SAR TEST REPORT

For

Meitrack Group

MEITRACK GPS P88L

Test Model: P88L-A

Additional Model No. : P88L-SA, P88L, P88L-E, P88L-J, P88L-JC, P88L-V

Prepared for Address	:	Meitrack Group 5/F, International Internet Finance Pioneer Park, No. 1, Taohua Rd., Futian Free Trade Zone, Shenzhen, China
Prepared by	:	Shenzhen LCS Compliance Testing Laboratory Ltd. 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park
Address	:	Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China
Tel	:	(86)755-82591330
Fax	:	(86)755-82591332
Web	:	www.LCS-cert.com
Mail	:	webmaster@LCS-cert.com
Date of receipt of test sample	:	February 03, 2021
Number of tested samples	:	2
Samples Number	:	201224064A-1, 201224064A-2
Serial number	:	Prototype
Date of Test	:	February 03, 2021 ~ March 03, 2021
Date of Report	:	March 18, 2021

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 1 of 119 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCC ID: XXX-YYY

Report Reference No:	LCS201224064AEB			
Date Of Issue:	March 18, 2021			
Testing Laboratory Name:	Shenzhen LCS Compliance Testing Laboratory Ltd.			
Address :	101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China			
Testing Location/ Procedure:	Full application of Harmonised standards			
	Partial application of Harmonised standards			
	Other standard testing method			
Applicant's Name	Meitrack Group			
Address:	5/F, International Internet Finance Pioneer Park, No. 1, Taohua Rd., Futian Free Trade Zone, Shenzhen, China			
Test Specification:				
Standard:	IEEE Std C95.1-2019& IEEE Std 1528™-2013 & FCC Part 2.1093			
Test Report Form No	LCSEMC-1.0			
TRF Originator	Shenzhen LCS Compliance Testing Laboratory Ltd.			
Master TRF	Dated 2011-03			
Master TRF: Shenzhen LCS Compliance Testin This publication may be reproduce Shenzhen LCS Compliance Testing material. Shenzhen LCS Compliance liability for damages resulting from	Dated 2011-03 g Laboratory Ltd. All rights reserved. ed in whole or in part for non-commercial purposes as long as the Laboratory Ltd. is acknowledged as copyright owner and source of the e Testing Laboratory Ltd. takes noresponsibility for and will not assume			
Master TRF: Shenzhen LCS Compliance Testin This publication may be reproduce Shenzhen LCS Compliance Testing material. Shenzhen LCS Compliance liability for damages resulting from placement and context.	Dated 2011-03 g Laboratory Ltd. All rights reserved. ed in whole or in part for non-commercial purposes as long as the Laboratory Ltd. is acknowledged as copyright owner and source of the e Testing Laboratory Ltd. takes noresponsibility for and will not assume in the reader's interpretation of the reproduced material due to its			
Master TRF: Shenzhen LCS Compliance Testin This publication may be reproduce Shenzhen LCS Compliance Testing material. Shenzhen LCS Compliance liability for damages resulting from placement and context.	Dated 2011-03 g Laboratory Ltd. All rights reserved. ed in whole or in part for non-commercial purposes as long as the Laboratory Ltd. is acknowledged as copyright owner and source of the e Testing Laboratory Ltd. takes noresponsibility for and will not assume the reader's interpretation of the reproduced material due to its MEITRACK GPS P88L			
Master TRF: Shenzhen LCS Compliance Testin This publication may be reproduce Shenzhen LCS Compliance Testing material. Shenzhen LCS Compliance liability for damages resulting from placement and context. Test Item Description: Trade Mark	Dated 2011-03 g Laboratory Ltd. All rights reserved. ed in whole or in part for non-commercial purposes as long as the Laboratory Ltd. is acknowledged as copyright owner and source of the e Testing Laboratory Ltd. takes noresponsibility for and will not assume in the reader's interpretation of the reproduced material due to its MEITRACK GPS P88L MEITRACK®			
Master TRF: Shenzhen LCS Compliance Testin This publication may be reproduce Shenzhen LCS Compliance Testing material. Shenzhen LCS Compliance liability for damages resulting from placement and context. Test Item Description: Trade Mark: Model/Type Reference	Dated 2011-03 g Laboratory Ltd. All rights reserved. ed in whole or in part for non-commercial purposes as long as the Laboratory Ltd. is acknowledged as copyright owner and source of the e Testing Laboratory Ltd. takes noresponsibility for and will not assume in the reader's interpretation of the reproduced material due to its MEITRACK GPS P88L MEITRACK®			
Master TRF: Shenzhen LCS Compliance Testin This publication may be reproduce Shenzhen LCS Compliance Testing material. Shenzhen LCS Compliance liability for damages resulting from placement and context. Test Item Description: Trade Mark: Model/Type Reference	Dated 2011-03 g Laboratory Ltd. All rights reserved. ed in whole or in part for non-commercial purposes as long as the Laboratory Ltd. is acknowledged as copyright owner and source of the e Testing Laboratory Ltd. takes noresponsibility for and will not assume the reader's interpretation of the reproduced material due to its MEITRACK GPS P88L MEITRACK® P88L-A WCDMA II,V;LTE2,4,12;WLAN2.4G;Bluetooth 5.0			
Master TRF: Shenzhen LCS Compliance Testin This publication may be reproduce Shenzhen LCS Compliance Testing material. Shenzhen LCS Compliance liability for damages resulting from placement and context. Test Item Description: Trade Mark: Model/Type Reference Operation Frequency	Dated 2011-03 g Laboratory Ltd. All rights reserved. ed in whole or in part for non-commercial purposes as long as the Laboratory Ltd. is acknowledged as copyright owner and source of the e Testing Laboratory Ltd. takes noresponsibility for and will not assume the reader's interpretation of the reproduced material due to its MEITRACK GPS P88L MEITRACK® P88L-A WCDMA II,V;LTE2,4,12;WLAN2.4G;Bluetooth 5.0 P88L-SA, P88L, P88L-E, P88L-J, P88L-JC, P88L-V			

Ping Li

Jin Wang

(Jains Fiang

Ping Li/ File administrators

Jin Wang/ Technique principal

Gavin Liang/ Manager

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 2 of 119

|--|

Report No.:LCS201224064AEB

SAR -- TEST REPORT

Test Report No. :	LCS201224064AEB	March 18, 2021 Date of issue			
Type / Model	: P88L-A				
EUT	: MEITRACK GPS P88L				
Applicant	: Meitrack Group				
Address	• *	5/F, International Internet Finance Pioneer Park, No. 1, Taohua Rd., Futian Free Trade Zone, Shenzhen, China			
Telephone	: /				
Fax	: /	/			
Manufacturer	: Meitrack Group				
Address	• •	5/F, International Internet Finance Pioneer Park, No. 1, Taohua Rd., Futian Free Trade Zone, Shenzhen, China			
Telephone	/				
Fax	/				
Factory	: Meitrack Group Longhua Factory 2F, Building C, Meicheng Industrial Park, Zone B, Shi'ao				
Address		Second Industrial Zone, Dalang, Longhua New District,			
Telephone					
Fax	: /	: /			

Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revison History

Revision	Issue Date	Revisions	Revised By
000	March 18, 2021	Initial Issue	Gavin Liang

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 4 of 119

TABLE OF CONTENTS

1. TES	T STANDARDS AND TEST DESCRIPTION	6
1.1.	Test Standards	6
1.1.	TEST DESCRIPTION	
1.3.		
1.4.		
1.5.	STATEMENT OF COMPLIANCE	
2. TES	T ENVIRONMENT	
2.1	Test Facility	0
	TEST FACILITY	
	SAR LIMITS	
	EQUIPMENTS USED DURING THE TEST	
	MEASUREMENTS SYSTEM CONFIGURATION	
3.1.	SARMEASUREMENT SET-UP	11
3.1.		
3.2.	PHANTOMS	
3.4.	DEVICE HOLDER	
3.5.	SCANNING PROCEDURE	
3.6.	DATA STORAGE AND EVALUATION	
3.7.	TISSUE DIELECTRIC PARAMETERS FOR HEAD AND BODY PHANTOMS	
3.8.	TISSUE EQUIVALENT LIQUID PROPERTIES	17
3.9.	System Check	
3.10.	SAR MEASUREMENT PROCEDURE	20
	CONFIGURATION AND PERIPHERALS	
	POWER REDUCTION	
3.13.	Power Drift	23
4. TES	T CONDITIONS AND RESULTS	24
4.1.	••••=•••=•••=•••=•••	
4.2.	TRANSMIT ANTENNAS AND SAR MEASUREMENT POSITION	
4.3.	SAR MEASUREMENT RESULTS	
4.4.	SIMULTANEOUS TX SAR CONSIDERATIONS	
4.5.	SAR MEASUREMENT VARIABILITY	
4.6.	GENERAL DESCRIPTION OF TEST PROCEDURES	
4.7.	MEASUREMENT UNCERTAINTY (450MHZ-6GHZ)	
4.8. 4.9.	SYSTEM CHECK RESULTS	
	LIBRATION CERTIFICATES	
5.1	PROBE-EPGO324 CALIBRATION CERTIFICATE	
5.2	SID750Dipole Calibration Ceriticate	
5.3	SID835Dipole Calibration Certificate	
5.4	SID1800 DIPOLE CALIBRATION CERTIFICATE	
5.5	SID1900 DIPOLE CALIBRATION CERTIFICATE	93
5.5 5.6	SID1900 DIPOLE CALIBRATION CERTIFICATE	93 104
5.5 5.6 6. PHC	SID1900 DIPOLE CALIBRATION CERTIFICATE SID2450 DIPOLE CALIBRATION CERITICATE DTOGRAPHS OF THE LIQUID	93 104 115
5.5 5.6 6. PHC 7. PHC	SID1900 DIPOLE CALIBRATION CERTIFICATE	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 5 of 119

1. TEST STANDARDS AND TEST DESCRIPTION

1.1. Test Standards

<u>IEEE Std C95.1-2019</u>: IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz.It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

<u>IEEE Std 1528™-2013</u>: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

FCC Part 2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices

KDB447498 D01 General RF Exposure Guidance v06 : Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

<u>KDB447498 D02 SAR Procedures for Dongle Xmtr v02r01</u>: SAR Measurement Procedures For USB Dongle Transmitters.

<u>KDB865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 :</u> SAR Measurement Requirements for 100 MHz to 6 GHz

<u>KDB865664 D02 RF Exposure Reporting v01r02:</u> RF Exposure Compliance Reporting and Documentation Considerations

<u>KDB248227 D01 802.11 Wi-Fi SAR:</u> SAR Guidance For leee 802.11 (Wi-Fi) Transmitters <u>KDB941225 D01 3G SAR Procedures:</u> 3G SAR MEAUREMENT PROCEDURES <u>KDB 941225 D05 SAR for LTE Devices:</u> SAR Evaluation Considerations For LTE Devices

1.2. Test Description

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power . And Test device is identical prototype.

1.3. General Remarks

Date of receipt of test sample	:	February 03, 2021
Testing commenced on	:	February 03, 2021
Testing concluded on	:	March 03, 2021

1.4. Product Description

The Meitrack Group's Model: P88L-A or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

General Description			
EUT :	MEITRACK GPS P88L		
Model/Type reference:	P88L-A		
Additional Model No.	P88L-SA, P88L, P88L-E, P88L-J, P88L-JC, P88L-V		
Model Declaration:	PCB board, structure and internal of these model(s) are the same, So no additional models were tested		
Hardware Version	V1.3		
Firmware Version:	/		
For AC Adapter Input: AC 100-240V, 50/60Hz, 0.35A Max			
Power supply: Output: DC 5V, 2000mA			
DC 3.7V by Rechargeable Li-ion Battery, 1000mAh			
Hotspot: Supported			
Exposure category	Exposure category General population/uncontrolled environment		
EUT Type	Production Unit		
Device Type Portable Device			
The EUT is MEITRACK GPS P88L. the MEITRACK GPS P88L is intended for WLAN transmission. It is equipped with Bluetooth, WiFi2.4G, WCDMA Band II,Band V; LTE 2,4,12. For more information see the			

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 6 of 119

following datasheet

Technical Characteristics			
LTE			
Operation Band:	LTE FDD band 2, 4, 12		
Modulation Type:	QPSK/16QAM		
Release Version:	R9		
Power Class:	Class 3		
Antenna Description:	FPC Antenna; 0dBi (max.) For E-UTRA Band 2; 0dBi (max.) For E-UTRA Band 4; 0dBi (max.) For E-UTRA Band 12;		
UMTS			
Operation Band:	UMTS FDD Band II/V		
FrequencyRange:	WCDMA Band II: 1852.4~1907.6MHz WCDMA Band V: 826.4~846.6MHz		
Modulation Type:	WCDMA: QPSK,16QAM; HSDPA/HSUPA: QPSK,16QAM		
WCDMA Release Version:	R4		
DC-HSUPA Release Version:	Not Supported		
Antenna Description:	FPC Antenna; 0dBi (max.) For WCDMA Band II; 0dBi (max.) For WCDMA Band V.		
Bluetooth			
Frequency Range:	2402MHz-2480MHz		
Bluetooth Channel Number: 79 Channels for Bluetooth V5.0(DSS) 40 channels for Bluetooth V5.0(DTS)			
Bluetooth Channel Spacing:	1MHz for Bluetooth V5.0(DSS) 2MHz for Bluetooth V5.0(DTS)		
Bluetooth Modulation Type:	GFSK, π/4-DQPSK, 8-DPSK for Bluetooth V5.0(DSS) GFSK for Bluetooth V5.0 (DTS)		
Bluetooth Version:	V5.0		
Antenna Description: FPC Antenna; 1.2dBi (max.)			
2.4G WLAN			
Frequency Range:	2412MHz-2462MHz		
Channel Number:	11 Channels for 20MHz bandwidth(2412~2462MHz)		
Channel Spacing:	5MHz		
Modulation Type:	IEEE 802.11b: DSSS(CCK, DQPSK, DBPSK) IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n: OFDM (64QAM, 16QAM,QPSK,BPSK)		
Antenna Description:	FPC Antenna; 1.2dBi (max.)		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 7 of 119

1.5. Statement of Compliance

The maximum of results of SAR found during testing for P88L-A are follows:

<highest< th=""><th>Reported</th><th>standalone</th><th>SAR</th><th>Summary</th><th>/></th></highest<>	Reported	standalone	SAR	Summary	/>
<1 lightest	reported	Standalone	0/11	Guillinar	/~

Classment	Frequency Band	Hotspot (Report SAR _{1-g} (W/kg)	Body-worn (Report SAR _{1-g} (W/kg)	
Class	Danu	(Separation Distance 10mm)		
	WCDMA Band V	0.160	0.160	
	WCDMA Band II	1.190	1.190	
PCB	LTE band 2	1.211	1.211	
	LTE band 4	0.648	0.648	
	LTE band 12	0.006	0.006	
DTS	WIFI2.4G	0.065	0.065	

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2019, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

<Highest Reported simultaneous SAR Summary>

Exposure Position	Classment Class	Highest Reported Simultaneous Transmission SAR _{1-g} (W/kg)
Body-worn	PCB	1.276
(hotspot open)	DTS	1.270

2. TEST ENVIRONMENT

2.1. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Site Description EMC Lab.

: NVLAP Accreditation Code is 600167-0. FCC Designation Number is CN5024. CAB identifier is CN0071. CNAS Registration Number is L4595.

2.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	18-25 ° C
Humidity:	40-65 %
	40-65 %
Atmospheric pressure:	950-1050mbar

2.3. SAR Limits

FCC Limit (1g Tissue)

	SAR (W/kg)				
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)			
Spatial Average(averaged over the whole body)	0.08	0.4			
Spatial Peak(averaged over any 1 g of tissue)	1.6	8.0			
Spatial Peak(hands/wrists/ feet/anklesaveraged over 10 g)	4.0	20.0			

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

2.4. Equipments Used during the Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	PC	Lenovo	G5005	MY42081102	N/A	N/A
2	SAR Measurement system	SATIMO	4014_01	SAR_4014_01	N/A	N/A
3	Signal Generator	Agilent	E4438C	MY49072627	2020-06-11	2021-06-10
4	Multimeter	Keithley	MiltiMeter 2000	4059164	2020-11-15	2021-11-14
5	S-parameter Network Analyzer	Agilent	8753ES	US38432944	2020-11-15	2021-11-14
6	Wideband Radio Communication Tester	R&S	CMW500	103818-1	2020-11-22	2021-11-21
7	E-Field PROBE	MVG	SSE2	SN 31/17 EPGO324	2020-10-07	2021-10-06
8	DIPOLE 750	SATIMO	SID 750	SN 07/14 DIP 0G750-302	2018-10-01	2021-09-30
9	DIPOLE 835	SATIMO	SID 835	SN 07/14 DIP 0G835-303	2018-10-01	2021-09-30
10	DIPOLE 1800	SATIMO	SID 1800	SN 07/14 DIP 1G800-301	2018-10-01	2021-09-30
11	DIPOLE 1900	SATIMO	SID 1900	SN 38/18 DIP 1G900-466	2018-09-01	2021-08-31
12	DIPOLE 2450	SATIMO	SID 2450	SN 07/14 DIP 2G450-306	2018-10-01	2021-09-30
13	COMOSAR OPENCoaxial Probe	SATIMO	OCPG 68	SN 40/14 OCPG68	2020-11-15	2021-11-14
14	SAR Locator	SATIMO	VPS51	SN 40/14 VPS51	2020-11-15	2021-11-14
15	Communication Antenna	SATIMO	ANTA57	SN 39/14 ANTA57	2020-11-15	2021-11-14
16	FEATURE PHONEPOSITIONING DEVICE	SATIMO	MSH98	SN 40/14 MSH98	N/A	N/A
17	DUMMY PROBE	SATIMO	DP60	SN 03/14 DP60	N/A	N/A
18	SAM PHANTOM	SATIMO	SAM117	SN 40/14 SAM117	N/A	N/A
19	Liquid measurement Kit	HP	85033D	3423A03482	2020-11-15	2021-11-14
20	Power meter	Agilent	E4419B	MY45104493	2020-06-11	2021-06-10
21	Power meter	Agilent	E4419B	MY45100308	2020-11-22	2021-11-21
22	Power sensor	Agilent	E9301H	MY41495616	2020-11-22	2021-11-21
23	Power sensor	Agilent	E9301H	MY41495234	2020-06-11	2021-06-10
24	Directional Coupler	MCLI/USA	4426-20	03746	2020-06-11	2021-06-10

Note:

- 1) Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three year extended calibration interval. Each measured dipole is expected to evalute with following criteria at least on annual interval.
- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated values;
- c) The most recent return-loss results, measued at least annually, deviates by no more than 20% from the previous measurement;
- d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the provious measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

3. SAR MEASUREMENTS SYSTEM CONFIGURATION

3.1. SARMeasurement Set-up

The OPENSAR system for performing compliance tests consist of the following items:

A standard high precision 6-axis robot (KUKA) with controller and software.

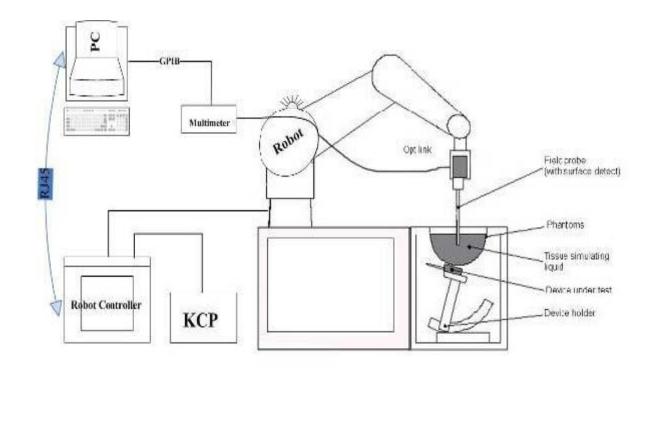
KUKA Control Panel (KCP)

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with a Video Positioning System(VPS).

The stress sensor is composed with mechanical and electronic when the electronic part detects a change on the electro-mechanical switch, It sends an "Emergency signal" to the robot controller that to stop robot's moves

A computer operating Windows XP.

OPENSAR software


Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.

The SAM phantom enabling testing left-hand right-hand and body usage.

The Position device for handheld EUT

Tissue simulating liquid mixed according to the given recipes .

System validation dipoles to validate the proper functioning of the system.

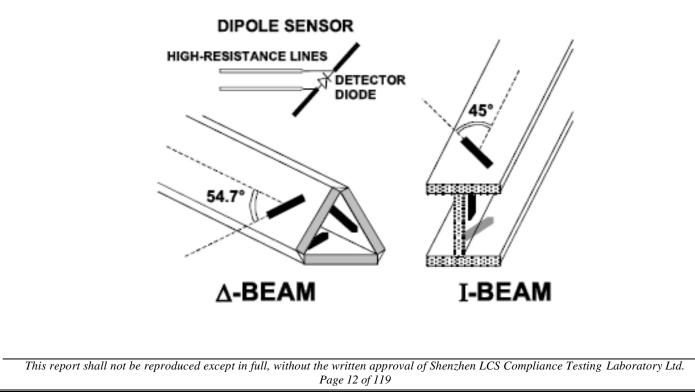
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 11 of 119

3.2. OPENSAR E-field Probe System

The SAR measurements were conducted with the dosimetric probe EPGO324 (manufactured by MVG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification

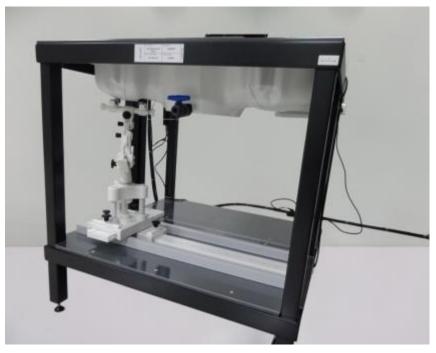
ConstructionSymmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)


CalibrationISO/IEC 17025 calibration service available.

Frequency	450 MHz to 6 GHz; Linearity:0.25dB(450 MHz to 6 GHz)
Directivity	0.25 dB in HSL (rotation around probe axis) 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	0.01W/kg to > 100 W/kg; Linearity: 0.25 dB
Dimensions	Overall length: 330 mm (Tip: 16mm) Tip diameter: 5 mm (Body: 8 mm) Distance from probe tip to sensor centers: 2.5 mm
Application	General dosimetry up to 6 GHz Dosimetry in strong gradient fields Compliance tests of Mobile Phones

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.


The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

3.3. Phantoms

The SAM Phantom SAM117 is constructed of a fiberglass shell ntegrated in a wooden table. The shape of the shell is in compliance with the specification set in IEEE 1528 and EN62209-1, EN62209-2. The phantom enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of allpredefined phantom positions and measurement grids by manually teaching three points in the robo

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

3.4. Device Holder

In combination with the Generic Twin PhantomSAM117, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device holder supplied by SATIMO

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 13 of 119

3.5. Scanning Procedure

The procedure for assessing the peak spatial-average SAR value consists of the following steps

Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

	\leq 3 GHz > 3 GHz				
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$			
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ}\pm1^{\circ}$	$20^\circ\pm1^\circ$			
	$ \le 2 \text{ GHz:} \le 15 \text{ mm} \\ 2 - 3 \text{ GHz:} \le 12 \text{ mm} \\ 4 - 6 \text{ GHz:} \le 10 \text{ mm} $				
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.				

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Maximum zoom scan	spatial res	olution: Δx _{Zoom} , Δy _{Zoom}	$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^{\circ}$	$\begin{array}{l} 3-4 \; \mathrm{GHz:} \leq 5 \; \mathrm{mm^*} \\ 4-6 \; \mathrm{GHz:} \leq 4 \; \mathrm{mm^*} \end{array}$	
Maximum zoom scan spatial resolution, normal to phantom surface	uniform	grid: $\Delta z_{Zoom}(n)$	$\leq 5 \text{ mm}$	$3-4$ GHz: ≤ 4 mm $4-5$ GHz: ≤ 3 mm $5-6$ GHz: ≤ 2 mm	
	$\begin{array}{c} \mbox{graded} \\ \mbox{grid} \end{array} \begin{array}{c} \Delta z_{Zoom}(1) \mbox{: between} \\ 1^{st} \mbox{ two points closest} \\ \mbox{to phantom surface} \\ \hline \Delta z_{Zoom}(n \mbox{>} 1) \mbox{: between subsequent} \\ \mbox{points} \end{array}$		$\leq 4 \text{ mm}$	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 3 \ \mathrm{mm} \\ 4-5 \ \mathrm{GHz:} \leq 2.5 \ \mathrm{mm} \\ 5-6 \ \mathrm{GHz:} \leq 2 \ \mathrm{mm} \end{array}$	
			$\leq 1.5 \cdot \Delta z_{Zoom}(n-1) \text{ mm}$		
Minimum zoom scan volume	x, y, z		\geq 30 mm	$\begin{array}{l} 3-4 \ \mathrm{GHz} :\geq 28 \ \mathrm{mm} \\ 4-5 \ \mathrm{GHz} :\geq 25 \ \mathrm{mm} \\ 5-6 \ \mathrm{GHz} :\geq 22 \ \mathrm{mm} \end{array}$	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 14 of 119

	SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: XXX-YYY	Report No.:LCS201224064AEB
--	---	-----------------	----------------------------

Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have OPENSAR software stop the measurements if this limit is exceeded.

3.6. Data Storage and Evaluation

Data Storage

The OPENSAR software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The OPENSAR software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: ·	- Sensitivity	Normi, ai0, ai1, ai2
	- Conversion factor	ConvFi
	- Diode compression poir	nt Dcpi
Device parameters:	- Frequency	f
	- Crest factor	cf
Media parameters: -	Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the OPENSAR components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With Vi = compensated signal of channel i (i = x, y, z) Ui = input signal of channel i (i = x, y, z) cf = crest factor of exciting field dcpi = diode compression point

From the compensated input signals the primary field data for each channel can be evaluated:

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 15 of 119 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCC ID: XXX-YYY

Report No.:LCS201224064AEB

 $E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$ E - field probes : $H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$ H – fieldprobes : (i = x, y, z) With = compensated signal of channel i Vi Normi = sensor sensitivity of channel i (i = x, y, z)[mV/(V/m)2] for E-field Probes ConvF = sensitivity enhancement in solution = sensor sensitivity factors for H-field probes aij = carrier frequency [GHz] f = electric field strength of channel i in V/m Ei = magnetic field strength of channel i in A/m Hi

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{o}{\rho \cdot 1'000}$$

with SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

ρ = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

3.7. Tissue Dielectric Parameters for Head and Body Phantoms

The liquid is consisted of water,salt,Glycol,Sugar,Preventol and Cellulose.The liquid has previously been proven to be suited for worst-case. It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

	The composition of the tissue simulating liquid									
Frequency (MHz)	Bactericide	DGBE	HEC	NaCl	Sucrose	1,2- Propan ediol	X100	Water	Conductivity	Permittivity
	%	%	%	%	%	%	%	%	σ	٤r
750	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8
835	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8
900	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8
1800	/	13.84	/	0.35	/	/	30.45	55.36	1.38	41.0
1900	/	13.84	/	0.35	/	/	30.45	55.36	1.38	41.0
2000	/	7.99	/	0.16	/	/	19.97	71.88	1.55	41.1
2450	/	7.99	/	0.16	/	/	19.97	71.88	1.88	40.3
2600	/	7.99	/	0.16	/	/	19.97	71.88	1.88	40.3

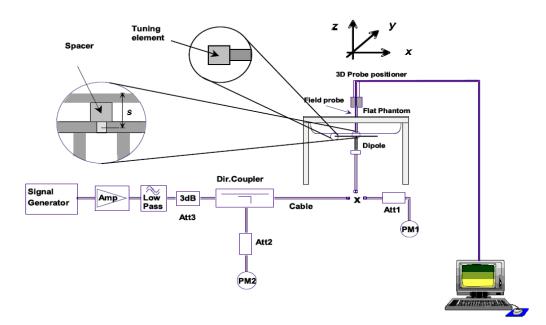
aition of the tiesus simulating liquid

Target Frequency	He	ad	В	ody
(MHz)	٤ _r	σ(S/m)	٤ _r	σ(S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
2600	39.0	1.96	52.5	2.16
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

3.8. Tissue equivalent liquid properties

_ _ _

Dielectric Performance of Head and Body Tissue Simulating Liquid


lest Engineer: Jenny Wu									
Tissue	Measured	Target	t Tissue		Measure	d Tissue		Liquid	Test Data
Туре	Frequency (MHz)	σ	ε _r	σ	Dev.	ε _r	Dev.	Temp.	
750H	750	0.89	41.90	0.88	-1.12%	41.58	-0.76%	21.2	02/03/2021
835H	835	0.90	41.50	0.86	-4.44%	40.14	-3.28%	20.1	02/18/2021
1800H	1800	1.40	40.00	1.42	1.43%	41.59	3.98%	22.6	02/24/2021
1900H	1900	1.40	40.00	1.37	-2.14%	39.23	-1.93%	21.5	03/02/2021
2450H	2450	1.80	39.20	1.84	2.22%	39.70	1.28%	23.4	03/03/2021

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 17 of 119

3.9. System Check

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (± 10 %).

The output power on dipole port must be calibrated to 20 dBm (100mW) before dipole is connected.

Photo of Dipole Setup

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 18 of 119

Justification for Extended SAR Dipole Calibrations

Referring to KDB 865664D01V01r04, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. While calibration intervals not exceed 3 years.

SID750 SN 07/14 DIP 0G750-302 Extend Dipole Calibrations												
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)						
2018-10-01	-34.80		50.7		1.6							
2019-10-01	-34.35	-1.29	51.2	0.5	1.5	-0.1						
2020-10-01	-34.30	-1.44	51.0	0.3	1.5	-0.1						

SID835 SN 07/14 DIP 0G835-303 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-10-01	-24.49		54.9		2.8	
2019-10-01	-24.17	-1.31	54.5	-0.4	2.6	-0.2
2020-10-01	-24.20	-1.18	54.3	-0.6	2.5	-0.3

SID1800 SN 30/14 DIP 1G800-301 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-10-01	-20.26		43.1		6.9	
2019-10-01	-20.13	-0.64	42.9	-0.2	6.7	-0.2
2020-10-01	-20.15	-0.54	42.8	-0.3	6.5	-0.4

SID1900 SN 38/18 DIP 1G900-466 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-09-01	-26.43		50.5		4.7	
2019-09-01	-26.33	-0.38	50.2	-0.3	4.5	-0.2
2020-10-01	-26.30	-0.49	50.1	-0.4	4.2	-0.5

SID2450 SN 07/14 DIP 2G450-306 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-10-01	-25.59		44.7		-1.1	
2019-10-01	-25.68	0.35	44.8	0.1	-1.0	0.1
2020-10-01	-25.66	0.27	44.9	0.2	-0.9	0.2

Mixture	Frequency		SAR _{1g}	SAR _{10g}	Drift	1W Ta	•	Difference percentage		Liquid	Date
Туре	(MHz)	FOWer	(W/Kg)	(W/Kg)	(%)	SAR _{1g} (W/Kg)	SAR _{10g} (W/Kg)	1g	10g	Temp	Date
		100 mW	0.824	0.562							
Head	750	Normalize to 1 Watt	8.24	5.62	1.42	8.38	5.53	-1.67%	1.63%	21.2	02/03/2021
	d 835	100 mW	0.975	0.632		9.60		1.56%		20.1	02/18/2021
Head		Normalize to 1 Watt	9.75	6.32	-0.21		6.20		1.94%		
		100 mW	3.819	20.13		38.13				22.6	
Head	1800	Normalize to 1 Watt	38.19	20.13	3.56		20.20	0.16%	-0.35%		02/24/2021
		100 mW	3.921	2.068							
Head	1900	Normalize to 1 Watt	39.21	20.68	-1.17	40.03	20.55	-2.05%	0.63%	21.5	03/02/2021
		100 mW	5.487	2.521							
Mixture Type Head Head Head Head	2450	Normalize to 1 Watt	54.87	25.21	-0.08	53.89	24.15	1.82%	4.39%	23.4	03/03/2021

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 19 of 119

3.10. SAR measurement procedure

The measurement procedures are as follows:

3.10.1 Conducted power measurement

a. For WWAN power measurement, use base station simulator connection with RF cable, at maximum power in each supported wireless interface and frequency band.

b. Read the WWAN RF power level from the base station simulator.

c. For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously Transmission, at maximum RF power in each supported wireless interface and frequency band.

d. Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power.

3.10.2 WIFI Test Configuration

The SAR measurement and test reduction procedures are structured according to either the DSSS or OFDM transmission mode configurations used in each standalone frequency band and aggregated band. For devices that operate in exposure configurations that require multiple test positions, additional SAR test reduction may be applied. The maximum output power specified for production units, including tune-up tolerance, are used to determine initial SAR test requirements for the 802.11 transmission modes in a frequency band. SAR is measured using the highest measured maximum output power channel for the initial test configuration. SAR measurement and test reduction for the remaining 802.11 modes and test channels are determined according to measured or specified maximum output power and reported SAR of the initial measurements. The general test reduction and SAR measurement approaches are summarized in the following:

1. The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures.

2. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, an "initial test configuration" is first determined for each standalone and aggregated frequency band according to the maximum output power and tune-up tolerance specified for production units.

a. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band.

b. SAR is measured for OFDM configurations using the initial test configuration procedures. Additional frequency band specific SAR test reduction may be considered for individual frequency bands
c. Depending on the reported SAR of the highest maximum output power channel tested in the initial test configuration, SAR test reduction may apply to subsequent highest output channels in the initial test configuration to reduce the number of SAR measurements.

3. The Initial test configuration does not apply to DSSS. The 2.4 GHz band SAR test requirements and 802.11b DSSS procedures are used to establish the transmission configurations required for SAR measurement.

4. An "initial test position" is applied to further reduce the number of SAR tests for devices operating in next to the ear, UMPC mini-tablet or hotspot mode exposure configurations that require multiple test positions . a. SAR is measured for 802.11b according to the 2.4 GHz DSSS procedure using the exposure condition established by the initial test position.

b. SAR is measured for 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration. 802.11b/g/n operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g/n modes are tested on the maximum average output channel.

The Initial test position does not apply to devices that require a fixed exposure test position. SAR is measured in a fixed exposure test position for these devices in 802.11b according to the 2.4 GHz DSSS procedure or in 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration procedures.
 The "subsequent test configuration" procedures are applied to determine if additional SAR measurements are required for the remaining OFDM transmission modes that have not been tested in the initial test configuration and maximum output power specified or measured for these other OFDM configurations.

2.4 GHz and 5GHz SAR Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions. When SAR measurement is required for an OFDM configuration, the initial test configuration, subsequent test

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 20 of 119 configuration and initial test position procedures are applied. The SAR test exclusion requirements for 802.11g/n OFDM configurations are described in section 5.2.2.

1. 802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- a. When the reported SAR of the highest measured maximum output power channel (section 3.1) for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- b. When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 1. 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3). SAR is not required for the following 2.4 GHz OFDM conditions.

- a. When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration
- b. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 2. SAR Test Requirements for OFDM Configurations

When SAR measurement is required for 802.11 a/g/n/ac OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. When the same transmitter and antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction applies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 or §15.247 band are supported, the highest maximum output power transmission mode configuration and maximum output power channel across the bands must be used to determine SAR test reduction, according to the initial test configuration and subsequent test configuration requirements.20 In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power should be clearly distinguished to apply the procedures.

3. OFDM Transmission Mode SAR Test Configuration and Channel Selection Requirements The initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures (section 4). When multiple configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined according to the following steps applied sequentially.

- a. The largest channel bandwidth configuration is selected among the multiple configurations with the same specified maximum output power.
- b. If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
- c. If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.
- d. When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n.

After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. These channel selection procedures apply to both the initial test configuration and subsequent test configuration(s), with respect to the default power measurement procedures or additional power measurements required for further SAR test reduction. The same procedures also apply to subsequent highest output power channel(s) selection.

- a. Channels with measured maximum output power within ¼ dB of each other are considered to have the same maximum output.
- b. When there are multiple test channels with the same measured maximum output power, the channel closest to mid-band frequency is selected for SAR measurement.
- c. When there are multiple test channels with the same measured maximum output power and equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

Initial Test Configuration Procedures

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 21 of 119

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: XXX-YYY	Report No.:LCS201224064AEB

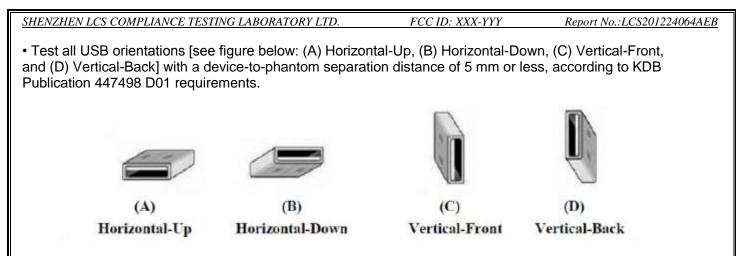
An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required (see section 5.3.2). SAR test reduction of subsequent highest output test channels is based on the reported SAR of the initial test configuration.

For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode.23 For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration. When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the initial test configuration until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, the procedures in section 5.3.2 are applied to determine the test configuration. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.

- a. When SAR test exclusion provisions of KDB Publication 447498 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.
- b. When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.
- c. The number of channels in the initial test configuration and subsequent test configuration can be different due to differences in channel bandwidth. When SAR measurement is required for a subsequent test configuration and the channel bandwidth is smaller than that in the initial test configuration, all channels in the subsequent test configuration that overlap with the larger bandwidth channel tested in the initial test configuration should be used to determine the highest maximum output power channel. This step requires additional power measurement to identify the highest maximum output power channel in the subsequent test configuration to determine SAR test reduction.

1). SAR should first be measured for the channel with highest measured output power in the subsequent test configuration.


2). SAR for subsequent highest measured maximum output power channels in the subsequent test configuration is required only when the reported SAR of the preceding higher maximum output power channel(s) in the subsequent test configuration is > 1.2 W/kg or until all required channels are tested. a) For channels with the same measured maximum output power, SAR should be measured using the channel closest to the center frequency of the larger channel bandwidth channel in the initial test configuration.

- d. SAR measurements for the remaining highest specified maximum output power OFDM transmission mode configurations that have not been tested in the initial test configuration (highest maximum output) or subsequent test configuration(s) (subsequent next highest maximum output power) is determined by applying the subsequent test configuration procedures in this section to the remaining configurations according to the following:
- 1) replace "subsequent test configuration" with "next subsequent test configuration" (i.e., subsequent next highest specified maximum output power configuration)
- 2) replace "initial test configuration" with "all tested higher output power configurations.

3.11. Configuration and Peripherals

The EUT was tested in the following configuration(s) unless otherwise stated: • Powered via a USB port.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 22 of 119

These test orientations are intended for the exposure conditions found in typical laptop/notebook/netbook or tablet computers with either horizontal or vertical USB connector configurations at various locations in the keyboard section of the computer. Current generation portable host computers should be used to establish the required SAR measurement separation distance. The same test separation distance must be used to test all frequency bands and modes in each USB orientation. The typical Horizontal-Up USB connection (A), found in the majority of host computers, must be tested using an appropriate host computer. A host computer with either Vertical-Front (C) or Vertical-Back (D) USB connection should be used to test one of the vertical USB orientations. If a suitable host computer is not available for testing the Horizontal-Down (B) or the remaining Vertical USB orientation, a high quality USB cable, 12 inches or less, may be used for testing these other orientations. It must be documented that the USB cable does not influence the radiating characteristics and output power of the transmitter

3.12. Power Reduction

The product without any power reduction.

3.13. Power Drift

To control the output power stability during the SAR test, SAR system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. This ensures that the power drift during one measurement is within 5%.

4. TEST CONDITIONS AND RESULTS

4.1. Conducted Power Results

According KDB 447498D01 General RF Exposure Guidance v06 Section 4.1 2) states that "Unless it is specified differently in the published RF exposure KDB procedures, these requirements also apply to test reduction and test exclusion considerations. Time-averaged maximum conducted output power applies to SAR and, as required by § 2.1091(c), time-averaged ERP applies to MPE. When an antenna port is not available on the device to support conducted power measurement, such as FRS and certain Part 15 transmitters with built-in integral antennas, the maximum output power allowed for production units should be used to determine RF exposure test exclusion and compliance."

<UMTS Conducted Power>

The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification.A summary of these settings are illustrated below:

HSDPA Setup Configuration:

C.

- The EUT was connected to Base Station E5515C referred to theSetup Configuration. a.
- The RF path losses were compensated into the measurements. b.
 - A call was established between EUT and Base Station with following setting:
 - Set Gain Factors (β_c and β_d) and parameters were set according to each i.
 - Specific sub-test in the following table, C10.1.4, guoted from the TS 34.121 ii.
 - iii. Set RMC 12.2Kbps + HSDPA mode.
 - iv. Set Cell Power = -86 dBm
 - v. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
 - vi. Select HSDPA Uplink Parameters
 - vii. Set Delta ACK. Delta NACK and Delta CQI = 8
 - viji. Set Ack-Nack Repetition Factor to 3
 - ix. Set CQI Feedback Cycle (k) to 4 ms
 - x. Set CQI Repetition Factor to 2xi. Power Ctrl Mode = All Up bits
- The transmitted maximum output power was recorded. d.

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βc	βa	βd (SF)	βс/βа	βнs (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)				
1	2/15	15/15	64	2/15	4/15	0.0	0.0				
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0				
3	15/15	8/15	64	15/8	30/15	1.5	0.5				
4	15/15	4/15	64	15/4	30/15	1.5	0.5				
Note 2:	For the HS-E Magnitude (E discontinuity with β_{hs} = 2	DPCCH pow EVM) with H in clause 5. 4/15 * β_c .	er mask requ S-DPCCH te 13.1AA, ∆ _{ACK}	$\beta_s = 30/15 * \beta_c$. irrement test in cla st in clause 5.13.1 and $\Delta_{\text{NACK}} = 30/12$	A, and HSDF 5 with β_{hs} =	PA EVM with phat 30/15 * eta_c , and	ase I ∆ _{CQI} = 24/15				
	· 112) · L										
				or the TFC during factors for the ref							

Setup Configuration

HSUPA Setup Configuration:

- a. The EUT was connected to Base StationR&S CMU200 referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting * :
 - Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK i

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 24 of 119

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: XXX-YYY	Report No.:LCS201224064AEB

- ii. Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121
- iii. Set Cell Power = -86 dBm
- iv. Set Channel Type = 12.2k + HSPA
- v. Set UE Target Power
- vi. Power Ctrl Mode= Alternating bits
- vii. Set and observe the E-TFCI
- viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- d. The transmitted maximum output power was recorded.

Sub- test	βc	βd	βd (SF)	βc/βd	βнs (Note1)	β _{ec}	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c .

Note 2: CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.

Note 5: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.

Note 6: βed can not be set directly, it is set by Absolute Grant Value.

General Note

1. Per KDB 941225 D01, RMC 12.2kbps setting is used to evaluate SAR. If AMR 12.2kbps power is < 0.25dB higher than RMC 12.2kbps, SAR tests with AMR 12.2kbps can be excluded.

2. By design, AMR and HSDPA/HSUPA RF power will not be larger than RMC 12.2kbps, detailed information is included in Tune-up Procure exhibit.

3. It is expected by the manufacturer that MPR for some HSDPA/HSUPA subtests may differ from the specification of 3GPP, according to the chipset implementation in this model. The implementation and expected deviation are detailed in tune-up procedure exhibit.

Conducted Power Measurement Results(WCDMA Band II/V)								
		FDD Band V result (dBm)		FDD Band II result (dBm)				
Item	Band		Test Chan	inel		Test Channel		
	20110	4132/	4183/	4233/	9262/	9400/	9538/	
		826.4	836.6	846.6	1852.4	1880	1907.6	
RMC	12.2kbps	23.39	23.40	23.39	23.44	23.50	23.64	
	Subtest 1	22.72	22.71	22.89	22.82	22.84	22.87	
HSDPA	Subtest 2	22.81	22.86	22.85	22.75	22.89	22.80	
HSDFA	Subtest 3	22.84	22.78	22.73	22.72	22.84	22.70	
	Subtest 4	22.82	22.73	22.78	22.85	22.73	22.74	
	Subtest 1	22.84	22.77	22.83	22.77	22.76	22.80	
	Subtest 2	22.76	22.83	22.83	22.70	22.75	22.71	
HSUPA	Subtest 3	22.83	22.70	22.84	22.79	22.82	22.78	
	Subtest 4	22.79	22.85	22.82	22.79	22.78	22.72	
	Subtest 5	22.88	22.79	22.70	22.76	22.79	22.72	

Note:1.When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq 1/2$ dB higher than the primary mode (RMC12.2kbps) or when the highest reported SAR of the primary

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 25 of 119

mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is \leq 1.2 W/kg, SAR measurement is not required for the secondary mode.

BW	Frequency	RB Con	figuration	Average P	ower [dBm]
(MHz)	(MHz)	Size	Offset	QPSK	16QAN
· · · /		1	0	23.81	22.96
		1	3	23.88	23.06
		1	5	23.86	23.01
	1850.7	3	0	23.78	22.54
		3	2	23.70	22.53
		3	3	23.80	22.70
		6	0	22.77	21.82
		1	0	24.12	23.55
		1	3	24.12	23.35
		1	5	24.11	23.45
1.4	1880.0	3	0	24.07	23.25
1.4	1000.0				
	_	3	2	24.09	22.87
	_	3	3	24.21	22.59
		6	0	23.10	22.01
		1	0	24.31	23.41
		1	3	24.08	23.42
		1	5	24.12	23.25
	1909.3	3	0	24.12	22.92
		3	2	24.19	22.92
		3	3	24.05	22.79
		6	0	23.04	22.21
		1	0	23.79	22.76
		1	7	23.91	22.90
		1	14	23.87	22.63
	1851.5	8	0	22.71	21.69
		8	4	22.79	21.72
		8	7	22.81	21.70
		15	0	22.87	21.79
		1	0	24.17	22.91
		1	7	24.01	22.86
	1880.0	1	14	24.12	22.78
3		8	0	23.32	22.42
		8	4	23.32	22.41
		8	7	23.12	22.16
		15	0	23.15	22.18
		1	0	24.10	23.81
		1	7	23.97	23.43
		1	14	23.94	23.16
	1908.5	8	0	23.13	22.40
		8	4	23.12	22.41
		8	7	23.06	22.03
		15	0	23.08	22.32
	† †	10	0	23.90	22.02
		1	12	24.08	22.00
		1	24	23.77	22.04
	1852.5	12	0	22.86	21.01
	1002.0	12	6	22.85	21.99
		12	13	22.85	
F					21.96
5		25	0	22.85	21.91
		1	0	24.17	23.36
		1	12	24.21	22.99
	1880.0	1	24	24.09	22.96
		12	0	23.13	22.07
		12	6	23.12	22.07
		12	13	23.00	21.92

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 26 of 119

THEN LUS COMP.	LIANCE TESTING LABO	MATUNI LID.	FCC ID: XXX-	тт керот	rt No.:LCS201224
		25	0	23.15	22.29
		1	0	23.99	22.75
		1	12	24.09	22.61
		1	24	23.97	22.49
	1907.5	12	0	23.11	22.13
		12	6	23.11	22.21
		12	13	23.02	22.03
		25	0	23.07	22.20
		1	0	23.94	22.80
		1	24	24.06	22.64
		1	49	23.10	22.46
	1855.0	25	0	22.91	22.16
		25	12	22.82	21.98
		25	25	22.77	21.97
		50	0	22.79	21.91
		1	0	24.28	23.47
		1	24	24.63	24.03
		1	49	24.02	23.19
10	1880.0	25	0	23.27	22.57
		25	12	23.27	22.57
		25	25	23.05	22.12
		50	0	23.15	22.08
		1	0	22.58	21.78
		1	24	24.57	23.83
	1905.0	1	49	23.29	22.52
		25	0	23.13	22.22
		25	12	23.11	22.22
		25	25	23.19	22.35
		50	0	23.20	22.17
		1	0	23.94	23.68
		1	37	24.12	23.65
		1	74	22.06	21.30
	1857.5	37	0	23.01	22.98
		37	18	23.00	22.97
		37	38	23.00	23.05
		75	0	23.04	22.11
		1	0	23.65	22.99
		1	37	24.95	23.93
		1	74	23.88	22.47
15	1880.0	37	0	23.31	23.29
		37	18	23.31	23.29
		37	38	23.30	23.29
		75	0	23.33	22.49
		1	0	22.53	21.47
		1	37	23.77	22.73
		1	74	22.93	21.94
	1902.5	37	0	23.17	23.23
		37	18	23.16	23.22
		37	38	23.14	23.21
		75	0	23.19	22.20
		1	0	24.16	23.51
		1	49	23.34	22.43
		1	99	22.13	21.17
	1860.0	50	0	23.15	22.17
		50	25	23.15	22.19
20		50	50	22.21	21.39
		100	0	23.02	22.04
		1	0	22.49	21.67
		1	49	25.11	23.87
	1880.0	1	99	23.67	22.19
		50	0	23.34	22.43

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 27 of 119

SHENZHEN LCS COMPLIANCE TESTING LAB	ORATORY LTD.	FCC ID: XXX-	YYY Rej	oort No.:LCS201224064AEB
	50	25	23.34	22.52
	50	50	23.27	22.32
	100	0	23.31	22.35
	1	0	23.52	22.63
	1	49	22.91	22.09
	1	99	22.55	21.68
1900.0	50	0	22.93	22.06
	50	25	22.92	22.06
	50	50	23.35	22.46
	100	0	23.08	22.20

BW	Frequency	RB Con	figuration	Average P	ower [dBm]
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
		1	0	22.37	21.49
		1	3	22.32	21.57
		1	5	22.22	21.40
	1710.7	3	0	22.22	21.25
		3	2	22.19	21.22
		3	3	22.15	21.18
		6	0	22.09	21.09
		1	0	22.85	22.01
		1	3	22.99	21.96
		1	5	22.74	21.97
1.4	1732.5	3	0	22.87	21.68
		3	2	22.87	21.59
		3	3	22.79	21.48
		6	0	21.77	20.92
		1	0	22.80	21.78
1754.3		1	3	22.92	22.03
		1	5	22.86	22.14
	1754.3	3	0	22.63	21.40
		3	2	22.63	21.40
		3	3	22.70	21.39
		6	0	21.59	20.59
		1	0	22.32	21.49
		1	7	22.26	21.47
		1	14	22.13	21.30
	1711.5	8	0	22.10	21.24
		8	4	22.08	21.23
		8	7	22.01	20.97
		15	0	21.99	21.13
		1	0	22.85	21.60
		1	7	22.84	21.51
		1	14	22.64	21.32
3	1732.5	8	0	21.80	20.98
		8	4	21.80	20.98
		8	7	21.76	20.93
		15	0	21.82	20.87
		1	0	22.47	21.23
		1	7	22.87	21.59
		1	14	23.01	21.75
	1753.5	8	0	21.53	20.50
		8	4	21.53	20.41
		8	7	21.68	20.48
		15	0	21.49	20.45
		1	0	22.15	21.17
		1	12	22.18	21.25
5	1712.0	1	24	22.10	21.21
		12	0	21.93	21.02
		12	6	21.91	21.11

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 28 of 119

	-	12	13	21.94	04.40
	I F		10	21.01	21.13
		25	0	21.92	21.04
		1	0	22.73	21.78
		1	12	23.22	22.00
		1	24	22.98	21.65
	1732.5	12	0	21.77	20.83
		12	6	21.77	20.83
	-	12	13	21.75	20.79
	-	25	0	21.70	20.85
		1	0	22.49	21.47
	-	1	12	22.93	21.66
	-	1	24	22.94	21.57
	1752.5	12	0	21.51	20.50
		12	6	21.53	20.42
		12	13	21.71	20.72
		25	0	21.59	20.62
		1	0	21.36	20.60
		1	24	22.35	21.61
		1	49	22.39	21.60
	1715.0	25	0	21.78	20.86
	1710.0	25	12	21.77	20.86
	-	25	25	22.39	20.00
	-	50	0	22.05	21.49
		1	0	22.05	21.13
		1	24	23.30	21.17
	-	1	49	23.30	22.20
10	1732.5	25	<u>49</u> 0	22.46	
	1/32.5	25	12		20.93
	-	25	25	21.80	20.84
	-			21.64	20.87
		50	0	21.67	20.98
	-	1	0	22.24	21.36
	-	1	24	22.66	21.85
		1	49	22.27	21.49
	1750.0	25	0	21.65	20.61
	_	25	12	21.65	20.65
	_	25	25	21.76	20.77
		50	0	21.61	20.57
	_	1	0	21.12	20.38
	_	1	37	22.78	22.01
		1	74	22.39	21.60
	1717.5	37	0	22.34	22.30
		37	18	22.33	22.29
		37	38	22.32	22.28
		75	0	22.26	21.24
		1	0	22.03	21.36
		1	37	22.95	21.85
		1	74	22.50	21.28
15	1732.5	37	0	21.77	21.64
		37	18	21.69	21.73
	Γ	37	38	21.67	21.72
		75	0	21.70	20.89
		1	0	22.61	22.37
	Į Ē	1	37	22.63	21.89
	[1	74	22.10	21.35
	1747.5	37	0	21.69	21.66
	l t	37	18	21.68	21.66
	l F	37	38	21.67	21.65
		75	0	21.64	20.74
		1	0	20.95	20.02
20	1720.0	1	49	23.39	22.48
20	1120.0	1	99	21.63	20.78

SHENZHEN LCS COMPLIANCE TESTING	LABORATORY LTD.	FCC ID: XXX-	YYY Rej	port No.:LCS201224064AEB
	50	0	21.97	21.06
	50	25	21.95	21.05
	50	50	22.66	21.71
	100	0	22.32	21.43
	1	0	22.24	21.51
	1	49	23.04	22.32
	1	99	22.63	21.94
1732.5	50	0	22.04	21.01
	50	25	22.03	21.09
	50	50	21.65	20.72
	100	0	21.85	20.89
	1	0	22.59	21.53
	1	49	22.88	21.57
	1	99	21.72	20.92
1745.0	50	0	21.64	20.68
	50	25	21.56	20.69
	50	50	21.57	20.56
	100	0	21.62	20.54

LTE Band 12

BW	Frequency		RB Configuration		Average Power [dBm]		
(MHz)	(MHz)	Size	Offset	QPSK	16QAM		
		1	0	23.53	22.28		
		1	3	23.83	22.61		
		1	5	23.86	22.64		
	699.7	3	0	23.35	22.02		
		3	2	23.34	22.02		
		3	3	23.30	22.25		
		6	0	23.18	22.25		
		1	0	23.39	22.77		
		1	3	23.36	22.76		
		1	5	23.30	22.65		
1.4	707.5	3	0	23.46	22.37		
		3	2	23.46	22.38		
		3	3	23.41	22.31		
		6	0	23.36	22.42		
		1	0	24.55	23.77		
		1	3	24.27	23.55		
		1	5	24.02	23.20		
	715.3	3	0	24.44	23.48		
		3	2	24.43	23.49		
		3	3	24.13	23.15		
		6	0	23.66	22.76		
		1	0	23.07	22.18		
		1	7	23.56	22.71		
		1	14	23.63	22.77		
	700.5	8	0	23.28	22.33		
		8	4	23.27	22.33		
		8	7	23.52	22.59		
		15	0	23.38	22.42		
		1	0	23.40	22.49		
0		1	7	23.44	22.61		
3		1	14	23.29	22.37		
	707.5	8	0	23.31	22.34		
		8	4	23.31	22.35		
		8	7	23.22	22.28		
		15	0	23.26	22.20		
		1	0	24.75	23.76		
	7440	1	7	24.65	23.37		
	714.3	1	14	23.84	23.10		
		8	0	23.96	22.92		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 30 of 119

HENZHEN LCS COMP	PLIANCE TESTING LABORA	TORY LTD.	FCC ID: XXX-YYY	R	eport No.:LCS201224064AE
		8	4	23.96	23.02
		8	7	23.57	22.50
		15	0	23.80	22.72
		1	0	23.02	21.95
		1	12	23.86	22.85
		1	24	23.49	22.52
	701.5	12	0	23.46	22.35
	701.0	12	6	23.44	22.35
		12	13	23.61	22.54
		25	0	23.37	22.37
		1	0	23.49	22.66
		1	12	23.56	22.73
		1	24	23.29	22.49
5	707.5	12	0	23.50	22.49
5	101.5	12	6	23.49	22.49
		12	13	23.36	22.39
		25	0	23.35	22.39
		1	0	23.35	23.25
		1	12		
		1		25.07	24.35
	740 5		24	23.87	23.11
	713.5	12	0	23.72	22.71
		12	6	23.62	22.71
		12	13	23.65	22.55
		25	0	23.75	22.66
		1	0	22.40	21.57
		1	24	23.83	23.01
		1	49	22.51	21.66
	704	25	0	23.25	22.24
		25	12	23.25	22.25
		25	25	23.23	22.23
		50	0	23.19	22.21
		1	0	22.79	21.96
		1	24	23.44	22.63
		1	49	23.68	22.87
10	707.5	25	0	23.21	22.26
		25	12	23.21	22.27
		25	25	23.34	22.39
		50	0	23.21	22.27
		1	0	22.62	21.56
		1	24	23.92	23.19
		1	49	23.14	22.42
	711	25	0	22.98	22.00
		25	12	22.98	21.99
		25	25	24.19	23.24
		50	0	23.72	22.75

NZHEN LCS COMPLIANO	CE TESTING LABORATOR	YLTD. FCC	C ID: XXX-YYY	Report No.:LCS201224064AE
	<wlan< td=""><td>2.4GHz Conducted</td><td>l Power></td><td></td></wlan<>	2.4GHz Conducted	l Power>	
Mode	Channel	Frequency (MHz)	Data rate (Mbps)	Average Output Power (dBm)
			1	12.88
	1	2412	2	12.21
	I	2412	5.5	12.16
			11	12.08
			1	16.29
IEEE 802.11b	6	2437	2	15.64
	0	2101	5.5	15.23
			11	15.52
			1	15.24
	11	2462	2	14.28
			5.5	14.11
			11	14.10
			<u> 6</u> 9	15.35
			12	13.24 13.22
	1	2412	<u>18</u> 24	13.23 13.18
			36	13.18
			48	13.06
			54	13.12
			6	15.80
	6 11	2437 2462	9	13.12
IEEE 802.11g			12	13.12
			18	13.14
			24	13.18
			36	13.19
			48	13.24
			54	13.16
			6	14.04
			9	12.20
			12	12.01
			18	12.11
			24	12.25
			36	12.20
			48	12.26
			54	12.23
			MCS0	14.61
			MCS1	11.22
		2412	MCS2	11.51
	1		MCS3	11.39
	I	2412	MCS4	11.41
			MCS5	11.78
			MCS6	11.36
			MCS7	11.12
			MCS0	14.82
			MCS1	13.65
IEEE 802.11n			MCS2	14.05
HT20	6	2437	MCS3	14.06
	-		MCS4	14.15
			MCS5	13.78
			MCS6	14.11
			MCS7	14.14
			MCS0	13.95
			MCS1	12.25
	11	2462	MCS2	12.10
	-		MCS3	12.04
			NACO 4	
			MCS4 MCS5	12.08 12.01

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 32 of 119

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: XXX-YYY	Report No.:LCS201224064AEB	
	MCS6	13.02	
	MCS7	12.52	

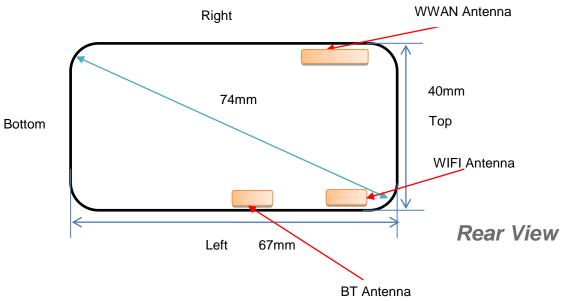
Note: SAR is not required for the following 2.4 GHz OFDM conditions as the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.

	<b]< th=""><th>Conducted Power</th><th>></th></b]<>	Conducted Power	>
Mode	channel	Frequency (MHz)	Conducted AVG output power (dBm)
	0	2402	-2.674
GFSK-BLE	19	2440	-1.156
	39	2480	-2.690
	0	2402	0.388
GFSK	39	2441	1.819
	78	2480	0.270
	0	2402	-0.495
π/4-DQPSK	39	2441	1.002
	78	2480	-0.532
	0	2402	-0.418
8DPSK	39	2441	1.107
	78	2480	-0.371

Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\left[\sqrt{f(GHz)}\right] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison


Bluetooth Turn up	Separation Distance	Frequency	Exclusion
Power (dBm)	(mm)	(GHz)	Thresholds
2.5	5	2.45	0.6

Per KDB 447498 D01v06, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. The test exclusion threshold is 0.6< 3.0, SAR testing is not required.

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCC ID: XXX-YYY

4.2. Transmit Antennas and SAR Measurement Position

Distance of The Antenna to the EUT surface and edge (mm)									
Antennas	Front	Back	Top Side	Bottom Side	Left Side	Right Side			
WWAN	<5	<5	<5	40	30	<5			
WLAN	<5	<5	<5	36	<5	32			

	Positions for SAR tests; Hotspot mode									
Antennas	Front	Back	Top Side	Bottom Side	Left Side	Right Side				
WWAN	Yes	Yes	Yes	No	No	Yes				
WLAN	Yes	Yes	Yes	No	Yes	No				

1. SAR is required only for both back and edge with the most conservation exposure condition

2. For Body mode, SAR is not required when the main antenna to edge is >2.5cm (refer to EUT photographs)

CAD

""

4.3. SAR Measurement Results

The calculated SAR is obtained by the following formula:

Reported SAR=Measured SAR*10^{(Ptarget-Pmeasured))/10} Scaling factor=10^{(Ptarget-Pmeasured))/10}

Reported SAR= Measured SAR* Scaling factor

Where

P_{target} is the power of manufacturing upper limit;

P_{measured} is the measured power;

Measured SAR is measured SAR at measured power which including power drift)

Reported SAR which including Power Drift and Scaling factor

Duty Cycle

Test Mode	Duty Cycle
UMTS	1:1
LTE	1:1
WLAN2450	1:1

4.3.1 SAR Results

SAR Values [WCDMA Band V] A descine une

				Conducted	Maximum	Power		SAR1-g les	ulis(vv/kg)	
Ch.	Freq. (MHz)	Channel Type	Test Position	Power (dBm)	Allowed Power (dBm)	Drift (%)	Scaling Factor	Measured	Reported	Graph Results
		me	easured / repo	orted SAR numb	ers - Body (hot	spot open	, distance	10mm)		
4183	836.6	RMC*	Front	23.40	23.50	-1.27	1.023	0.156	0.160	Plot 1
4183	836.6	RMC*	Back	23.40	23.50	3.10	1.023	0.102	0.104	
4183	836.6	RMC*	Right	23.40	23.50	0.05	1.023	0.090	0.092	
4183	836.6	RMC*	Тор	23.40	23.50	1.14	1.023	0.074	0.076	

Remark:

1. The value with block color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. RMC* - RMC 12.2kbps mode;

SAR Values [WCDMA Band II]

				O/ II Tulu		Bananj				
Ch.	Freq. (MHz)	Chan nel Type	Test Position	Condu cted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results
			measured / reporte	d SAR num	bers - Body (ho	tspot open	, distance	10mm)		
9538	1907.6	RMC	Front	23.64	24.00	-1.82	1.086	1.095	1.190	Plot 2
9262	1852.4	RMC	Front	23.44	24.00	0.30	1.138	0.612	0.696	
9400	1880.0	RMC	Front	23.50	24.00	-1.21	1.122	0.546	0.613	
9538	1907.6	RMC	Back	23.64	24.00	1.23	1.086	0.523	0.568	
9538	1907.6	RMC	Right	23.64	24.00	2.05	1.086	0.346	0.376	
9538	1907.6	RMC	Тор	23.64	24.00	0.51	1.086	0.248	0.269	
-	1									

Remark:

1. The value with block color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. RMC* - RMC 12.2kbps mode;

				SAR Valu	ues [LTE Bar	nd 2]				
	Fran	Channel	Test	Conducted Power (dBm)	Maximum Allowed	Power	Scaling	SAR _{1-g} res	ults(W/kg)	Graph
Ch.	(MHz)	Туре (20М)	Position		Power (dBm)	Drift (%)	Factor	Measured	Reported	Results
		me	asured / repo	orted SAR numb	ers - Body (hot	spot open	, distance	10mm)		
	This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.									
This	report shal	l not be reprod	uced except u	5	11	il of Shenz	hen LCS Co	ompliance Test	ing Laborator	ry Ltd.
				Pa	age 35 of 119					

SHEN	ZHEN LCS	COMPLIANCE	E TESTING LAI	BORAT	TORY LTD.	FC	CC ID: XXX	K-YYY	Report 1	No.:LCS20122	4064AEB
								-	-		
1890			Front		25.11	25.50	0.16	1.094	0.426	0.466	
1890			Back		25.11	25.50	-1.91	1.094	1.107	1.211	Plot 3
1870			Back		24.16	24.50	1.10	1.081	0.891	0.964	
1910	0 1900.		Back		23.52	24.00	-2.11	1.117	0.652	0.728	
1890	0 1880.) 1RB	Right		25.11	25.50	1.02	1.094	0.578	0.632	
1890	0 1880.) 1RB	Тор		25.11	25.50	0.30	1.094	0.230	0.252	
1910	0 1900.	50%RB	Front		23.35	23.50	2.14	1.035	0.231	0.239	
1910	0 1900.	50%RB	Back		23.35	23.50	3.05	1.035	0.452	0.468	
1910	0 1900.	50%RB	Right		23.35	23.50	-0.12	1.035	0.263	0.272	
1910	0 1900.	50%RB	Тор		23.35	23.50	0.19	1.035	0.254	0.263	
					SAR Val	ues [LTE Ba	nd 41				
						Maximum	-		SAR _{1-q} res	ults(W/kg)	
Ch.	Freq.	Channel	Test		nducted Power	Allowed	Power Drift	Scaling	ig		Graph
Cn.	(MHz	Туре (20М)	Position		dBm)	Power	(%)	Factor	Measured	Reported	Results
		. ,				(dBm)					
0047	4700			orted		ers - Body (ho				0.54.4	
2017			Front		23.39	23.50	0.26	1.026	0.501	0.514	Diet 4
2017			Back		23.39	23.50	-3.06	1.026	0.632	0.648	Plot 4
2017			Right		23.39	23.50	1.05	1.026	0.312	0.320	
2017			Top Front		23.39	23.50		1.026	0.203	0.208	
2017			Front		22.66	23.00	0.51	1.081	0.440	0.476	
2017			Back		22.66	23.00	-1.11	1.081	0.587	0.635	
2017			Right		22.66	23.00	0.58	1.081	0.274	0.296	
2017	75 1720.	50%RB	Тор		22.66	23.00	1.39	1.081	0.180	0.195	
					SAR Valı	ues [LTE Bar	nd 121				
		Channal			ducted	Maximum	-		SAR1-g res	ults(W/kg)	
Ch.	Freq.	Channel Type	Test		ower	Allowed	Power Drift	Scaling			Graph
011.	(MHz)	rype	Position		Bm)	Power	(%)	Factor	Measured	Reported	Results
	(101112)		1 0011011	101			(70)				
	(101112)	(10M)				(dBm)		diatanaa	10mm		
2212		(10M) n	neasured / rep	orted	SAR numb	(dBm) bers - Body (ho	tspot oper			0.002	
2313	30 711.0	(10M) n 0 1RB	neasured / rep Fron	oorted It	SAR numb 23.92	(dBm) pers - Body (ho 24.00	tspot oper 3.51	1.019	0.002	0.002	Plot 5
2313	30 711.0 30 711.0	(10M) 	neasured / rep Fron Back	oorted It K	SAR numb 23.92 23.92	(dBm) pers - Body (ho 24.00 24.00	tspot oper 3.51 0.97	1.019 1.019	0.002 0.006	0.006	Plot 5
2313 2313	30 711.0 30 711.0 30 711.0	(10M) n 1RB 1RB 1RB 1RB	neasured / rep Fron Back Righ	oorted t k t	SAR numb 23.92 23.92 23.92 23.92	(dBm) pers - Body (ho 24.00 24.00 24.00	tspot oper 3.51 0.97 1.20	1.019 1.019 1.019	0.002 0.006 0.004	0.006 0.004	Plot 5
2313 2313 2313	30 711. 30 711. 30 711. 30 711. 30 711.	(10M) n 1RB 1RB 1RB 1RB 1RB	neasured / rep Fron Bacl Righ Top	oorted ht k ht	SAR numb 23.92 23.92 23.92 23.92 23.92	(dBm) pers - Body (ho 24.00 24.00 24.00 24.00	tspot oper 3.51 0.97 1.20 0.39	1.019 1.019 1.019 1.019	0.002 0.006 0.004 0.005	0.006 0.004 0.005	Plot 5
2313 2313 2313 2313	30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0	(10M) n 1 RB 1 RB 1 RB 1 RB 1 RB 1 RB 1 RB 1 RB	neasured / rep Fron Back Righ Top S Fron	oorted it k it it it	SAR numb 23.92 23.92 23.92 23.92 23.92 24.19	(dBm) bers - Body (ho 24.00 24.00 24.00 24.00 24.50	tspot oper 3.51 0.97 1.20 0.39 0.51	1.0191.0191.0191.0191.0191.074	0.002 0.006 0.004 0.005 0.002	0.006 0.004 0.005 0.002	Plot 5
2313 2313 2313 2313 2313 2313	30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0	(10M) n 1 RB 1 RB	neasured / rep Fron Back Righ Top S Fron B Back	oorted it k it it k	SAR numb 23.92 23.92 23.92 23.92 23.92 24.19 24.19	(dBm) pers - Body (ho 24.00 24.00 24.00 24.50 24.50	tspot oper 3.51 0.97 1.20 0.39 0.51 -0.81	1.019 1.019 1.019 1.019 1.074 1.074	0.002 0.006 0.004 0.005 0.002 0.005	0.006 0.004 0.005 0.002 0.005	Plot 5
2313 2313 2313 2313 2313 2313 2313	30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0	(10M) n 1 RB 1 SO 8 RE 1 SO 8 RE 1 SO 8 RE 1 SO 8 RE 1 SO 1 SO 8 RE 1 SO 1	neasured / rep Fron Back Righ Top B Fron B Back B Righ	borted it k k it it k k t	SAR numb 23.92 23.92 23.92 23.92 23.92 24.19 24.19 24.19	(dBm) pers - Body (ho 24.00 24.00 24.00 24.50 24.50 24.50 24.50	tspot oper 3.51 0.97 1.20 0.39 0.51 -0.81 2.45	1.019 1.019 1.019 1.019 1.074 1.074 1.074	0.002 0.006 0.004 0.005 0.002 0.005 0.003	0.006 0.004 0.005 0.002 0.005 0.003	Plot 5
2313 2313 2313 2313 2313 2313	30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0	(10M) n 1 RB 1 SO 8 RE 1 SO 8 RE 1 SO 8 RE 1 SO 8 RE 1 SO 1 SO 8 RE 1 SO 1	neasured / rep Fron Back Righ Top B Fron B Back B Righ	borted it k k it it k k t	SAR numb 23.92 23.92 23.92 23.92 23.92 24.19 24.19	(dBm) pers - Body (ho 24.00 24.00 24.00 24.50 24.50	tspot oper 3.51 0.97 1.20 0.39 0.51 -0.81	1.019 1.019 1.019 1.019 1.074 1.074	0.002 0.006 0.004 0.005 0.002 0.005	0.006 0.004 0.005 0.002 0.005	Plot 5
2313 2313 2313 2313 2313 2313 2313	30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0	(10M) n 1 RB 1 SO 8 RE 1 SO 8 RE 1 SO 8 RE 1 SO 8 RE 1 SO 1 SO 8 RE 1 SO 1	neasured / rep Fron Back Righ Top B Fron B Back B Righ	borted it k k it it k k t	SAR numb 23.92 23.92 23.92 23.92 24.19 24.19 24.19 24.19 24.19	(dBm) pers - Body (ho 24.00 24.00 24.00 24.50 24.50 24.50 24.50	tspot open 3.51 0.97 1.20 0.39 0.51 -0.81 2.45 3.02	1.019 1.019 1.019 1.019 1.074 1.074 1.074	0.002 0.006 0.004 0.005 0.002 0.005 0.003	0.006 0.004 0.005 0.002 0.005 0.003	Plot 5
2313 2313 2313 2313 2313 2313 2313	30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0	(10M) n 1 RB 1 SO 8 RE 1 SO 8 RE 1 SO 8 RE 1 SO 8 RE 1 SO 1 SO 8 RE 1 SO 1	neasured / rep Fron Back Righ Top B Fron B Back B Righ	ported tt k tt k tt k tt b	SAR numb 23.92 23.92 23.92 23.92 24.19 24.19 24.19 24.19 24.19 24.19	(dBm) pers - Body (ho 24.00 24.00 24.00 24.50 24.50 24.50 24.50 24.50	tspot oper 3.51 0.97 1.20 0.39 0.51 -0.81 2.45 3.02 4G]	1.019 1.019 1.019 1.019 1.074 1.074 1.074 1.074	0.002 0.006 0.004 0.005 0.002 0.005 0.003	0.006 0.004 0.005 0.002 0.005 0.003 0.001	
2313 2313 2313 2313 2313 2313 2313 2313	30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 50 711.0 50 711.0 50 711.0 50 711.0 50 711.0	(10M) n 1 RB 1 RB 1 RB 1 RB 1 RB 1 RB 1 RB 1 RB 1 S0%RE 1 S0%RE 1 S0%RE 1 S0%RE	neasured / rep Fron Back Righ Top Fron Back Back Back Back Back Back Back Back	borted it k it k k c Cor	SAR numb 23.92 23.92 23.92 23.92 24.19 24.19 24.19 24.19 24.19 24.19 SAR Va	(dBm) pers - Body (ho 24.00 24.00 24.00 24.50 24.50 24.50 24.50 24.50 alues [WIFI2. Maximum Allowed	tspot oper 3.51 0.97 1.20 0.39 0.51 -0.81 2.45 3.02 4G] Power	1.019 1.019 1.019 1.019 1.074 1.074 1.074 1.074 Scaling	0.002 0.006 0.004 0.005 0.002 0.005 0.003 0.001 SAR _{1-g} res	0.006 0.004 0.005 0.002 0.005 0.003 0.001	Graph
2313 2313 2313 2313 2313 2313 2313	30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0	(10M) n 1 RB 1 SO 8 RE 1 SO 8 RE 1 SO 8 RE 1 SO 8 RE 1 SO 1	neasured / rep Fron Back Righ Top Fron Back Back Back Back Back Back Back Back	corted it k it k cor p	SAR numb 23.92 23.92 23.92 23.92 24.19 24.19 24.19 24.19 24.19 24.19	(dBm) pers - Body (ho 24.00 24.00 24.00 24.50 24.50 24.50 24.50 24.50 alues [WIFI2. Maximum Allowed Power	tspot oper 3.51 0.97 1.20 0.39 0.51 -0.81 2.45 3.02 4G] Power Drift	1.019 1.019 1.019 1.019 1.074 1.074 1.074 1.074	0.002 0.006 0.004 0.005 0.002 0.005 0.003 0.001	0.006 0.004 0.005 0.002 0.005 0.003 0.001	
2313 2313 2313 2313 2313 2313 2313 2313	30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 50 711.0 50 711.0 50 711.0 50 711.0 50 711.0	(10M) n 1 RB 1 SO% RE 1 SO%	Test Position	corted tt k tt k tt k Cor P (0)	SAR numb 23.92 23.92 23.92 23.92 24.19 24.19 24.19 24.19 24.19 24.19 24.19 24.19 24.19 24.19	(dBm) pers - Body (ho 24.00 24.00 24.00 24.50 24.50 24.50 24.50 alues [WIFI2. Maximum Allowed Power (dBm)	tspot oper 3.51 0.97 1.20 0.39 0.51 -0.81 2.45 3.02 4G] Power Drift (%)	1.019 1.019 1.019 1.019 1.074 1.074 1.074 1.074 Scaling Factor	0.002 0.006 0.004 0.005 0.002 0.005 0.003 0.001 SAR _{1-g} res Measured	0.006 0.004 0.005 0.002 0.005 0.003 0.001	Graph
2313 2313 2313 2313 2313 2313 2313 2313	30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 50 711.0 50 711.0 50 711.0 Freq. (MHz)	(10M) n 1 RB 1 S0% RE 1 S0% RE	Test Possured / rep	corted tt k tt k tt k tt Cor P (c ported	SAR numb 23.92 23.92 23.92 23.92 24.19 24.19 24.19 24.19 SAR Va ower dBm) SAR numb	(dBm) pers - Body (ho 24.00 24.00 24.00 24.50 24.50 24.50 24.50 24.50 alues [WIFI2. Maximum Allowed Power (dBm) pers - Body (ho	tspot oper 3.51 0.97 1.20 0.39 0.51 -0.81 2.45 3.02 4G] Power Drift (%) tspot oper	1.019 1.019 1.019 1.019 1.074 1.074 1.074 1.074 Scaling Factor	0.002 0.006 0.004 0.005 0.002 0.003 0.001 SAR _{1-g} res Measured 10mm)	0.006 0.004 0.005 0.002 0.005 0.003 0.001 ults(W/kg) Reported	Graph
2313 2313 2313 2313 2313 2313 2313 2313	30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 50 711.0 50 711.0 50 711.0 50 711.0 Freq. (MHz) 2437.0	(10M) n 1 RB 1 S0% RE 1 S0%	neasured / rep neasured / rep From Back Righ Top From Back <	borted it k it k Cor P (0 borted	SAR numb 23.92 23.92 23.92 24.19 24.19 24.19 24.19 24.19 SAR Va boucted bower dBm) SAR numb 16.29	(dBm) pers - Body (ho 24.00 24.00 24.00 24.50 24.50 24.50 24.50 24.50 alues [WIFI2. Maximum Allowed Power (dBm) pers - Body (ho 16.50	tspot oper 3.51 0.97 1.20 0.39 0.51 -0.81 2.45 3.02 4G] Power Drift (%) tspot oper -0.11	1.019 1.019 1.019 1.074 1.074 1.074 1.074 Scaling Factor , distance 1.050	0.002 0.006 0.005 0.002 0.005 0.003 0.001 <i>SAR_{1-g} res</i> <i>Measured</i> <i>10mm</i>) 0.009	0.006 0.004 0.005 0.002 0.005 0.003 0.001 wults(W/kg) Reported 0.009	Graph Results
2313 2313 2313 2313 2313 2313 2313 2313	30 711.0 30 710.0 30 710.0 30 710.0 30 710.0 30 710.0 30 710.0 30 710	(10M) n 1 RB 1 S0% RE 1 S0%	neasured / rep From Back Righ Top From From Back Righ Back Righ Back From Back From Back Top From Test Position neasured / rep Front Rear	borted it k it k Cor P (0 borted	SAR numb 23.92 23.92 23.92 24.19 24.19 24.19 24.19 24.19 24.19 SAR Va bouted bower dBm) SAR numb 16.29 16.29	(dBm) pers - Body (ho 24.00 24.00 24.00 24.50 24.50 24.50 24.50 24.50 alues [WIFI2. Maximum Allowed Power (dBm) pers - Body (ho 16.50 16.50	tspot oper 3.51 0.97 1.20 0.39 0.51 -0.81 2.45 3.02 4G] Power Drift (%) tspot oper -0.11 2.33	1.019 1.019 1.019 1.074 1.074 1.074 1.074 5.075 5.074 5.075	0.002 0.006 0.004 0.005 0.002 0.005 0.003 0.001 SAR _{1-g} res Measured 10mm) 0.009 0.062	0.006 0.004 0.005 0.002 0.005 0.003 0.001 with s(W/kg) Reported 0.009 0.005	Graph
2313 2313 2313 2313 2313 2313 2313 2313	30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 2437.0 2437.0 2437.0 2437.0	(10M) n 1 RB 1 S0% RE 1	Test Peasured / rep Back Righ Top Back Back Back Back Back Back Back Back	borted it k it k Cor P (0 borted	SAR numb 23.92 23.92 23.92 24.19 24.19 24.19 24.19 24.19 24.19 24.19 SAR Va boucted bower dBm) SAR numb 16.29 16.29 16.29	(dBm) pers - Body (ho 24.00 24.00 24.00 24.50 24.50 24.50 24.50 24.50 alues [WIFI2. Maximum Allowed Power (dBm) pers - Body (ho 16.50 16.50	tspot oper 3.51 0.97 1.20 0.39 0.51 -0.81 2.45 3.02 4G] Power Drift (%) tspot oper -0.11 2.33 0.21	1.019 1.019 1.019 1.074 1.074 1.074 1.074 1.074 5.074 1.074 1.074 1.074 1.074 1.074 1.074 1.074 1.074 1.074	0.002 0.004 0.005 0.002 0.005 0.003 0.001 SAR _{1-g} res Measured 10mm) 0.009 0.062 0.021	0.006 0.004 0.005 0.002 0.005 0.003 0.001 withs(W/kg) Reported 0.009 0.009 0.065 0.022	Graph Results
2313 2313 2313 2313 2313 2313 2313 2313	30 711.0 30 710.0 30 710.0 30 710.0 30 710.0 30 710.0 30 710.0 30 710	(10M) n 1 RB 1 S0% RE 1 S0%	neasured / rep From Back Righ Top From From Back Righ Back Righ Back From Back From Back Top From Test Position neasured / rep Front Rear	borted it k it k Cor P (0 borted	SAR numb 23.92 23.92 23.92 24.19 24.19 24.19 24.19 24.19 24.19 SAR Va bouted bower dBm) SAR numb 16.29 16.29	(dBm) pers - Body (ho 24.00 24.00 24.00 24.50 24.50 24.50 24.50 24.50 alues [WIFI2. Maximum Allowed Power (dBm) pers - Body (ho 16.50 16.50	tspot oper 3.51 0.97 1.20 0.39 0.51 -0.81 2.45 3.02 4G] Power Drift (%) tspot oper -0.11 2.33	1.019 1.019 1.019 1.074 1.074 1.074 1.074 5.075 5.074 5.075	0.002 0.006 0.004 0.005 0.002 0.005 0.003 0.001 SAR _{1-g} res Measured 10mm) 0.009 0.062	0.006 0.004 0.005 0.002 0.005 0.003 0.001 with s(W/kg) Reported 0.009 0.005	Graph Results
2313 2313 2313 2313 2313 2313 2313 2313	30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 30 711.0 2437.0 2437.0 2437.0 2437.0	(10M) n 1 RB 1 S0% RE 1	Test Peasured / rep Back Righ Top Back Back Back Back Back Back Back Back	borted it k it k Cor P (0 borted	SAR numb 23.92 23.92 23.92 24.19 24.19 24.19 24.19 24.19 24.19 24.19 SAR Va bducted cower dBm) SAR numb 16.29 16.29 16.29	(dBm) pers - Body (ho 24.00 24.00 24.00 24.50 24.50 24.50 24.50 24.50 alues [WIFI2. Maximum Allowed Power (dBm) pers - Body (ho 16.50 16.50	tspot oper 3.51 0.97 1.20 0.39 0.51 -0.81 2.45 3.02 4G] Power Drift (%) tspot oper -0.11 2.33 0.21	1.019 1.019 1.019 1.074 1.074 1.074 1.074 1.074 5.074 1.074 1.074 1.074 1.074 1.074 1.074 1.074 1.074 1.074	0.002 0.004 0.005 0.002 0.005 0.003 0.001 SAR _{1-g} res Measured 10mm) 0.009 0.062 0.021	0.006 0.004 0.005 0.002 0.005 0.003 0.001 withs(W/kg) Reported 0.009 0.009 0.065 0.022	Graph Results

1. The value with blue color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements.19 If the highest reported SAR for a test configuration is \leq 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 36 of 119

	SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: XXX-YYY	Report No.:LCS201224064AEB
--	---	-----------------	----------------------------

4. When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is \leq 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, each band is tested independently for SAR.

4.4. Simultaneous TX SAR Considerations

4.4.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g/n and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

For the DUT, the sample only share one WLAN&BT modular and one WLAN&BT antenna, No need consider simultaneous.

4.5. SAR Measurement Variability

According to KDB865664, Repeated measurements are required only when the measured SAR is \geq 0.80 W/kg. If the measured SAR value of the initial repeated measurement is < 1.45 W/kg with \leq 20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. A second repeated measurement is required only if the measured result for the initial repeated measurement is within 10% of the SAR limit and vary by more than 20%, which are often related to device and measurement setup difficulties. The following procedures are applied to determine if repeated measurements are required. The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.19 The repeated measurement results must be clearly identified in the SAR report. All measured SAR, including the repeated results, must be considered to determine compliance and for reporting according to KDB 690783.Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

- 1) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 3) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20

Frequency		RF		Repeated	Highest	First Repeated	
Frequency Band (MHz)	Air Interface	Exposure Configuration	Test Position	SAR (yes/no)	Measured SAR _{1-g} (W/Kg)	Measued SAR _{1-g} (W/Kg)	Largest to Smallest SAR Ratio
750	LTE Band 12	Standalone	Body-Rear	no	0.006	n/a	n/a
850	WCDMA Band V	Standalone	Body-Front	no	0.156	n/a	n/a
1800	LTE Band 4	Standalone	Body-Rear	no	0.632	n/a	n/a
1900	WCDMA Band II	Standalone	Body-Front	no	1.095	0.958	1.14
1900	LTE Band 2	Standalone	Body-Rear	no	1.107	0.942	1.18
2450	WIFI2.4G	Standalone	Body-Rear	no	0.062	n/a	n/a

Remark:

1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the orignal and first repeated measurement is not > 1.20 or 3 (1-g or 10-g respectively)

4.6. General description of test procedures

1. Test positions as described in the tables above are in accordance with the specified test standard.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 37 of 119

SHENZHEN I	LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: XXX-YYY	Report No.:LCS201224064AEB
2.	Tests in body position were performed in tha averaged output power (see conducted pow		erates the highest time based
3.	According to IEEE 1528 the SAR test shall b bottom channel is optional.	,	annel. Testing of top and
4.	According to KDB 447498 D01 testing of oth frequency band is not required when the rep output power channel is:	•	
	 ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g res ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g res MHz and 200 MHz 		
5.	 ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g res IEEE 1528-2003 require the middle channel devices that are designed to operate in tech variations across channels in the band. Whe required test channels is > ½ dB, instead of must be used. 	to be tested first. This gen nologies with tight tolerance on the maximum output po	erally applies to wireless es for maximum output power wer variation across the
6.	When the same maximum output power is s NII-2A band by applying the OFDM SAR reconfiguration is \leq 1.2 W/kg, SAR is not requi	uirements.19 If the highes red for U-NII-1 band for th	st reported SAR for a test at configuration (802.11 mode
7.	and exposure condition); otherwise, each ba When different maximum output power is sp band with higher specified maximum output	ecified for the bands, begin	n SAR measurement in the

7. When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, each band is tested independently for SAR.

4.7. Measurement Uncertainty (450MHz-6GHz)

Not required as SAR measurement uncertainty analysis is required in SAR reports only when the highest measured SAR in a frequency band is \geq 1.5 W/kg for 1-g SAR accoridng to KDB865664D01.

Report No.:LCS201224064AEB

4.8. System Check Results

Test mode:750MHz(Head) Product Description:Validation Model:Dipole SID750 E-Field Probe: SSE2(SN 31/17 EPGO324) Test Date: February 03, 2021

Medium(liquid type)	HSL_750			
Frequency (MHz) 750.0000				
Relative permittivity (real part) 40.58				
Conductivity (S/m) 0.88				
Input power 100mW				
Crest Factor 1.0				
Conversion Factor	1.45			
Variation (%)	1.420000			
SAR 10g (W/Kg)	0.562452			
SAR 1g (W/Kg)	0.824413			
SURFACE SAR	VOLUME SAR			

Report No.:LCS201224064AEB

Test mode:835MHz(Head) Product Description:Validation Model:Dipole SID835 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date:February 18, 2021

Medium(liquid type) HSL_850					
Frequency (MHz) 835.0000					
Relative permittivity (real part) 40.14					
Conductivity (S/m) 0.86					
Input power 100mW					
Crest Factor 1.0					
Conversion Factor	2.04				
Variation (%)	-0.210000				
SAR 10g (W/Kg)	0.632132				
SAR 1g (W/Kg)	0.975488				
SURFACE SAR	VOLUME SAR				
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.					
This report shall not be reproduced except in juli, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 40 of 119					

Report No.:LCS201224064AEB

Test mode:1800MHz(Head) Product Description:Validation Model :Dipole SID1800 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date: February 24, 2021

Medium(liquid type)	HSL_1800			
Frequency (MHz) 1800.0000				
Relative permittivity (real part) 41.59				
Conductivity (S/m) 1.42				
Input power 100mW				
Crest Factor 1.0				
Conversion Factor	1.65			
Variation (%)	3.560000			
SAR 10g (W/Kg)	2.013283			
SAR 1g (W/Kg)	3.819085			
SURFACE SAR	VOLUME SAR			
Caluer State Origination Image: Caluer State Image: Caluer State				

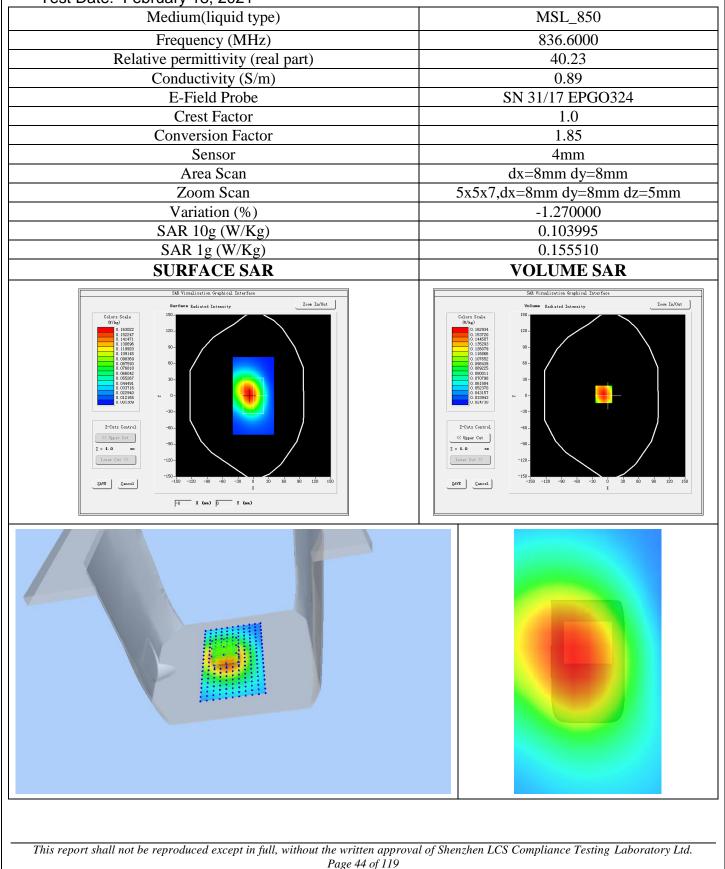
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 41 of 119

Report No.:LCS201224064AEB

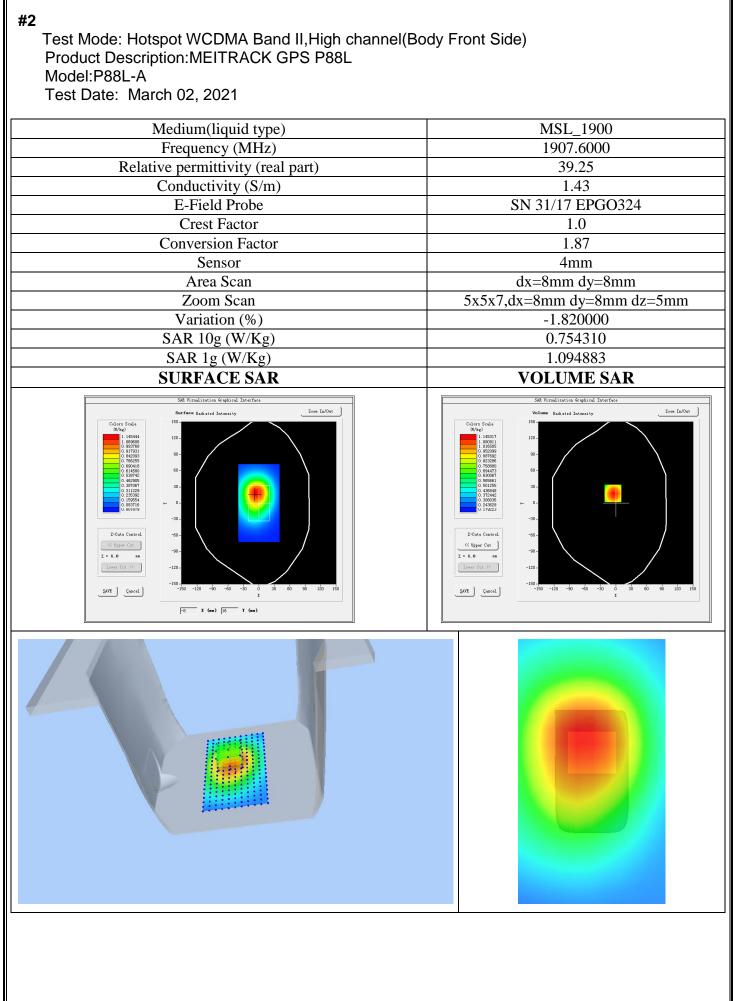
Test mode:1900MHz(Head) Product Description:Validation Model :Dipole SID1900 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date: March 02, 2021

HSL_1900					
1900.0000					
Relative permittivity (real part) 39.23					
Conductivity (S/m) 1.37					
Input power 100mW					
Crest Factor 1.0					
2.10					
-1.170000					
2.068260					
3.921162					
VOLUME SAR					

Test mode:2450MHz(Head) Product Description: Validation Model:Dipole SID2450 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date: March 03, 2021

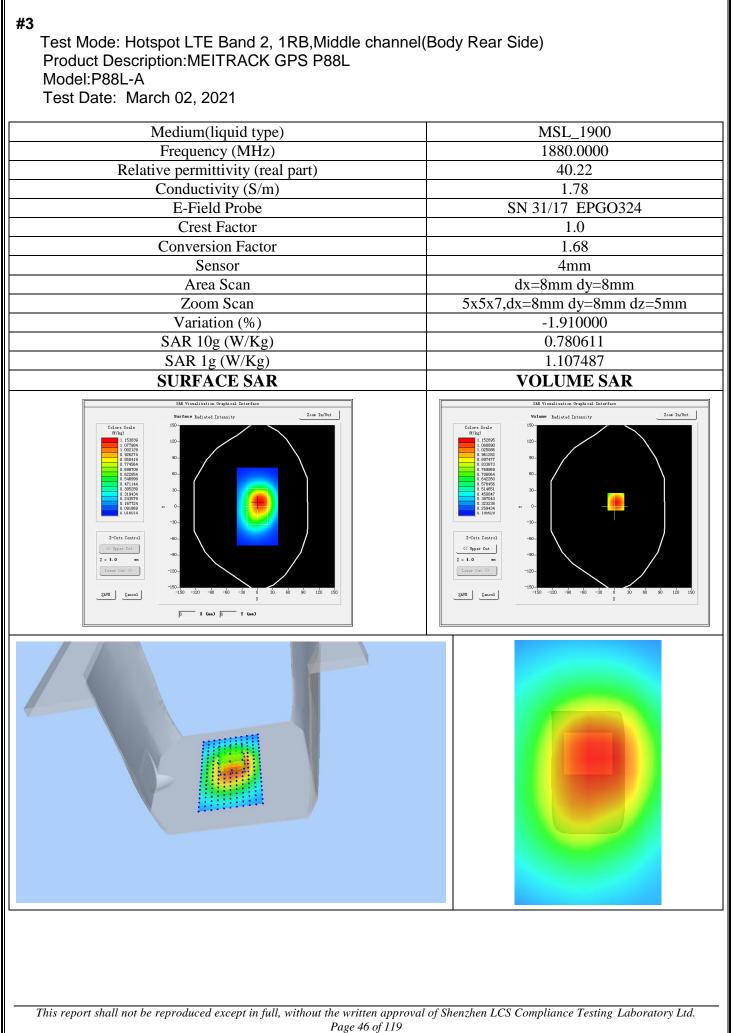

Medium(liquid type)	HSL_2450				
Frequency (MHz)	2450.0000				
Relative permittivity (real part)	39.70				
Conductivity (S/m)	1.84				
Input power 100mW					
Crest Factor 1.0					
Conversion Factor	1.91				
Variation (%)	-0.080000				
SAR 10g (W/Kg)	2.501150				
SAR 1g (W/Kg)	5.417144				
SURFACE SAR	VOLUME SAR				
Coarts Scale (M/L2) 5 5176364 3 518440 3 518440 3 518440 2 2 507614 2 2 4005 1 191556 0 0 11570 0 0 11570 0 0 11570 0 0 11570 0 0 11570 2 2 4.0 m Ever Cat 2 4.0 m Ever	Colors Scale 100- S 464777 100- S 464777 100- S 56477 1				
is report shall not be reproduced except in full, without the written Page 43 c	a approval of Shenzhen LCS Compliance Testing Laboratory Ltd. of 119				

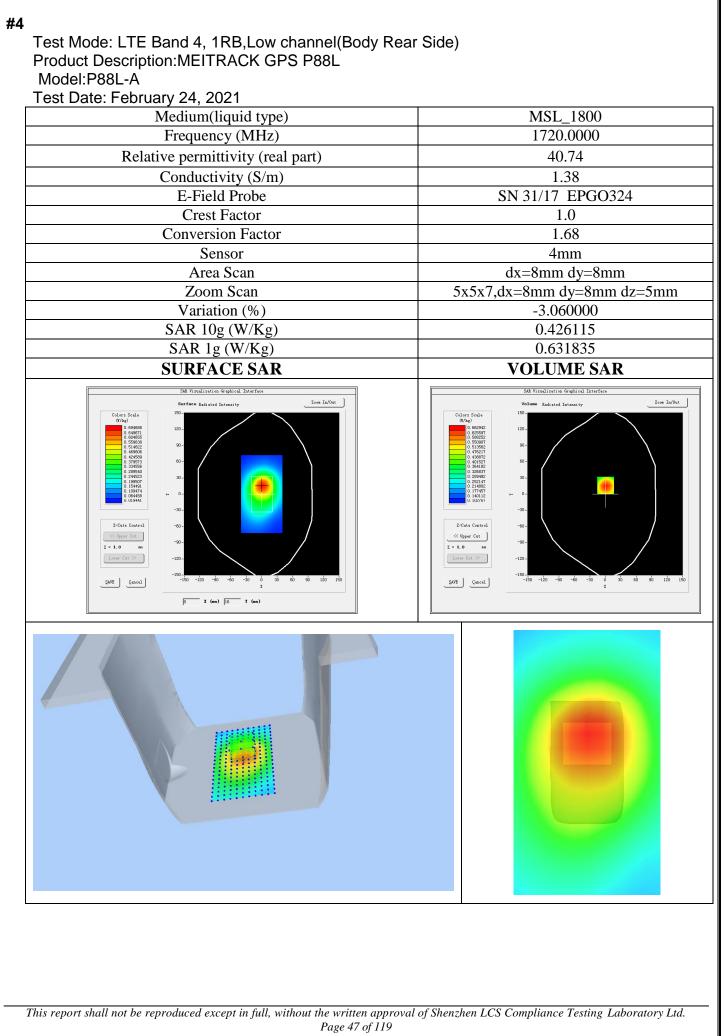
4.9. SAR Test Graph Results


SAR plots for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination

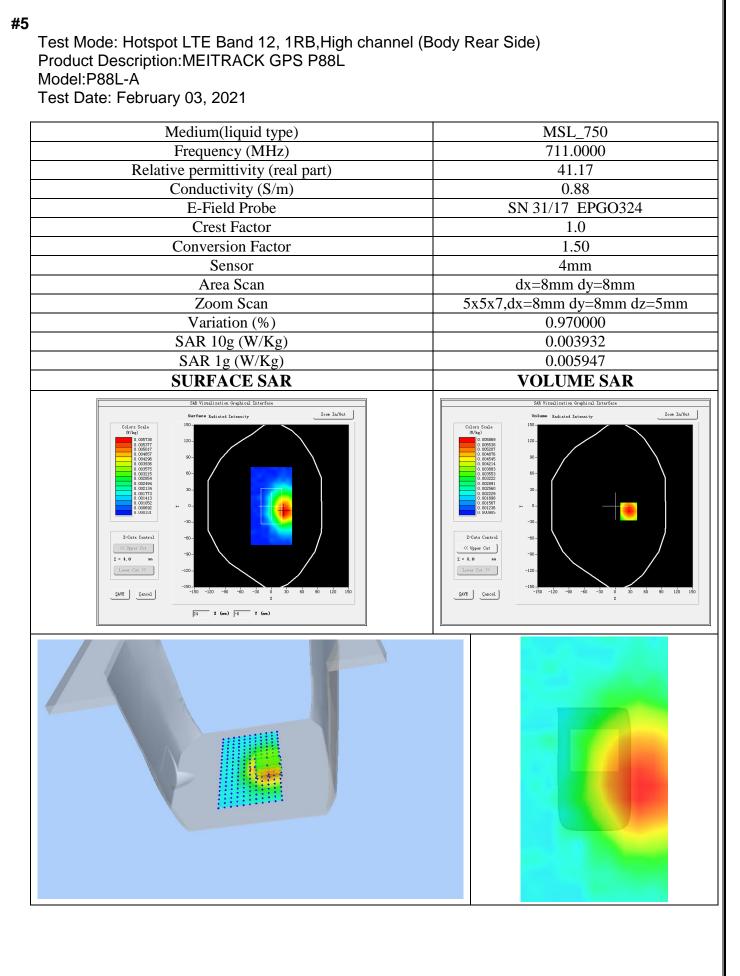
#1

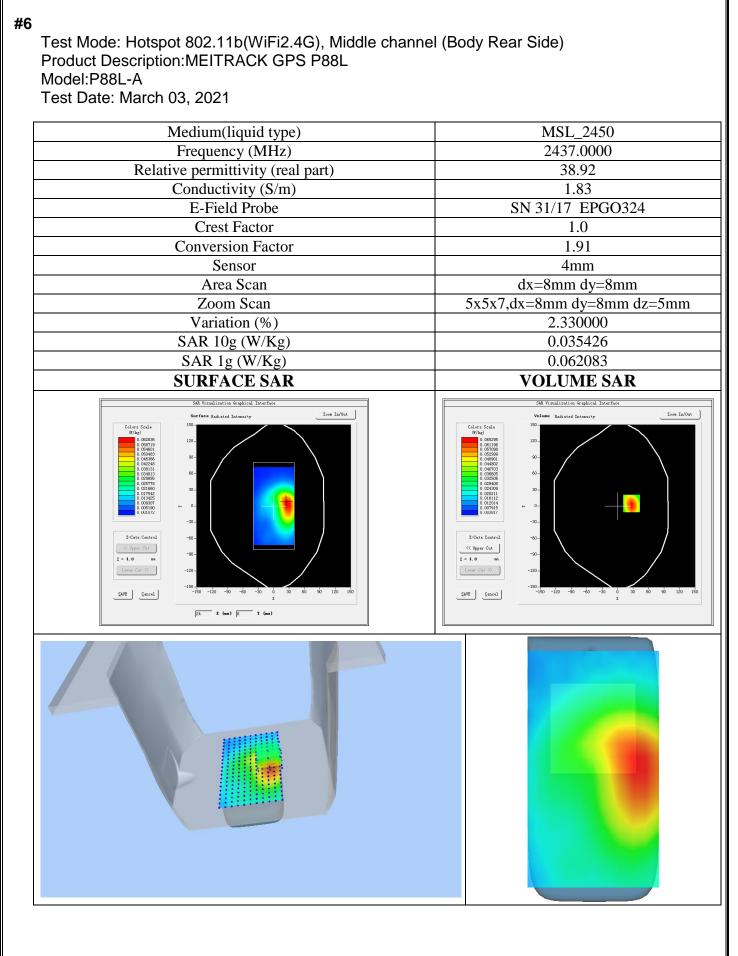
Test Mode: Hotspot WCDMA Band V,Middle channel(Body Front Side) Product Description:MEITRACK GPS P88L Model:P88L-A Test Date: February 18, 2021


Report No.:LCS201224064AEB


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 45 of 119

|--|


Report No.:LCS201224064AEB


Report No.:LCS201224064AEB

Report No.:LCS201224064AEB

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 48 of 119

5. CALIBRATION CERTIFICATES

5.1 Probe-EPGO324 Calibration Certificate

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 50 of 119

Report No.:LCS201224064AEB

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

-	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/7/2020	JES
Checked by :	Jérôme LUC	Product Manager	10/7/2020	Jez
Approved by :	Kim RUTKOWSKI	Quality Manager	10/7/2020	thim Putthowski

	Customer Name
Distribution :	Shenzhen LCS Compliance Testing Laboratory Ltd.

Issue	Date	Modifications
А	10/7/2020	Initial release

Page: 2/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 51 of 119

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCC ID: XXX-YYY

Report No.:LCS201224064AEB

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

TABLE OF CONTENTS

1	Dev	ce Under Test	
2	Prod	uct Description	
	2.1	General Information	4
3	Mea	surement Method4	
	3.1	Linearity	4
	3.2	Sensitivity	
	3.3	Lower Detection Limit	
	3.4	Isotropy	5
	3.5	Boundary Effect	5
4	Mea	surement Uncertainty	
5	Cali	oration Measurement Results6	
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5.3	Sensitivity in liquid	7
	5.4	Isotropy	
6	List	of Equipment10	

Page: 3/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Report No.:LCS201224064AEB

COMOSAR E-FIELD PROBE CALIBRATION REPORT

1 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE	
Manufacturer	MVG	
Model	SSE2	
Serial Number	SN 31/17 EPGO324	
Product Condition (new / used)	New	
Frequency Range of Probe	0.15 GHz-6GHz	
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.189 MΩ	
	Dipole 2: R2=0.203 MΩ	
	Dipole 3: R3=0.218 MΩ	

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 <u>GENERAL INFORMATION</u>

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 <u>LINEARITY</u>

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 53 of 119

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 <u>ISOTROPY</u>

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°-180°) in 15° increments. At each step the probe is rotated about its axis (0°-360°).

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Liquid conductivity	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Liquid permittivity	4.00%	Rectangular	$\sqrt{3}$	1	2.309%
Field homogeneity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%

Page: 5/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 54 of 119

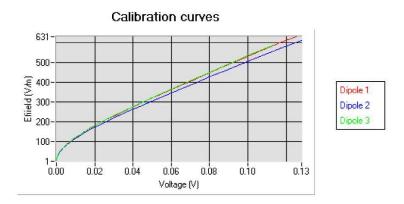
Report No.:LCS201224064AEB

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Combined standard uncertainty					5.831%
Expanded uncertainty 95 % confidence level k = 2					12.0%

5 CALIBRATION MEASUREMENT RESULTS


Calibration Parameters		
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

5.1 <u>SENSITIVITY IN AIR</u>

Normx dipole 1 $(\mu V/(V/m)^2)$		
0.80	0.83	0.68

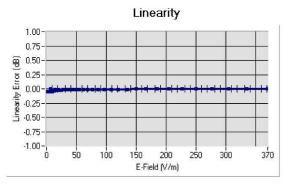
DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
95	90	93

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula: $E = \sqrt{E_1^2 + E_2^2 + E_3^2}$

Page: 6/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 55 of 119


Report No.:LCS201224064AEB

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

5.2 <u>LINEARITY</u>

Linearity: 1+/-1.13% (+/-0.05dB)

5.3 <u>SENSITIVITY IN LIQUID</u>

Liquid	Frequency	Permittivity	Epsilon (S/m)	<u>ConvF</u>
100.5	<u>(MHz +/-</u>	20	1.57 10 10	
	<u>100MHz)</u>			
HL450	450	42.17	0.86	1.56
BL450	450	57.65	0.95	1.60
HL750	750	40.03	0.93	1.45
BL750	750	56.83	1.00	1.50
HL850	835	42.19	0.90	1.55
BL850	835	54.67	1.01	1.59
HL900	900	42.08	1.01	1.54
BL900	900	55.25	1.08	1.60
HL1800	1800	41.68	1.46	1.65
BL1800	1800	53.86	1.46	1.68
HL1900	1900	38.45	1.45	1.86
BL1900	1900	53.32	1.56	1.93
HL2000	2000	38.26	1.38	1.83
BL2000	2000	52.70	1.51	1.89
HL2300	2300	39.44	1.62	1.95
BL2300	2300	54.52	1.77	2.01
HL2450	2450	37.50	1.80	1.91
BL2450	2450	53.22	1.89	1.95
HL2600	2600	39.80	1.99	1.89
BL2600	2600	52.52	2.23	1.94
HL5200	5200	35.64	4.67	1.50
BL5200	5200	48.64	5.51	1.56
HL5400	5400	36.44	4.87	1.44
BL5400	5400	46.52	5.77	1.47
HL5600	5600	36.66	5.17	1.48
BL5600	5600	46.79	5.77	1.53
HL5800	5800	35.31	5.31	1.50
BL5800	5800	47.04	6.10	1.55

LOWER DETECTION LIMIT: 9mW/kg

Page: 7/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 56 of 119

Report No.:LCS201224064AEB

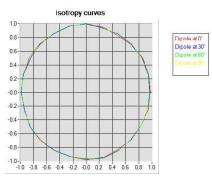

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

5.4 **ISOTROPY**

HL900 MHz

- Axial isotropy:	0.05 dB
- Hemispherical isotropy:	$0.07 \mathrm{dB}$



HL1800 MHz

-	Axial	isotropy:

-	Hem	usp	herical	1801	tropy:

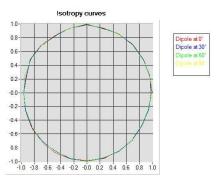
0.06	dB
0.07	dB

Page: 8/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 57 of 119

Report No.:LCS201224064AEB


COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

HL5600 MHz

- Axial isotropy:
- Hemispherical isotropy:

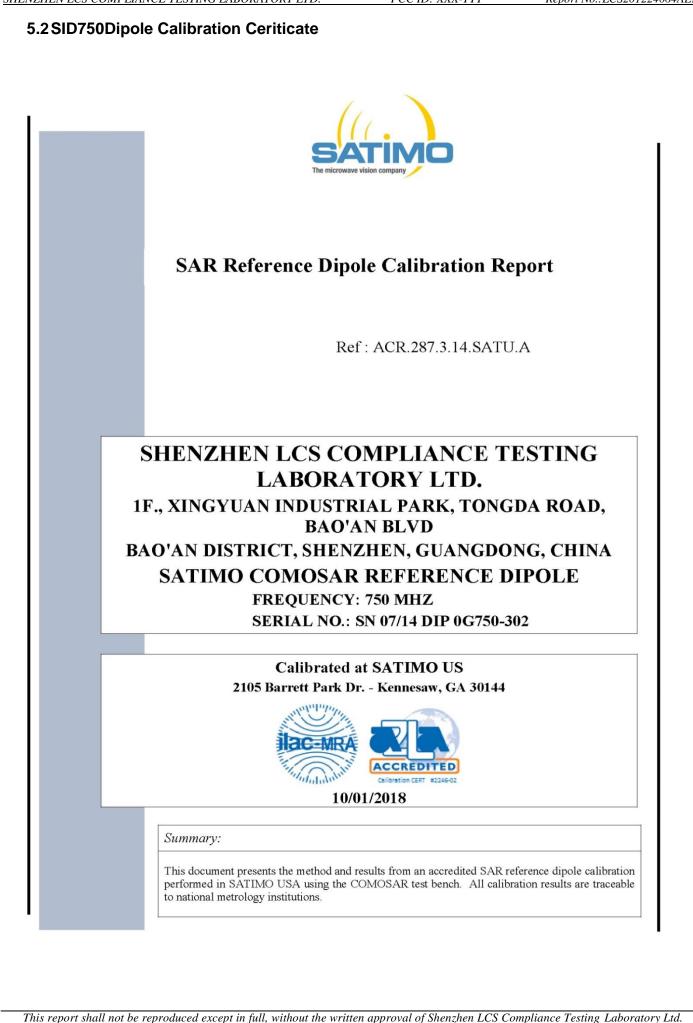
Page: 9/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 58 of 119

Report No.:LCS201224064AEB

COMOSAR E-FIELD PROBE CALIBRATION REPORT


6 LIST OF EQUIPMENT

Equipment Summary Sheet								
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date				
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.				
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.				
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2019	02/2022				
Reference Probe	MVG	EP 94 SN 37/08	10/2019	10/2021				
Multimeter	Keithley 2000	1188656	01/2020	01/2023				
Signal Generator	Agilent E4438C	MY49070581	01/2020	01/2023				
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.				
Power Meter	HP E4418A	US38261498	01/2020	01/2023				
Power Sensor	HP ECP-E26A	US37181460	01/2020	01/2023				
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.				
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.				
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.				
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.				
Temperature / Humidity Sensor	Control Company	150798832	11/2020	11/2023				

Page: 10/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 59 of 119

Page 60 of 119