT 37.9	e Ri		Mode Aut	o FFT In	put 1 AC		
Ref Level Att PS TDF 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 40 dB	SWT 37.9	e Ri		Mode Aut				M3
Ref Level Att PS TDF 1Pk Max 10 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	20.00 dBm 40 dB	SWT 37.9	e Ri		Mode Aut	o FFT In			
Ref Level Att PS TDF 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	20.00 dBm 40 dB	SWT 37.9	e Ri		Mode Aut				M3
Ref Level Att PS TDF 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 40 dB	SWT 37.9	e Ri		Mode Aut				M3
Ref Level Att PS TDF 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	20.00 dBm 40 dB	SWT 37.9	e Ri		Mode Aut				M3
Ref Level Att PS TDF • 1Pk Max • 10 dBm • 0 dBm • -10 dBm • -20 dBm • -30 dBm • -50 dBm • -60 dBm •	20.00 dBm 40 dB	SWT 37.9	e Ri		Mode Aut				M3
Ref Level Att PS TDF • 1Pk Max • 10 dBm • 0 dBm • -10 dBm • -20 dBm • -30 dBm • -50 dBm • -60 dBm •	20.00 dBm 40 dB	SWT 37.9	e Ri						M3
Ref Level Att PS TDF • 1Pk Max • • 1Pk Max • • 0 dBm • • 10 dBm • • 10 dBm • • 20 dBm • • -20 dBm • • -30 dBm • • -40 dBm • • -50 dBm • • -60 dBm • • 70 dBm • Start 2.47 Marker	20.00 dBm 40 dB	SWT 37.9	• Rt	BW 300 kHz				Stop 2	M3
Ref Level Att PS TDF • 1Pk Max • • 1Pk Max • • 0 dBm • • 10 dBm • • 10 dBm • • -10 dBm • • -20 dBm • • -30 dBm • • -40 dBm • • -50 dBm • • -60 dBm • • 70 dBm • Start 2.47 Marker Type Re	20.00 dBm 40 dB	SWT 37.9	• Rt	BW 300 kHz	nts				M3
Ref Level Att PS TDF 1Pk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 2.47 Marker Type M1	20.00 dBm 40 dB	SWT 37.9	• Rt 9 μs • VI	BW 300 kHz	איייייייייייייייייייייייייייייייייייי			Stop 2	M3
Ref Level Att PS TDF • 1Pk Max • • 1Pk Max • • 0 dBm • • 10 dBm • • 10 dBm • • -10 dBm • • -20 dBm • • -30 dBm • • -40 dBm • • -50 dBm • • -60 dBm • • 70 dBm • Start 2.47 Marker Type Re	20.00 dBm 40 dB	SWT 37.9	• Rt	BW 300 kHz	••••••••••••••••••••••••••••••••••••••			Stop 2	M3

Appendix B Radiated tests for Band Edges /Restricted band

Report Ref: 24E10894-1a Part 1 of 2 Page 30 of 34

Receiver	Spe	ctrum	× s	pectrum 2	🗶 Spe	ctrum 3	×		
Ref Level 9	~ ~			RBW 1 MHz					
Att PS TDF	0 dB	SWT	13.3 µs 🥌	VBW 3 MHz	Mode Auto	OFFT I	nput 1 AC		
O1Pk Max									
80 dBµV								-	
70 dBµV									
60 dB p V				M4	МЗ				M1
mm	m	m	m	Mom	mon	m	m	M2	~~~~
50 dBµV									
40 dBµV									
30 dBµV	2								
20 dBµV									
10 dBµV									
0 dBµV									
Start 2.3 GH	z			69	1 pts	1		Stop 2	.402 GHz
Marker								•	,
Type Ref		X-va		Y-value	Func	tion	Fu	nction Result	
M1 M2	1		2.4 GHz 2.39 GHz	59.71 d 53.14 d					
M3	1		3541 GHz	56.69 d	ЗµУ				
M4	1		3801 GHz	58.84 d 58.24 d					
M5	1								
M5	1			- A.		Vertical F	Peak at 3 metr	es	
M5				Restricted Ba		Vertical F	Peak at 3 metr	es	
Receiver	~		ow Channe	- A.	nd /Band Edge	Vertical F	_	25	
Receiver Ref Level 9	∑Spe 0.00 dBµV	Fig B1 L ctrum	ow Channe	Restricted Bar pectrum 2 RBW 1 MHz	Ad /Band Edge	ctrum 3	×	es	
Receiver Ref Level 9 Att	Spe 0.00 dBµV 0 dB	Fig B1 L ctrum SWT	ow Channe	Restricted Ba	nd /Band Edge	ctrum 3	_	25	
Receiver Ref Level 9	Spe 0.00 dBµV 0 dB 00/100	Fig B1 L ctrum	ow Channe	Restricted Bar pectrum 2 RBW 1 MHz	Ad /Band Edge	ctrum 3	×	25	
Receiver Ref Level 9 Att SGL Count 1	Spe 0.00 dBµV 0 dB 00/100	Fig B1 L ctrum SWT	ow Channe	Restricted Bar pectrum 2 RBW 1 MHz	Ad /Band Edge	ctrum 3	×	es	
Receiver Ref Level 9 Att SGL Count 1	Spe 0.00 dBµV 0 dB 00/100	Fig B1 L ctrum SWT	ow Channe	Restricted Bar pectrum 2 RBW 1 MHz	Ad /Band Edge	ctrum 3	×	25	
Receiver Ref Level 9 Att SGL Count 1 O 1Rm AvgPwr	Spe 0.00 dBµV 0 dB 00/100	Fig B1 L ctrum SWT	ow Channe	Restricted Bar pectrum 2 RBW 1 MHz	Ad /Band Edge	ctrum 3	×		
Receiver Ref Level 9 Att SGL Count 1 0 1Rm AvgPwr 80 dBµV 70 dBµV	Spe 0.00 dBµV 0 dB 00/100	Fig B1 L ctrum SWT	ow Channe	Restricted Bar pectrum 2 RBW 1 MHz	Ad /Band Edge	ctrum 3	×		
Receiver Ref Level 9 Att SGL Count 1 O 1Rm AvgPwi 80 dBµV	Spe 0.00 dBµV 0 dB 00/100	Fig B1 L ctrum SWT	ow Channe	Restricted Bar pectrum 2 RBW 1 MHz	Ad /Band Edge	ctrum 3	×		
Receiver Ref Level 9 Att SGL Count 1 0 1Rm AvgPwr 80 dBµV 70 dBµV	Spe 0.00 dBµV 0 dB 00/100	Fig B1 L ctrum SWT	ow Channe	Restricted Bai	Ad /Band Edge	ctrum 3	×	es m2	
Receiver Ref Level 9 Att SGL Count 1 O 1Rm AvgPwr 80 dBµV 70 dBµV 60 dBµV	Spe 0.00 dBµV 0 dB 00/100	Fig B1 L ctrum SWT	ow Channe	Restricted Bai	Ad /Band Edge	ctrum 3	×		
Receiver Ref Level 9 Att SGL Count 1 O1Rm AvgPwir 80 80 80 80 dBµV 70 80 70 dBµV 60 40 40 dBµV 1 1	Spe 0.00 dBµV 0 dB 00/100	Fig B1 L ctrum SWT	ow Channe	Restricted Bai	Ad /Band Edge	ctrum 3	×		
Receiver Ref Level 9 Att SGL Count 1 ● 1Rm AvgPwr 80 dBµV 9 80 dBµV 9 9 70 dBµV 9 9 60 dBµV 9 9 40 dBµV 9 9 30 dBµV 9 9	Spe 0.00 dBµV 0 dB 00/100	Fig B1 L ctrum SWT	ow Channe	Restricted Bai	Ad /Band Edge	ctrum 3	×		
Receiver Ref Level 9 Att SGL Count 1 O1Rm AvgPwir 80 80 80 80 dBµV 70 80 70 dBµV 60 40 40 dBµV 1 1	Spe 0.00 dBµV 0 dB 00/100	Fig B1 L ctrum SWT	ow Channe	Restricted Bai	Ad /Band Edge	ctrum 3	×		
Receiver Ref Level 9 Att SGL Count 1 ● 1Rm AvgPwr 80 dBµV 9 80 dBµV 9 9 70 dBµV 9 9 60 dBµV 9 9 40 dBµV 9 9 30 dBµV 9 9	Spe 0.00 dBµV 0 dB 00/100	Fig B1 L ctrum SWT	ow Channe	Restricted Bai	Ad /Band Edge	ctrum 3	×		
Receiver Ref Level 9 Att 9 SGL Count 1 ● 1Rm AvgPwi 9 80 dBµV 9 70 dBµV 9 60 dBµV 9 40 dBµV 10 dBµV 20 dBµV 10 dBµV	Spe 0.00 dBµV 0 dB 00/100	Fig B1 L ctrum SWT	ow Channe	Restricted Bai	Ad /Band Edge	ctrum 3	×		
Receiver Ref Level 9 Att SGL Count 1 ● 1Rm AvgPwin 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV	Spe 0.00 dBµV 0 dB 00/100	Fig B1 L ctrum SWT	ow Channe	Restricted Bai	Ad /Band Edge	ctrum 3	×		
Receiver Ref Level 9 Att SGL Count 1 ● 1Rm AvgPwi 80 dBµV 9 80 dBµV 9 9 70 dBµV 9 9 60 dBµV 9 9 40 dBµV 9 10 20 dBµV 10 10	Spee 0.00 dBµV 0 dB 00/100	Fig B1 L ctrum SWT	ow Channe	M3	Ad /Band Edge	ctrum 3	×	M2	
Receiver Ref Level 9 Att SGL Count 1 ● 1Rm AvgPwin 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV 10 dBµV 10 dBµV Start 2.3 GH	Spec 0.00 dBµV 0 dB 00/100	Fig B1 L Ctrum SwT TDF	.ow Channe	Restricted Bai	Mode Auto	ctrum 3	nput 1 AC	M2	MI
Receiver Ref Level 9 Att SGL Count 1 • 1Rm AvgPwin 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV 10 dBµV 10 dBµV Start 2.3 GH Marker Type Ref	Spec 0.00 dBµV 0 dB 00/100	Fig B1 L ctrum SWT	ow Channe	Restricted Bai	Mode Auto	ctrum 3	nput 1 AC	M2	MI
Receiver Ref Level 9 Att SGL Count 1 ● 1Rm AvgPwin 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV 10 dBµV 10 dBµV Start 2.3 GH	Spec 0.00 dBµV 0 dB 00/100	Fig B1 L Ctrum SwT TDF	.ow Channe	M3 M3 M3 M4 M3 M4 M3 M4 M3 M4 M3 M4 M3 M4 M3 M4 M3 M4 M3 M4 M3 M4 M3 M4 M3 M4 M3 M4 M3 M4 M3 M4 M3 M4 M3 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4	Mode Auto	ctrum 3	nput 1 AC	M2	MI
Receiver Ref Level 9 Att SGL Count 1 ● 1Rm AvgPwin 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV 10 dBµV 10 dBµV Start 2.3 GH Marker Type M1	Spec 0.00 dBµV 0 dB 00/100 	Fig B1 L Ctrum SWT TDF	ow Channe	Restricted Bai	Mode Auto Mode Auto	ctrum 3	nput 1 AC	M2	MI

Report Ref: 24E10894-1a Part 1 of 2

Receiver	Spe	ctrum	🗴 Sp	ectrum 2	× Spe	ctrum	3 (×		
	90.00 dBµV			RBW 1 MHz						
Att PS TDF	0 dB	SWT 13.	.3 µs 🖷 '	VBW 3 MHz	Mode Aut)	Input	1 AC		
😑 1Pk Max										
80 dBµV										
70 dBµV										
60 dBg√			M	4	M3				100 million	MI
mon	m	m	m	ham	man	m	~~~	min	M2	hand
50 dBµV										
40 dBµV										
30 dBµV										
20 dBµV										
20 uBµv—										
10 dBµV										
0 dBµV										
									29 (Jahor	
Start 2.3 G	Hz			691	pts				Stop	2.402 GHz
Marker Type Re	f Trc	X-value	<u> </u>	Y-value	Fund	tion		Eupe	tion Result	- I
M1	1		.4 GHz	59.71 dB	VL VL	,		- i unit	LION RESUL	<u> </u>
M2	1		39 GHz	53.14 dB						
M3 M4	1		41 GHz O1 GHz	56.69 dB 58.84 dB						
M5	1		13 GHz	58.24 dB						
	F	ig B3 Low C	Channel F	Restricted Band	/Band Edge	Horizont	al Peak a	at 3 metre	s	
					0					
	Υ							_		
Receiver	-	ctrum		ectrum 2		ctrum	3 (×		
Ref Level	90.00 dBµV			RBW 1 MHz	(X) Spe	ctrum		×		
	90.00 dBµV 0 dB					ctrum		×		
Ref Level Att	90.00 dBµV 0 dB 100/100	SWT 13.		RBW 1 MHz	(X) Spe	ctrum		×		
Ref Level Att SGL Count 9 1Rm AvgP	90.00 dBµV 0 dB 100/100	SWT 13.		RBW 1 MHz	(X) Spe	ctrum		×		
Ref Level Att SGL Count	90.00 dBµV 0 dB 100/100	SWT 13.		RBW 1 MHz	(X) Spe	ctrum		×		
Ref Level Att SGL Count 9 1Rm AvgP	90.00 dBµV 0 dB 100/100	SWT 13.		RBW 1 MHz	(X) Spe	ctrum		×		
Ref Level Att SGL Count O 1Rm AvgP 80 dBµV	90.00 dBµV 0 dB 100/100	SWT 13.		RBW 1 MHz	(X) Spe	ctrum		×		
Ref Level Att SGL Count ● 1Rm AvgP 80 dBµV	90.00 dBµV 0 dB 100/100	SWT 13.		RBW 1 MHz	(X) Spe	ctrum		×	M2	
Ref Level Att SGL Count O 1Rm AvgP 80 dBµV	90.00 dBµV 0 dB 100/100	SWT 13.		RBW 1 MHz VBW 3 MHz	(X) Spe	ctrum		×	M2	
Ref Level Att SGL Count ● 1Rm AvgP 80 dBµV	90.00 dBµV 0 dB 100/100	SWT 13.		RBW 1 MHz VBW 3 MHz	(X) Spe	ctrum		×	M2	
Ref Level Att SGL Count ● 1Rm AvgP 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV	90.00 dBµV 0 dB 100/100	SWT 13.		RBW 1 MHz VBW 3 MHz	(X) Spe	ctrum		×	M2	
Ref Level Att SGL Count ● 1Rm AvgP 80 dBµV- 70 dBµV- 60 dBµV- 50 dBµV-M	90.00 dBµV 0 dB 100/100	SWT 13.		RBW 1 MHz VBW 3 MHz	(X) Spe	ctrum		×	M2	
Ref Level Att SGL Count ● 1Rm AvgP 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV	90.00 dBµV 0 dB 100/100	SWT 13.		RBW 1 MHz VBW 3 MHz	(X) Spe	ctrum		×	M2	
Ref Level Att SGL Count ● 1Rm AvgP 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV	90.00 dBµV 0 dB 100/100	SWT 13.		RBW 1 MHz VBW 3 MHz	(X) Spe	ctrum		×	M2	
Ref Level Att SGL Count ● 1Rm AvgP 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV 10 dBµV	90.00 dBµV 0 dB 100/100	SWT 13.		RBW 1 MHz VBW 3 MHz	(X) Spe	ctrum		×	M2	
Ref Level Att SGL Count ● 1Rm AvgP 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV	90.00 dBµV 0 dB 100/100	SWT 13.		RBW 1 MHz VBW 3 MHz	(X) Spe	ctrum		×	M2	
Ref Level Att SGL Count ● 1Rm AvgP 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV 10 dBµV 0 dBµV	90.00 dBµV 0 dB 100/100 wr	SWT 13.		RBW 1 MHz VBW 3 MHz	X Spe	ctrum		×		
Ref Level Att SGL Count ● 1Rm AvgP 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV 10 dBµV	90.00 dBµV 0 dB 100/100 wr	SWT 13.		RBW 1 MHz VBW 3 MHz	(X) Spe	ctrum		×		
Ref Level Att SGL Count ● 1Rm AvgP 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV 10 dBµV 0 dBµV Start 2.3 G Marker Type Re	90.00 dBµV 0 dB 100/100 wr 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	SWT 13. TDF	.3 μs • Υ	RBW 1 MHz VBW 3 MHz	Spe Mode Auto Auto Auto pts Func	CTRUM		× 1 AC		2.402 GHz
Ref Level Att SGL Count ● 1Rm AvgP 80 dBµV 70 dBµV 60 dBµV 50 dBµV 50 dBµV 20 dBµV 10 dBµV 0 dBµV Start 2.3 G Marker Type M1	90.00 dBµV 0 dB 100/100 wr 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	SWT 13. TDF	.3 μs • •	RBW 1 MHz VBW 3 MHz M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3	X Spe Mode Auto	CTRUM		× 1 AC	Stop	2.402 GHz
Ref Level Att SGL Count ● 1Rm AvgP 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV 10 dBµV 0 dBµV Start 2.3 G Marker Type Re	90.00 dBµV 0 dB 100/100 wr 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	SWT 13. TDF	.3 μs • •	RBW 1 MHz VBW 3 MHz M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3	X Spe Mode Auto	CTRUM		× 1 AC	Stop	2.402 GHz
Ref Level Att SGL Count ● 1Rm AvgP 80 dBµV 70 dBµV 60 dBµV 50 dBµV 50 dBµV 20 dBµV 10 dBµV 0 dBµV Start 2.3 G Marker Type M1 M2	90.00 dBµV 0 dB 100/100 wr 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	SWT 13. TDF	.3 μs • •	RBW 1 MHz VBW 3 MHz M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3	Spe Mode Auto Aut	ctrum		× 1 AC	Stop	2.402 GHz

Page 31 of 34

Report Ref: 24E10894-1a Part 1 of 2 Page 32 of 34

Receive	er	Spect	trum	x	Spe	ctrum 2	\otimes					[₩
Ref Leve	el 90.00	dBµV			😑 RB'	W 1 MHz						`
Att		0 dB	SWT	3.8 µs	e vb	W 3 MHz	Mode Aut	o FFT	Input	: 1 AC		
PS TDF	1											
							1					
1												
80 dBµ <mark>y</mark> -												
70 dBµV+												
ло авру-	-											
60 dBµV-		1				_						
		V								~		M2
50 dBµV-												
40 dBµV-												
30 dBµV-												
зо церу-												
20 dBµV-						_						
10 dBµV-				_					1			
O dBµV—							15. 				1	
Start 2.4	-8 GHz					691	. pts				St	op 2.501 GHz
Marker	. 1						1					
Type F M1	Ref Trc		X-val	ue 4835 G	115	<u>Y-value</u> 54.98 dB		nction		Fur	iction Re:	sult
M1 M2	1	-	2.4	4835 G 2.5 G		53.26 dB						
		<u></u>	σ B5 H			Restricted Ban		ve Verti	cal Pea	k at 3 metre	20	
			6 5 5 11	-B C C	inner i				cur i cu	it at 5 metre		
								-				
Receive	r Y	Spect	rum	(X)	Sne		_					Ē
Receive		Spect	trum	X		ctrum 2	®					
Ref Leve	el 90.00	dBµV			e RB'	ctrum 2 W 1 MHz	Ø					
Ref Leve Att	el 90.00	dBµ∨ O dB			e RB'	ctrum 2 W 1 MHz	_					
Ref Leve Att	el 90.00 nt 100/10	dBµ∨ O dB	swt :		e RB'	ctrum 2 W 1 MHz	Ø					⊞ ⊽
Ref Leve Att SGL Cou	el 90.00 nt 100/10	dBµ∨ O dB	swt :		e RB'	ctrum 2 W 1 MHz	Ø					₹
Ref Leve Att SGL Cou	el 90.00 nt 100/10	dBµ∨ O dB	swt :		e RB'	ctrum 2 W 1 MHz	Ø					
Ref Leve Att SGL Cou	el 90.00 nt 100/10	dBµ∨ O dB	swt :		e RB'	ctrum 2 W 1 MHz	Ø					
Ref Leve Att SGL Cou	el 90.00 nt 100/10	dBµ∨ O dB	swt :		e RB'	ctrum 2 W 1 MHz	Ø					
Ref Leve Att SGL Cou 1Rm Avy 80 dBµV- 70 dBµV-	el 90.00 nt 100/10	dBµ∨ O dB	swt :		e RB'	ctrum 2 W 1 MHz	Ø					
Ref Leve Att SGL Cou 1Rm Avg 80 dBµV-	el 90.00 nt 100/10	dBµ∨ O dB	swt :		e RB'	ctrum 2 W 1 MHz	Ø					
Ref Leve Att SGL Cou 1Rm Avy 80 dBµV- 70 dBµV- 60 dBµV-	el 90.00	dBµ∨ O dB	swt :		e RB'	ctrum 2 W 1 MHz	Ø					
Ref Leve Att SGL Cou 1Rm Avy 80 dBµV- 70 dBµV-	el 90.00	dBµV 0 dB 00	swt :		e RB'	ctrum 2 W 1 MHz	Ø					
Ref Leve Att SGL Cou 1Rm Avy 80 dBµV- 70 dBµV- 60 dBµV-	el 90.00	dBµV 0 dB 00	swt :		e RB'	ctrum 2 W 1 MHz	Ø					
Ref Leve Att SGL Cou 1Rm Avg 80 dBµV- 70 dBµV- 60 dBµV- 50 dBµV-	el 90.00	dBµV 0 dB 00	swt :		e RB'	ctrum 2 W 1 MHz	Ø					
Ref Leve Att SGL Cou 1Rm Avg 80 dBµV- 70 dBµV- 60 dBµV- 50 dBµV-	el 90.00	dBµV 0 dB 00	swt :		e RB'	ctrum 2 W 1 MHz	Ø					
Ref Leve Att SGL Cou 1Rm Avy 80 dBµV- 70 dBµV- 60 dBµV- 50 dBµV- 40 dBµV- 30 dBµV-	el 90.00	dBµV 0 dB 00	swt :		e RB'	ctrum 2 W 1 MHz	Ø					
Ref Leve Att SGL Cou ● 1Rm Avy 80 dBµV- 70 dBµV- 60 dBµV- 50 dBµV- 40 dBµV-	el 90.00	dBµV 0 dB 00	swt :		e RB'	ctrum 2 W 1 MHz	Ø					
Ref Leve Att SGL Cou 1Rm Avy 80 dBµV- 70 dBµV- 60 dBµV- 50 dBµV- 40 dBµV- 30 dBµV- 20 dBµV-	el 90.00	dBµV 0 dB 00	swt :		e RB'	ctrum 2 W 1 MHz	Ø					
Ref Leve Att SGL Cou 1Rm Avy 80 dBµV- 70 dBµV- 60 dBµV- 50 dBµV- 40 dBµV- 30 dBµV-	el 90.00	dBµV 0 dB 00	swt :		e RB'	ctrum 2 W 1 MHz	Ø					
Ref Leve Att SGL Cou 1Rm Avy 80 dBµV- 70 dBµV- 60 dBµV- 50 dBµV- 40 dBµV- 30 dBµV- 20 dBµV-	el 90.00	dBµV 0 dB 00	swt :		e RB'	ctrum 2 W 1 MHz	Ø					
Ref Leve Att SGL Cou 1Rm Avy 80 dBµV- 70 dBµV- 60 dBµV- 50 dBµV- 40 dBµV- 30 dBµV- 10 dBµV-	el 90.00	dBµV 0 dB 00	swt :		e RB'	ctrum 2 W 1 MHz	Ø					
Ref Leve Att SGL Cou 1Rm Avy 80 dBµV- 70 dBµV- 60 dBµV- 50 dBµV- 40 dBµV- 30 dBµV- 10 dBµV-	el 90.00 m nt 100/10 gPwr	dBµV 0 dB 00	swt :		e RB'	ctrum 2 W 1 MHz W 3 MHz	Mode Aut					M2
Ref Leve Att SGL Cou ● 1Rm Avg 80 dBµV- 70 dBµV- 60 dBµV- 50 dBµV- 30 dBµV- 20 dBµV- 10 dBµV- 0 dBµV-	el 90.00 m nt 100/10 gPwr	dBµV 0 dB 00	swt :		e RB'	ctrum 2 W 1 MHz W 3 MHz	Ø					
Ref Leva Att SGL Cou SGL Cou SGL Cou 0 1Rm Avg SGL Cou 80 dBµV- 70 dBµV- 60 dBµV- 60 dBµV- 50 dBµV- 40 dBµV- 30 dBµV- 20 dBµV- 10 dBµV- 0 dBµV- 0 dBµV- 50 dBµV- 10 dBµV- 10 dBµV- 50 dBµV- 10 dBµV-	el 90.00 m nt 100/10 gPwr 		SWT : TDF	3.8 µs		ctrum 2 W 1 MHz W 3 MHz 691 Y-value	Mode Aut			: 1 AC	St	
Ref Leva Att SGL Cou SGL Cou SGL Cou ● 1Rm Avg SGL Cou 80 dBµV- 70 dBµV- 60 dBµV- 60 dBµV- 50 dBµV- 30 dBµV- 20 dBµV- 10 dBµV- 10 dBµV- 0 dBµV- 50 dBµV- 10 dBµV- 10 dBµV- 10 dBµV- 10 dBµV- Marker Type M1	el 90.00 m nt 100/10 gPwr 		SWT : TDF	3.8 µs		Ctrum 2 W 1 MHz W 3 MHz 691 Y-value 48.26 dB	Mode Aut	o FFT		: 1 AC		
Ref Leva Att SGL Cou SGL Cou SGL Cou 0 1Rm Avg SGL Cou 80 dBµV- 70 dBµV- 60 dBµV- 60 dBµV- 50 dBµV- 40 dBµV- 30 dBµV- 20 dBµV- 10 dBµV- 0 dBµV- 0 dBµV- 50 dBµV- 10 dBµV- 10 dBµV- 50 dBµV- 10 dBµV-	el 90.00 m nt 100/10 gPwr 		SWT : TDF	3.8 µs		Ctrum 2 W 1 MHz W 3 MHz	Ode Aut Mode Aut	o FFT		: 1 AC		

Report Ref: 24E10894-1a Part 1 of 2

Receiv	ver	Sp	ectrum		x) e	Spec	trum 2	X	Spec	trum	3	X				آ	$\overline{\nabla}$
		0.00 dBj				-	1 MHz										× .
Att				Т 3.8	µs 😑	VBW	/ 3 MHz	Mode	Auto F	FT I	Input	1 AC					
PS TDF																	—)
																	\neg
80 dBµ																	
70 dBµ\	<u>}</u>							_									
	1	M1															
60 dBµ\																M2	
50 dBµ\	/ 				\sim				~		\sim			-			1
40 dBµ\	/							_									
30 dBµ\	,																
20 dBµ\	/																
10 dBµ\																	
Ο dBµV-								-					_				
													_				
CF 2.49	905 G	Hz	•				69	1 pts							Span	21.0 MH	IZ
Marker		1 - 1				1		- 1	-								- 1
Type M1	Ref	Trc 1		zalue 2.483	5 GHz		Y-value 56.91 dB		Functi	ion		F	unc	tion R	tesult		_
M2		1			5 GHz		54.08 dE										
			Fig B7	High Ch	hannel	Res	tricted Band	l /Dand	Edua 1	Le uin e u		ali at 2 m	otro	r			
			0		annei	nes	пссей ванс	і / Вапи	Eage F	lorizor	ital Pe	dK dL 3 II	ictic.	5			
		~						_	_				icti c.	5		6	_
Receiv			ectrum		x f	Spec	trum 2	x x	Spec					>		(₽
Ref Le		0.00 dBj	ectrum	1	x e	Spec RBW	trum 2 / 1 MHz	×	Spec	trum	3	*		> 		(
Ref Le Att	vel 9	0.00 dBj 0	ectrum	т 3.8	x e	Spec RBW	trum 2 1 MHz	×	_	trum	3	*		5		[V
Ref Le Att	vel 9 ount 1	0.00 dBj 0 00/100	ectrum	т 3.8	x e	Spec RBW	trum 2 / 1 MHz	×	Spec	trum	3	*		5		(
Ref Le Att SGL Co	vel 9 ount 1	0.00 dBj 0 00/100	ectrum	т 3.8	x e	Spec RBW	trum 2 / 1 MHz	×	Spec	trum	3	*		<u> </u>		[
Ref Le Att SGL Co	vel 9 ount 1 vgPwr	0.00 dBj 0 00/100	ectrum	т 3.8	x e	Spec RBW	trum 2 / 1 MHz	×	Spec	trum	3	*		S		[
Ref Le Att SGL Cc IRm A 80 dBµ	vel 9 ount 1 vgPwr	0.00 dBj 0 00/100	ectrum	т 3.8	x e	Spec RBW	trum 2 / 1 MHz	×	Spec	trum	3	*		5 		[
Ref Le Att SGL Cc O 1Rm A	vel 9 ount 1 vgPwr	0.00 dBj 0 00/100	ectrum	т 3.8	x e	Spec RBW	trum 2 / 1 MHz	×	Spec	trum	3	*		S			
Ref Le Att SGL Cc IRm A 80 dBµ	vel 9 ount <u>1</u> vgPwr	0.00 dBj 0 00/100	ectrum	т 3.8	x e	Spec RBW	trum 2 / 1 MHz	×	Spec	trum	3	*		5 		[
Ref Le Att SGL Cc ● 1Rm A 80 dBµ 70 dBµ 60 dBµ	vel 9 vgPwr /	0.00 dBj 0 00/100	ectrum	т 3.8	x e	Spec RBW	trum 2 / 1 MHz	×	Spec	trum	3	*					
Ref Le Att SGL Cc IRm A 80 dBµL 70 dBµL	vel 9 vgPwr /	0.00 dBj 00/100 r	ectrum	т 3.8	x e	Spec RBW	trum 2 / 1 MHz	×	Spec	trum	3	*		5 		(
Ref Le Att SGL Cc ● 1Rm A 80 dBµ 70 dBµ 60 dBµ 50 dBµ	vel 9 vgPwr /	0.00 dBj 00/100 r	ectrum	т 3.8	x e	Spec RBW	trum 2 / 1 MHz	×	Spec	trum	3	*					
Ref Le Att SGL Cc ● 1Rm A 80 dBµ 70 dBµ 60 dBµ 50 dBµ 40 dBµ	vel 9	0.00 dBj 00/100 r	ectrum	т 3.8	x e	Spec RBW	trum 2 / 1 MHz	×	Spec	trum	3	*		5			
Ref Le Att SGL Cc ● 1Rm A 80 dBµ 70 dBµ 60 dBµ 50 dBµ	vel 9	0.00 dBj 00/100 r	ectrum	т 3.8	x e	Spec RBW	trum 2 / 1 MHz	×	Spec	trum	3	*		5 			
Ref Le Att SGL Cc ● 1Rm A 80 dBµ 70 dBµ 60 dBµ 50 dBµ 40 dBµ 30 dBµ	vel 9 vgPwi	0.00 dBj 00/100 r	ectrum	т 3.8	x e	Spec RBW	trum 2 / 1 MHz	×	Spec	trum	3	*					
Ref Le Att SGL Cc ● 1Rm A 80 dBµ 70 dBµ 60 dBµ 50 dBµ 40 dBµ	vel 9 vgPwi	0.00 dBj 00/100 r	ectrum	т 3.8	x e	Spec RBW	trum 2 / 1 MHz	×	Spec	trum	3	*					
Ref Le Att SGL Cc ● 1Rm A 80 dBµ 70 dBµ 60 dBµ 50 dBµ 40 dBµ 30 dBµ	vel 9 vgPwi	0.00 dBj 00/100 r	ectrum	т 3.8	x e	Spec RBW	trum 2 / 1 MHz	×	Spec	trum	3	*					
Ref Le Att SGL Cc ● 1Rm A 80 dBµ 70 dBµ 60 dBµ 50 dBµ 40 dBµ 30 dBµ 20 dBµ 10 dBµ	vel 9 vgPwi	0.00 dBj 00/100 r	ectrum	т 3.8	x e	Spec RBW	trum 2 / 1 MHz	×	Spec	trum	3	*					
Ref Le Att SGL Cc ● 1Rm A 80 dBµ 70 dBµ 60 dBµ 50 dBµ 40 dBµ 30 dBµ 20 dBµ	vel 9 vgPwi	0.00 dBj 00/100 r	ectrum	т 3.8	x e	Spec RBW	trum 2 / 1 MHz	×	Spec	trum	3	*					
Ref Le Att SGL Cc ● 1Rm A 80 dBµV 70 dBµV 60 dBµV 50 dBµV 30 dBµV 20 dBµV 10 dBµV	vel 9	0.00 dB; 00/100 r	ectrum	т 3.8	x e	Spec RBW	trum 2 / 1 MHz / 3 MHz	Mode	Spec	trum	3	*			Stop		
Ref Le Att SGL Cc ● 1Rm A 80 dBµV 70 dBµV 60 dBµV 50 dBµV 30 dBµV 20 dBµV 10 dBµV- Start 2	vel 9	0.00 dB; 00/100 r	ectrum	т 3.8	x e	Spec RBW	trum 2 / 1 MHz / 3 MHz	×	Spec	trum	3	*			Stop 2		
Ref Le Att SGL Cc ● 1Rm A 80 dBµV 70 dBµV 60 dBµV 50 dBµV 30 dBµV 20 dBµV 10 dBµV	vel 9	0.00 dB; 00/100 r M1	Dectrum	7 3.8 DF	χ ε	Spec RBW VBW	trum 2 / 1 MHz / 3 MHz / 3 MHz / 69	X Mode	Spec	FT	3	× 1 AC			Stop 2	M2	
Ref Le Att SGL Cc ● 1Rm A 80 dBµV 70 dBµV 60 dBµV 50 dBµV 30 dBµV 20 dBµV 10 dBµV 0 dBµV- Start 2 Marker Type M1	vel 9	0.00 dB; 00/100 r Hz Hz	Dectrum	7 3.8 DF	Σ μs	Spec RBW VBW	trum 2 / 1 MHz / 3 MHz / 3 MHz / 69 //////////////////////////////////	X Mode	Spec	FT	3	× 1 AC				M2	
Ref Le Att SGL Cc ● 1Rm A 80 dBµV 70 dBµV 60 dBµV 50 dBµV 40 dBµV 20 dBµV 10 dBµV 0 dBµV- Start 2 Marker Type	vel 9	0.00 dB; 00/100 r Hz Hz	Dectrum	7 3.8 DF	Σ E	Spec RBW VBW	trum 2 / 1 MHz / 3 MHz / 3 MHz / 69	Х Mode	Spec	ion	Input	T AC	unc	tion R		M2	

Page 33 of 34

Report Ref: 24E10894-1a Part 1 of 2 Page 34 of 34

Ref report "Alps 24E10894-1a Hati BLE FCCIC Part 2 of 2 for appendices C,D,E"