

Renovia, Inc. TEST REPORT

SCOPE OF WORK

EMISSIONS TESTING - leva-02 (915 MHz Case)

REPORT NUMBER

103622007BOX-012c

ISSUE DATE

[REVISED DATE]

July 12 2019

Original Issue

PAGES

75

DOCUMENT CONTROL NUMBER

Non-Specific Radio Report Shell Rev. December 2017 © 2017 INTERTEK

EMISSIONS TEST REPORT

(FULL COMPLIANCE)

Report Number: 103622007BOX-012c Project Number: G103622007

Report Issue Date: 07/12/2019

Model(s) Tested: leva-02 (915 MHz Case)

Model(s) Partially Tested: None

Model(s) Not Tested but declared equivalent by the client: None

Standards: CFR47 FCC Part 15.247 Subpart C: 06/2019,

CFR47 FCC Part 15 Subpart B: 06/2019,

RSS-247 Issue 2 February 2017,

ICES-003 Issue 6 Published: January 2016 Updated: April 2017,

RSS-Gen Issue 5 April 2018, RSS-102 Issue 5 March 2015

Tested by:
Intertek Testing Services NA, Inc.
70 Codman Hill Road
Boxborough, MA 01719
USA

Client: Renovia, Inc. 263 Summer St Boston, MA 02210 USA

Report prepared by

Report reviewed by

Kouma Sinn / EMC Staff Engineer

Michael Murphy / Engineering Supervisor

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Intertek

Report Number: 103622007BOX-012c Issued: 07/12/2019

Table of Contents

1	Introduction and Conclusion	4
2	Test Summary	4
3	Client Information	5
4	Description of Equipment Under Test and Variant Models	5
5	System Setup and Method	7
6	Maximum Peak Output Power and Human RF exposure	8
7	6 dB Bandwidth and Occupied Bandwidth	16
8	Maximum Power Spectral Density	26
9	Band Edge Compliance	33
10	Transmitter spurious emissions	41
11	Digital Device and Receiver Radiated Spurious Emissions	67
12	Revision History	75

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

2 Test Summary

Section	Test full name	Result
3	Client Information	
4	Description of Equipment Under Test and Variant Models	
5	System Setup and Method	
6	Maximum Peak Output Power and Human RF exposure CFR47 FCC Part 15 Subpart C:06/2019, Section 15.247 (b)(3) RSS-247 Issue 2 February 2017, RSS-102 Issue 5 March 2015	Pass
7	6 dB Bandwidth and Occupied Bandwidth CFR47 FCC Part 15 Subpart C: 06/2019, Section 15.247 (a)(2) RSS-247 Issue 2 February 2017	Pass
8	Maximum Power Spectral Density CFR47 FCC Part 15 Subpart C: 06/2019, Section 15.247 (e) RSS-247 Issue 2 February 2017	Pass
9	Band Edge Compliance CFR47 FCC Part 15 Subpart C: 06/2019, Section 15.247 (d) RSS-247 Issue 2: 02/2017)	Pass
10	Transmitter spurious emissions CFR47 FCC Part 15 Subpart C: 06/2019, Section 15.247 (d) RSS-247 Issue 2 February 2017	Pass
11	Digital Device and Receiver Radiated Spurious Emissions (CFR47 FCC Part 15 Subpart B 15.109: 06/2019, ICES-003 Issue 6 Published: January 2016 Updated: April 2017	Pass
	AC Mains Conducted Emissions FCC 47CFR Part 15.107: 06/2019 ICES-003 Issue 6 Published: January 2016 Updated: April 2017	N/A
12	Revision History	

Notes: Not applicable as the EUT powers from internal battery with no connection to AC mains.

3 **Client Information**

This EUT was tested at the request of:

Client: Renovia Inc.

> 263 Summer Street Boston, MA 02210

USA

Gina Prochilio Contact: Telephone: 617-671-5829

Email: gcawston@renoviainc.com

4 **Description of Equipment Under Test and Variant Models**

Manufacturer: Renovia Inc.

> 263 Summer Street Boston, MA 02210

USA

Equipment Under Test					
Description	Manufacturer	Model Number	Serial Number		
leva-02	Renovia Inc.	Leva-02	None		
(915 MHz Case)					

Receive Date:	06/17/2019
Received Condition:	Good
Type:	Production

Description of Equipment Under Test (provided by client)

The leva-02 system includes two physical devices: (1) the leva-02 device and (2) the leva-02 case. As described in detail in DD-00006, Hardware Design Description, the leva-02 device includes a microcontroller with a 915 MHz band ISM radio. The leva-02 case includes two microcontrollers: a 915 MHz band ISM radio and a 2.4 GHz band Bluetooth Low Energy (BLE) radio. The overall system also includes a user interface device, which can be an iOS or Android mobile telephone with BLE capability. The leva-02 device and leva-02 case are considered ME EQUIPMENT whereas the user interface device is considered a Non-ME EQUIPMENT.

Equipment Under Test Power Configuration					
Rated Voltage Rated Current Rated Frequency Number of Phases					
Internally Battery Powered	N/A	DC	N/A		

Operating modes of the EUT:

	Descriptions of EUT Exercising
2	Pre-programmed to transmit at low, mid, and high channels
3	Pre-programmed to receive at low, mid, and high channels

Software used by the EUT:

No.	Descriptions of EUT Exercising
1	None

Non-Specific Radio Report Shell Rev. December 2017 Page 5 of 75

Client: Renovia Inc. / Model: leva-02 (915 MHz Case)

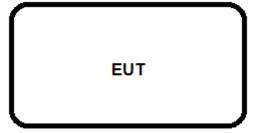
Radio/Receiver Characteristics			
Frequency Band(s)	914-918 MHz		
Modulation Type(s)	DTS		
Maximum Output Power	Low Channel (914 MHz): +5.3 dBm (EIRP)		
	Mid Channel (916 MHz): +5.41 dBm (EIRP)		
Test Channels	High Channel (918 MHz): +5.41 dBm (EIRP) Low Channel (914 MHz)		
Test Glianners	Mid Channel (916 MHz)		
	High Channel (918 MHz)		
Occupied Bandwidth	Low Channel (914 MHz): 701.403 kHz		
	Mid Channel (916 MHz): 697.395 kHz		
Frequency Hopper: Number of Hopping	High Channel (918 MHz): 697.395 kHz		
Channels	N/A		
Frequency Hopper: Channel Dwell Time	N/A		
Frequency Hopper: Max interval between	·		
two instances of use of the same channel	N/A		
MIMO Information (# of Transmit and			
Receive antenna ports)	1		
Equipment Type	Standalone		
ETSI LBT/Adaptivity	N/A		
ETSI Adaptivity Type	N/A		
ETSI Temperature Category (I, II, III)	N/A		
ETSI Receiver Category (1, 2, 3)	N/A		
Antenna Type and Gain	Integral		

Variant Models:

The following variant models were not tested as part of this evaluation, but have been identified by the manufacturer as being electrically identical models, depopulated models, or with reasonable similarity to the model(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

None

5 System Setup and Method


	Cables							
ID	Description	Length (m)	Shielding	Ferrites	Termination			
	None							

Support Equipment					
Description Manufacturer Model Number Serial Number					
None					

5.1 Method:

Configuration as required by Configuration as required by FCC Part 15 Subpart C 15.247: 06/2019, FCC Part 15 Subpart B: 06/2019, RSS 247 Issue 2: 02/2017, ICES 003 Issue 6: 01/2016 updated 06/2016, ANSI C 63.10: 2013, and ANSI C 63.4: 2014.

5.2 EUT Block Diagram:

6 Maximum Peak Output Power and Human RF exposure

6.1 Method

Tests are performed in accordance with CFR47 FCC Part 15.247, RSS-247, RSS-102, and ANSI C63.10.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.6dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	5.3 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.5 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	5.2 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	5.0 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	5.0 dB	5.5 dB

As shown in the table above our radiated emissions $U_{\it lab}$ is less than the corresponding $U_{\it CISPR}$ reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Page 8 of 75

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB_{\mu}V/m$

RA = Receiver Amplitude (including preamplifier) in dBµV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $RA = 52.0 dB\mu V$ AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB $FS = 32 dB\mu V/m$

To convert from $dB\mu V$ to μV or mV the following was used:

```
UF = 10^{(NF/20)} where UF = Net Reading in \muV NF = Net Reading in dB\muV
```

Example:

FS = RA + AF + CF - AG =
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$
 UF = $10^{(32 \, dB\mu V \, / \, 20)} = 39.8 \, \mu V/m$

Alternately, when BAT-EMC Emission Software is used, the "Level" includes all losses and gains and is compared directly in the "Margin" column to the "Limit". The "Correction" includes Antenna Factor, Preamp, and Cable Loss. These are already accounted for in the "Level" column.

Intertek

Report Number: 103622007BOX-012c Issued: 07/12/2019

6.2 Test Equipment Used:

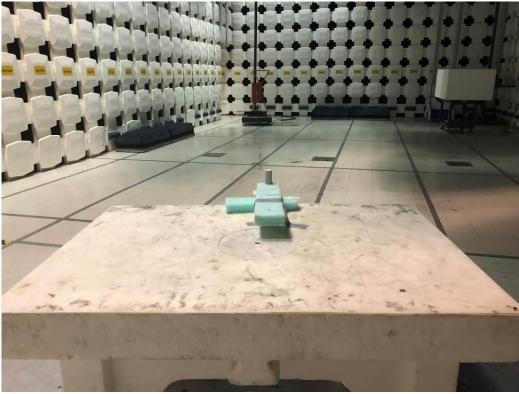
Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV001'	Weather Station	Davis Instruments	7400	PE80519A61	01/23/2019	01/23/2020
145145'	Broadband Hybrid Antenna 30 MHz - 3 GHz	Sunol Sciences Corp.	JB3	A122313	05/16/2018	05/16/2019
145-410'	Cables 145-420 145-421 145-422 145-406	Huber + Suhner	10m Track A Cables	multiple	07/25/2018	07/25/2019
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/28/2019	03/28/2020

Software Utilized:

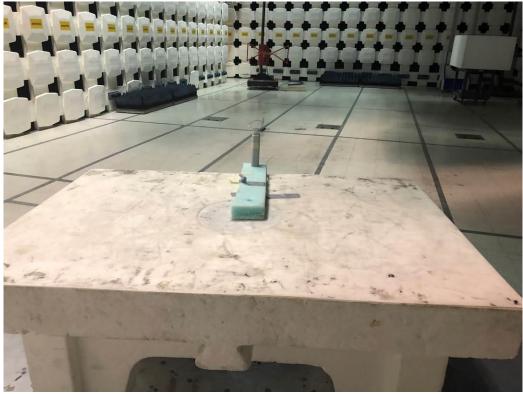
Name	Manufacturer	Version
None		

6.3 Results:

The sample tested was found to Comply.


15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt or 30 dBm or 36 dBm (EIRP)

6.4 Setup Photographs



6.5 **Test Data:**

Output Power (EIPR) - Radiated Emissions

Company: Renovia Inc Antenna & Cables: Bands: N, LF, HF, SHF Model #: 915 MHz CASE Antenna: 145-145__10M_5-16-2019.txt 145-145__10M_5-16-2019.txt

Serial #: None Cable(s): 145-410_7-25-2019..txt NONE.

Engineers: Kouma Sinn Location: 10M Barometer: BAR1 Filter: NONE

Project #: G10362207 Date(s): 03/24/19

Standard: FCC Part 15 Subpart C 15.247 Temp/Humidity/Pressure: 21C 22% 1006mbar

Receiver: R&S ESI (145-128) 03-22-2019 Limit Distance (m): 10 PreAmp: NONE. Test Distance (m): 10

PreAmp Used? (Y or N): Ν Voltage/Frequency: 3VDC Frequency Range: Fundamental Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB) Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS: NF = Noise Floor RB = Restricted Band: Bandwidth denoted as RBW/VBW

Peak: F	N Quasi-P	eak: QP AV	erage: AVG	KIVIS: KIVIS	5; INF = INOIS	se Floor, RE	s = Restricte	a Bana; Ba	nawiath den	oted as RB	VV/VBVV
	Ant.			Antenna	Cable	Pre-amp	Distance				
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth
Type	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(m)	dB(m)	dB	
	EIRF	o (dBm) = E (d	dBμV/m) + 20	log(D) - 104	.8; where D i	s the measur	ement distan	ce (in the far	field region)	in m.	
				Low Ch	nannel, X-Ax	is (Battery	side up)				
PK	Ι	914.000	56.42	28.80	4.88	0.00	0.00	5.30	36.00	-30.70	100/300 kHz
		,		Low C	hannel, Y-A	xis (Straight	down)		,		
PK	Ι	914.000	51.66	28.80	4.88	0.00	0.00	0.54	36.00	-35.46	100/300 kHz
		•		Low	Channel, Z-	Axis (Straigl	ht up)		•	•	
PK	V	914.000	50.24	28.80	4.88	0.00	0.00	-0.88	36.00	-36.88	100/300 kHz
				Mid Ch	annel, X-Ax	is (Battery s	side up)				
PK	Ι	916.000	56.01	28.80	4.88	0.00	0.00	4.89	36.00	-31.11	100/300 kHz
		-		Mid CI	nannel, Y-A	kis (Straight	down)		•	•	•
PK	Ι	916.000	52.42	28.80	4.88	0.00	0.00	1.30	36.00	-34.70	100/300 kHz
			,	Mid (Channel, Z-	Axis (Straigh	nt up)				
PK	V	916.000	56.53	28.80	4.88	0.00	0.00	5.41	36.00	-30.59	100/300 kHz
				High Cl	nannel, X-A	xis (battery	side up)				
PK	V	918.000	56.00	28.80	4.89	0.00	0.00	4.89	36.00	-31.11	100/300 kHz
				High C	hannel, Y-A	xis (Straigh	t down)		•		•
PK	Н	918.000	52.44	28.80	4.89	0.00	0.00	1.33	36.00	-34.67	100/300 kHz
				High	Channel, Z-	Axis (Straig	ht up)				
PK	V	918.000	49.56	28.80	4.89	0.00	0.00	-1.55	36.00	-37.55	100/300 kHz

Page 14 of 75

SAR Exemption Calculation

Maximum Conducted Output Power of Transmitter (EIRP) = +5.41 dBm = 3.475 mW

Notes: EIRP output power (Worst-Case) was used SAR Tet Exclusion Thresholds calculation

FCC SAR Exemption per KDB 447498

a) For 100 MHz to 6 GHz and test separation distances ≤ 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f_{(GHz)}}] \le 3.0$ for 1-g SAR, and ≤ 7.5 for 10-g extremity SAR, 30 where

· f(GHz) is the RF channel transmit frequency in GHz

SAR Test Exclusion Thresholds = (3.475/5)*(sqrt(0.918))

= 0.666 < 3.0 (below the limit SAR Exempt per FCC)

RSS 102 SAR Exemption

Table 1: SAR evaluation – Exemption limits for routine evaluation based on frequency and separation distance 4,5

Frequency	Exemption Limits (mW)						
(MHz)	At separation	At separation	At separation	At separation	At separation		
	distance of	distance of	distance of	distance of	distance of		
	≤5 mm	10 mm	15 mm	20 mm	25 mm		
≤300	71 mW	101 mW	132 mW	162 mW	193 mW		
450	52 mW	70 mW	88 mW	106 mW	123 mW		
835	17 mW	30 mW	42 mW	55 mW	67 mW		
1900	7 mW	10 mW	18 mW	34 mW	60 mW		
2450	4 mW	7 mW	15 mW	30 mW	52 mW		
3500	2 mW	6 mW	16 mW	32 mW	55 mW		
5800	1 mW	6 mW	15 mW	27 mW	41 mW		

The exemption limits in Table 1 are based on measurements and simulations of half-wave dipole antennas at separation distances of 5 mm to 25 mm from a flat phantom, providing a SAR value of approximately 0.4 W/kg for 1 g of tissue. For low frequencies (300 MHz to 835 MHz), the exemption limits are derived from a linear fit. For high frequencies (1900 MHz and above), the exemption limits are derived from a third order polynomial fit.

The conducted output power of the transmitter (EIRP) 3.475 mW @ 918 MHz is less than 7 mW limit specified at 1900 MHz, device meets SAR exclusion.

Test Personnel:	Kouma Sinn 43	Test Date:	03/24/2019
Supervising/Reviewing			
Engineer: (Where Applicable)	N/A		
(**************************************	CFR47 FCC Part 15.247		
Product Standard:	RSS-247, RSS-102	Limit Applied:	See report section 6.3
Input Voltage:	Internal Battery Powered		
Pretest Verification w/		Ambient Temperature:	21 °C
Ambient Signals or BB Source:	N/A	Relative Humidity:	22 %
		Atmospheric Pressure:	1006 mbars

Deviations, Additions, or Exclusions: None

6 dB Bandwidth and Occupied Bandwidth

7.1 Method

Tests are performed in accordance with CFR47 FCC Part 15.247, RSS-247, and ANSI C63.10.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.6dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	5.3 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.5 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	5.2 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	5.0 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	5.0 dB	5.5 dB

As shown in the table above our radiated emissions U_{lab} is less than the corresponding U_{CISPR} reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Page 16 of 75

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB_{\mu}V/m$

RA = Receiver Amplitude (including preamplifier) in dBµV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $RA = 52.0 dB\mu V$ AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB $FS = 32 dB\mu V/m$

To convert from $dB\mu V$ to μV or mV the following was used:

```
UF = 10^{(NF/20)} where UF = Net Reading in \muV NF = Net Reading in dB\muV
```

Example:

FS = RA + AF + CF - AG =
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$
 UF = $10^{(32 \, dB\mu V \, / \, 20)} = 39.8 \, \mu V/m$

Alternately, when BAT-EMC Emission Software is used, the "Level" includes all losses and gains and is compared directly in the "Margin" column to the "Limit". The "Correction" includes Antenna Factor, Preamp, and Cable Loss. These are already accounted for in the "Level" column.

Intertek

Report Number: 103622007BOX-012c Issued: 07/12/2019

7.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV001'	Weather Station	Davis Instruments	7400	PE80519A61	01/23/2019	01/23/2020
145145'	Broadband Hybrid Antenna 30 MHz - 3 GHz	Sunol Sciences Corp.	JB3	A122313	05/16/2018	05/16/2019
145-410'	Cables 145-420 145-421 145-422 145-406	Huber + Suhner	10m Track A Cables	multiple	07/25/2018	07/25/2019
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/28/2019	03/28/2020

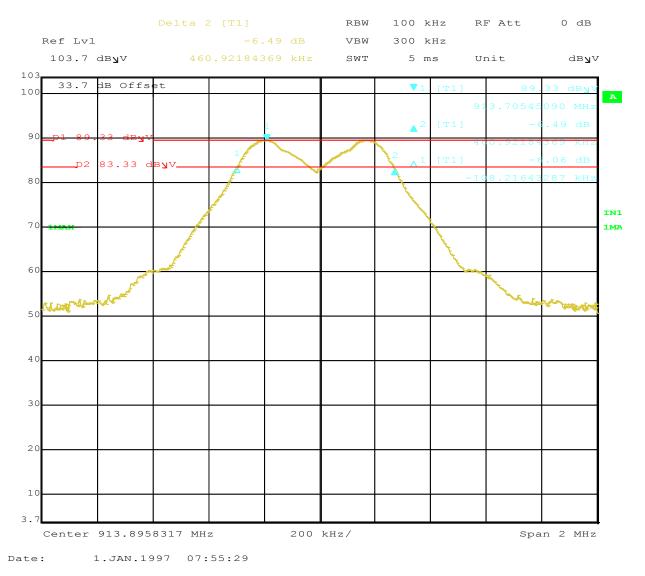
Software Utilized:

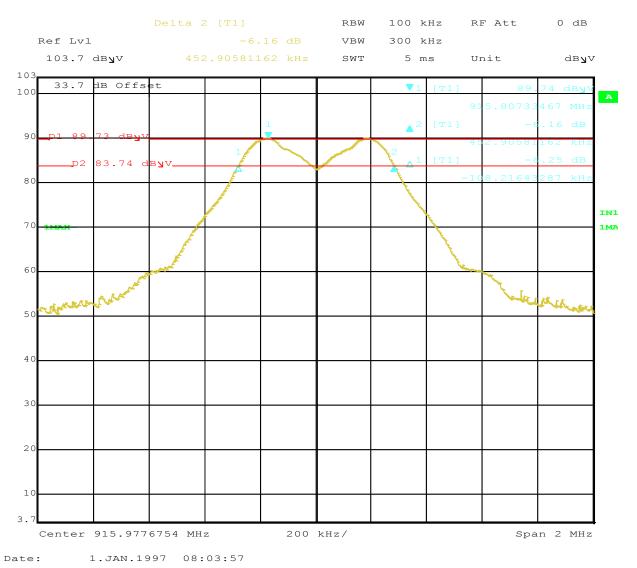
Name	Manufacturer	Version
None		

7.3 Results:

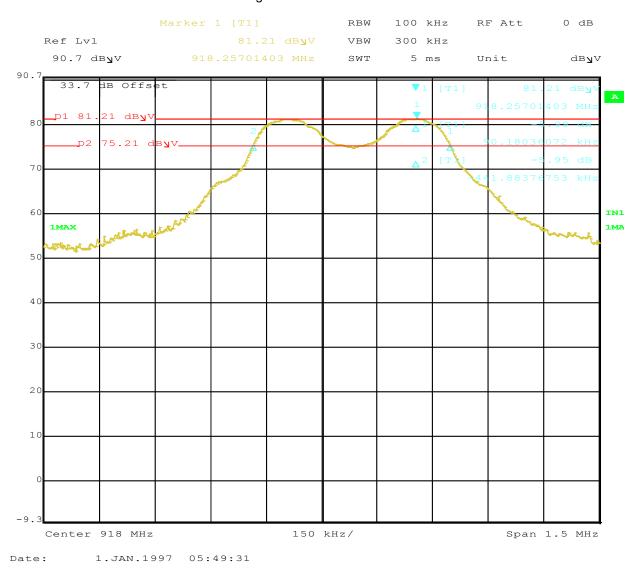
The sample tested was found to Comply.

\$15.247 (a) (2) Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

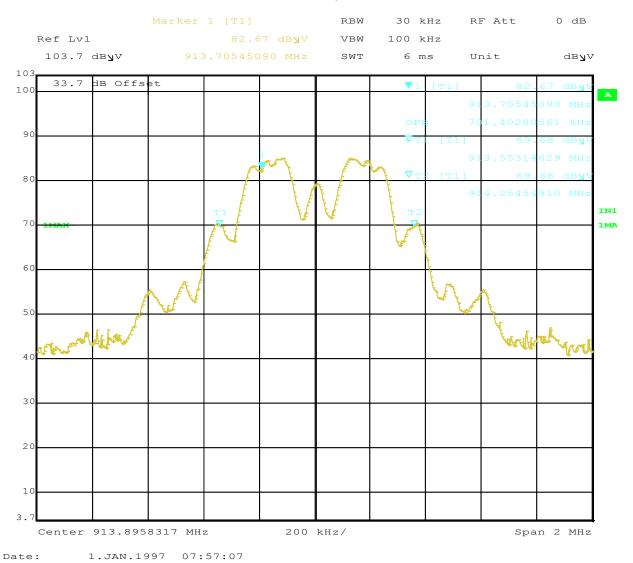

7.4 Setup Photograph:


7.5 Plots/Data:

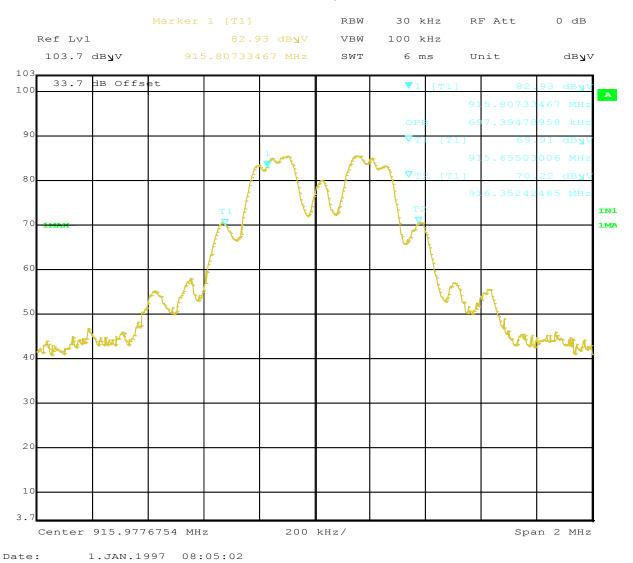
915 MHz Case - Low Channel 6 dB Bandwidth: 569 kHz


Notes: The date on the plot is default date on the instrument.

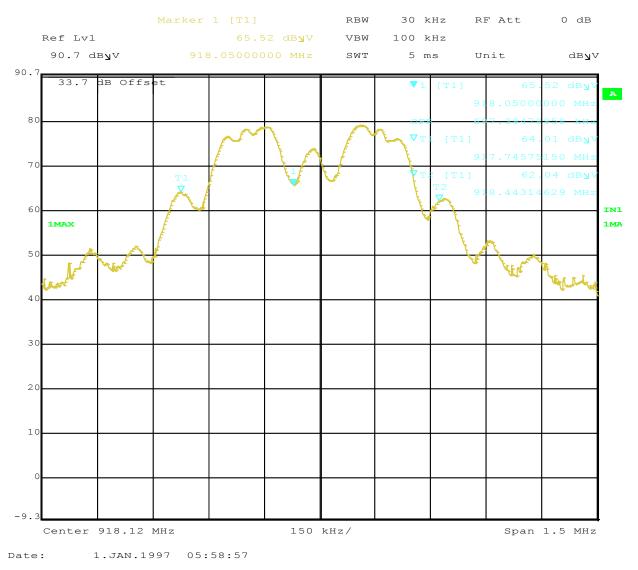
915 MHz Case - Mid Channel 6 dB Bandwidth: 561.122 kHz


Notes: The date on the plot is default date on the instrument.

915 MHz Case - High Channel 6 dB Bandwidth: 532.064 kHz


Notes: The date on the plot is default date on the instrument.

915 MHz Case - Low Channel Occupied Bandwidth: 701.403 kHz


Notes: The date on the plot is default date on the instrument.

915 MHz Case - Mid Channel Occupied Bandwidth: 697.395 kHz

Notes: The date on the plot is default date on the instrument.

915 MHz Case - High Channel Occupied Bandwidth: 697.395 kHz

Notes: The date on the plot is default date on the instrument.

Test Personnel:	Kouma Sinn 43	Test Date:	03/24/2019
Supervising/Reviewing			
Engineer:			
(Where Applicable)	N/A		
	CFR47 FCC Part 15.247		
Product Standard:	RSS-247, RSS-102	Limit Applied:	See report section 7.3
Input Voltage:	Internal Battery Powered		
Pretest Verification w/		Ambient Temperature:	21 °C
Ambient Signals or BB Source:	N/A	Relative Humidity:	22 %
		Atmospheric Pressure:	1006 mbars

Deviations, Additions, or Exclusions: None

Maximum Power Spectral Density 8

8.1 Method

Tests are performed in accordance with CFR47 FCC Part 15.247, RSS-247, and ANSI C63.10.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.6dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	5.3 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.5 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	5.2 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	5.0 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	5.0 dB	5.5 dB

As shown in the table above our radiated emissions $U_{\it lab}$ is less than the corresponding $U_{\it CISPR}$ reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Page 26 of 75

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB_{\mu}V/m$

RA = Receiver Amplitude (including preamplifier) in dBµV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $RA = 52.0 dB\mu V$ AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB $FS = 32 dB\mu V/m$

To convert from $dB\mu V$ to μV or mV the following was used:

```
UF = 10^{(NF/20)} where UF = Net Reading in \muV NF = Net Reading in dB\muV
```

Example:

```
FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 UF = 10^{(32 \, dB\mu V \, / \, 20)} = 39.8 \, \mu V/m
```

Alternately, when BAT-EMC Emission Software is used, the "Level" includes all losses and gains and is compared directly in the "Margin" column to the "Limit". The "Correction" includes Antenna Factor, Preamp, and Cable Loss. These are already accounted for in the "Level" column.

Intertek

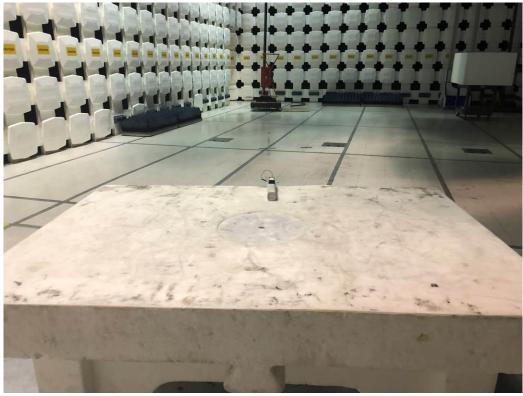
Report Number: 103622007BOX-012c Issued: 07/12/2019

8.2 Test Equipment Used:

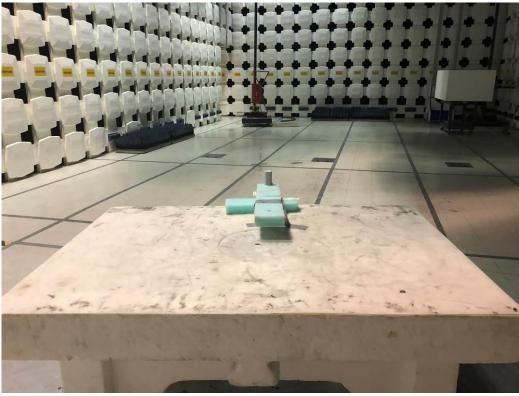
Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV001'	Weather Station	Davis Instruments	7400	PE80519A61	01/23/2019	01/23/2020
145145'	Broadband Hybrid Antenna 30 MHz - 3 GHz	Sunol Sciences Corp.	JB3	A122313	05/16/2018	05/16/2019
145-410'	Cables 145-420 145-421 145-422 145-406	Huber + Suhner	10m Track A Cables	multiple	07/25/2018	07/25/2019
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/28/2019	03/28/2020

Software Utilized:

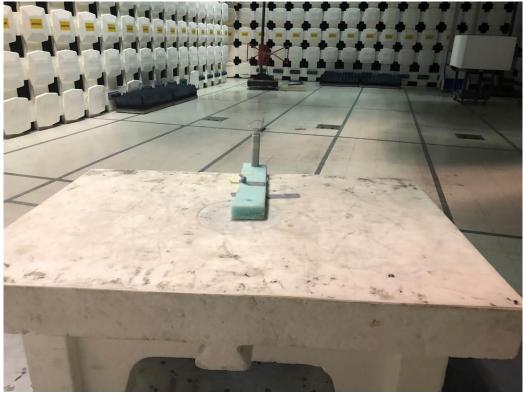
Name	Manufacturer	Version
None		


8.3 Results:

The sample tested was found to Comply.


§15.247 (e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.4 Setup Photograph:



8.5 Test Data:

PΚ

٧

918.000

41.48

28.80

4.89

Power Spectral Density (EIPR) - Radiated Emissions

 Company:
 Renovia Inc
 Antenna & Cables:
 N
 Bands:
 N, LF, HF, SHF

 Model #:
 915 MHz CASE
 Antenna:
 145-145_10M_5-16-2019.txt
 145-145_10M_5-16-2019.txt

Serial #: None Cable(s): 145-410_7-25-2019..txt NONE.

Engineers: Kouma Sinn Location: 10M Barometer: BAR1 Filter: NONE

Project #: G10362207 Date(s): 03/24/19

Standard: FCC Part 15 Subpart C 15.247 Temp/Humidity/Pressure: 21C 22% 1006mbar

Receiver: R&S ESI (145-128) 03-22-2019 Limit Distance (m): 10 PreAmp: NONE. Test Distance (m): 10

PreAmp Used? (Y or N): N Voltage/Frequency: 3VDC Frequency Range: Fundamental

Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB)

Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW Ant. Antenna Cable Pre-amp Distance Pol. Reading Limit Bandwidth Detector Frequency Factor Factor Factor Net Margin Loss (V/H) dΒ dB(m) Type MHz dB(uV) dB(1/m) dΒ dB dB(m) dΒ EIRP (dBm) = E (dB μ V/m) + 20log(D) - 104.8; where D is the measurement distance (in the far field region) in m. Low Channel, X-Axis (Battery side up) PΚ Н 914.000 47.72 4.88 0.00 -3.40 8.00 -11.40 3/10 kHz Low Channel, Y-Axis (Straight down) PΚ Н 914.000 44.24 4.88 0.00 0.00 -6.88 8.00 -14.88 3/10 kHz 28.80 Low Channel, Z-Axis (Straight up) PΚ V 914.000 42.30 28.80 4.88 0.00 0.00 -8.82 8.00 -16.82 3/10 kHz Mid Channel, X-Axis (Battery side up) 3/10 kHz PΚ Н 916.000 48.44 28.80 4.88 0.00 0.00 -2.68 8.00 -10.68 Mid Channel, Y-Axis (Straight down) PΚ Н 916.000 45.84 28.80 4.88 0.00 0.00 -5.28 8.00 -13.28 3/10 kHz Mid Channel, Z-Axis (Straight up) PΚ V 916.000 49.13 28.80 4.88 0.00 -1.99 8.00 -9.99 3/10 kHz High Channel, X-Axis (battery side up) PΚ 918.000 48.33 28.80 4.89 0.00 -2.78 8.00 -10.78 3/10 kHz High Channel, Y-Axis (Straight down) -14.78 PΚ 918.000 44.33 -6.78 8.00 3/10 kHz Н 28.80 4.89 0.00 0.00 High Channel, Z-Axis (Straight up)

Kouma Sinn 43 Test Personnel: Test Date: 03/24/2019 Supervising/Reviewing Engineer: (Where Applicable) N/A CFR47 FCC Part 15.247 Product Standard: RSS-247, RSS-102 Limit Applied: See report section 8.3 Input Voltage: Internal Battery Powered Pretest Verification w/ Ambient Temperature: 21 °C Ambient Signals or BB Source: N/A Relative Humidity: 22 % Atmospheric Pressure: 1006 mbars

0.00

0.00

-9.63

8.00

-17.63

3/10 kHz

Deviations, Additions, or Exclusions: None

9 **Band Edge Compliance**

9.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C 15.247 RSS 247, and ANSI C 63.10.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.6dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	5.3 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.5 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	5.2 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	5.0 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	5.0 dB	5.5 dB

As shown in the table above our radiated emissions U_{lab} is less than the corresponding U_{CKPR} reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Page 33 of 75

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in dBµV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $RA = 52.0 dB\mu V$ AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB $FS = 32 dB\mu V/m$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V NF = Net Reading in $dB\mu$ V

Example:

```
FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 \\ UF = 10^{(32 \, dB\mu V \, / \, 20)} = 39.8 \; \mu V/m
```

Intertek

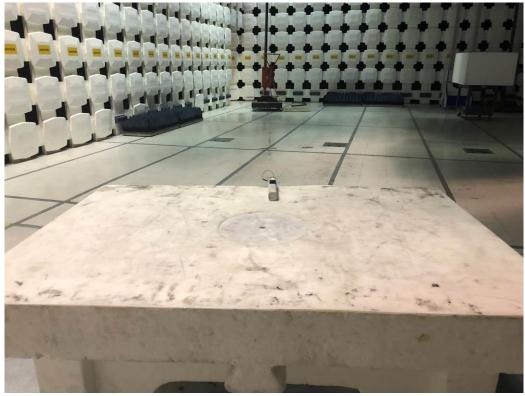
Report Number: 103622007BOX-012c Issued: 07/12/2019

9.2 Test Equipment Used:

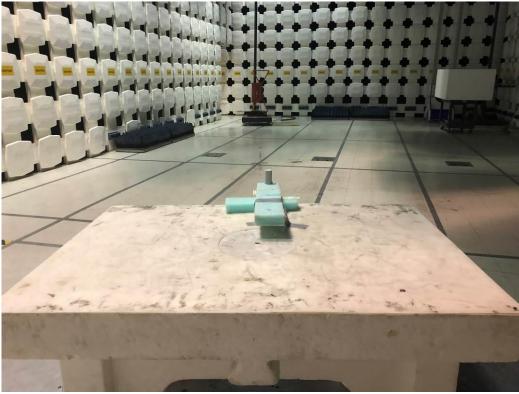
Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV001'	Weather Station	Davis Instruments	7400	PE80519A61	01/23/2019	01/23/2020
145145'	Broadband Hybrid Antenna 30 MHz - 3 GHz	Sunol Sciences Corp.	JB3	A122313	05/16/2018	05/16/2019
145-410'	Cables 145-420 145-421 145-422 145-406	Huber + Suhner	10m Track A Cables	multiple	07/25/2018	07/25/2019
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/28/2019	03/28/2020

Software Utilized:

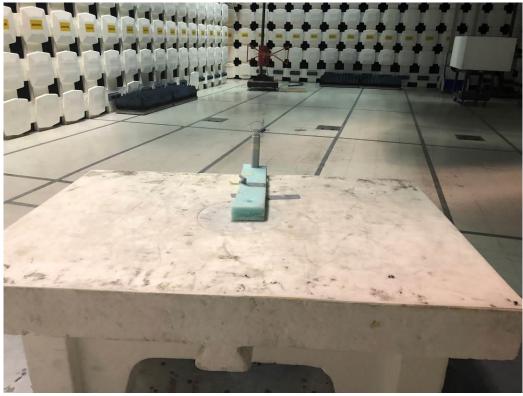
Name	Manufacturer	Version	
None			

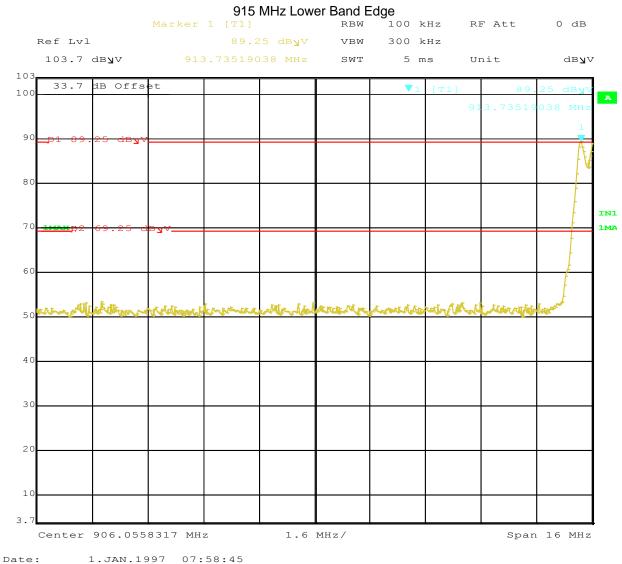

9.3 Results:

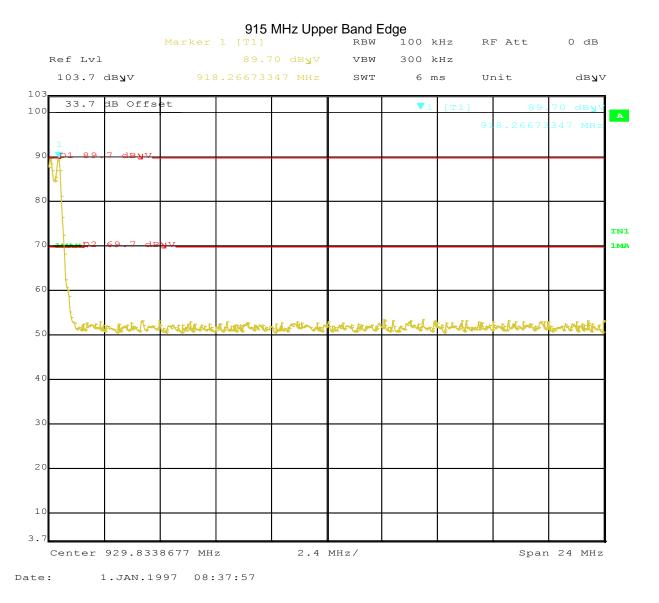
The sample tested was found to Comply.


15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c))

9.4 Setup Photograph:







9.5 Plots/Data:

Notes: The date on the plot is default date on the instrument.

Notes: The date on the plot is default date on the instrument.

Test Personnel:	Kouma Sinn 43	Test Date:	03/24/2019
Supervising/Reviewing			
Engineer:			
(Where Applicable)	N/A		
	CFR47 FCC Part 15.247		
Product Standard:	RSS-247, RSS-102	Limit Applied:	See report section 9.3
Input Voltage:	Internal Battery Powered		
Pretest Verification w/		Ambient Temperature:	21 °C
Ambient Signals or			
BB Source:	N/A	Relative Humidity:	22 %
		Atmospheric Pressure:	1006 mbars

Deviations, Additions, or Exclusions: None

10 Transmitter spurious emissions

10.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C 15.247, FCC Part 15 Subpart B, RSS 247 ICES 003, ANSI C 63.10, and ANSI C 63.4.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.6dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	5.3 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.5 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	5.2 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	5.0 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	5.0 dB	5.5 dB

As shown in the table above our radiated emissions $U_{{\scriptscriptstyle Iab}}$ is less than the corresponding $U_{{\scriptscriptstyle CISPR}}$ reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Page 41 of 75

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB_{\mu}V/m$

RA = Receiver Amplitude (including preamplifier) in dBµV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $RA = 52.0 dB\mu V$ AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB $FS = 32 dB\mu V/m$

To convert from $dB\mu V$ to μV or mV the following was used:

```
UF = 10^{(NF/20)} where UF = Net Reading in \muV NF = Net Reading in dB\muV
```

Example:

```
FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 UF = 10^{(32 \text{ dB}\mu\text{V}\,/\,20)} = 39.8 \ \mu\text{V/m}
```

Alternately, when BAT-EMC Emission Software is used, the "Level" includes all losses and gains and is compared directly in the "Margin" column to the "Limit". The "Correction" includes Antenna Factor, Preamp, and Cable Loss. These are already accounted for in the "Level" column.

10.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
BAR1'	Digital 4 Line Barometer	Mannix	0ABA116	BAR1	04/30/2018	04/30/2019
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/22/2018	03/22/2019
145-410'	Cables 145-420 145-421 145-422 145-406	Huber + Suhner	10m Track A Cables	multiple	07/25/2018	07/25/2019
PRE11'	50dB gain pre-amp	Keith H	PRE11	PRE11	12/02/2017	12/02/2018
145145'	Broadband Hybrid Antenna 30 MHz - 3 GHz	Sunol Sciences Corp.	JB3	A122313	05/16/2018	05/16/2019
ETS005'	1-18GHz horn antenna	ETS-Lindgren	3117	00218279	05/14/2018	05/14/2019
145014'	Preamplifier (1 GHz to 26.5 GHz)	Hewlett Packard	8449B	3008A00232	06/14/2018	06/14/2019
REA008'	band reject filter 2.4GHz	Reactel, Inc	12RX7-2441.75-x140 S	17-01	07/13/2018	07/13/2019
145-416'	Cables 145-420 145-423 145-425 145-408	Huber + Suhner	3m Track B cables	multiple	07/25/2018	07/25/2019

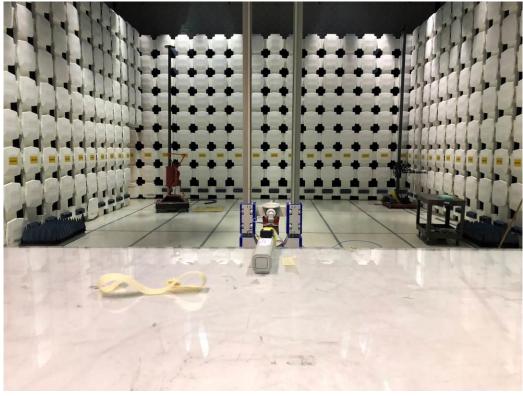
Software Utilized:

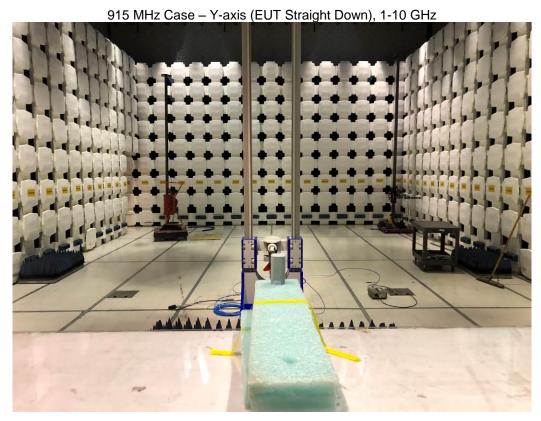
Name	Manufacturer	Version
BAT-EMC	Nexio	3.17.0.3

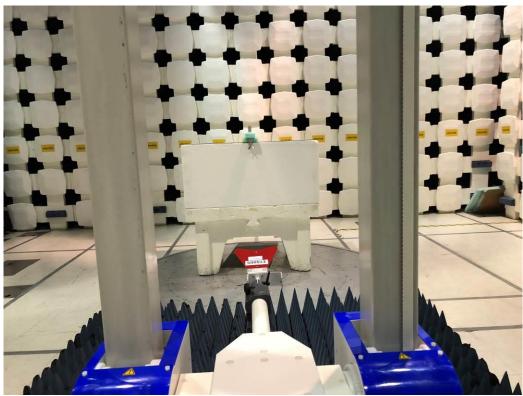
10.3 Results:

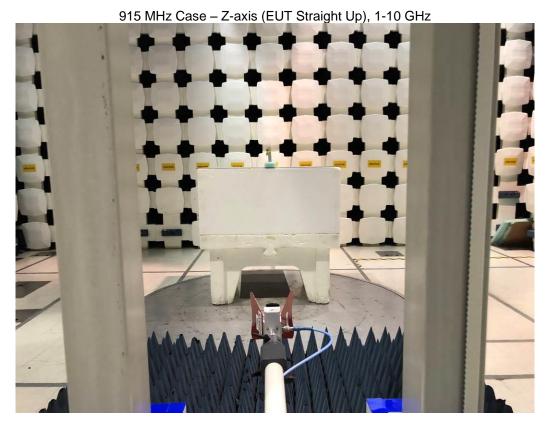
The sample tested was found to Comply.

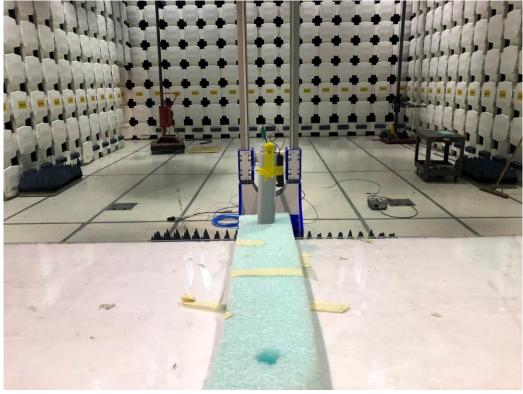
15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c))

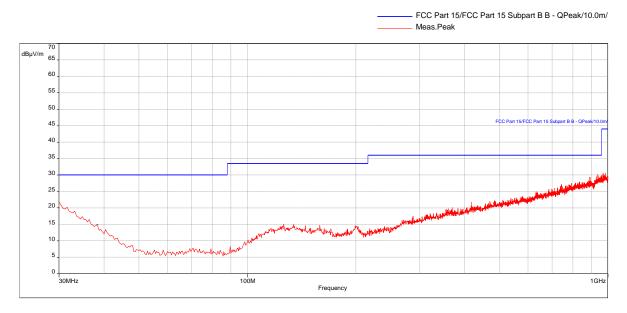

Page 43 of 75


10.4 Setup Photographs:







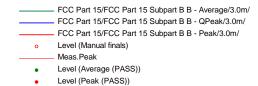

10.5 Plots/Data:

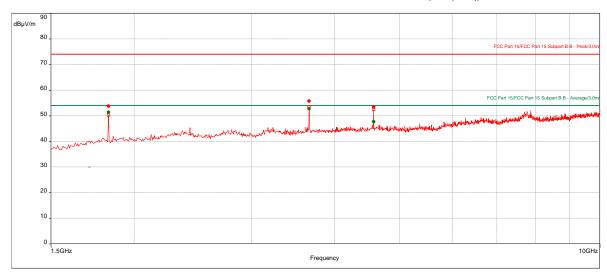
915 MHz Case - Transmit Low Channel (X-axis), 30-1000 MHz

Test Information:

Date and Time	2/16/2019 12:04:09 PM
Client and Project Number	Renovia
Engineer	Kouma Sinn
Temperature	21C
Humidity	22%
Atmospheric Pressure	998mbar
Comments	915 MHz Case, Low Channel X-axis (Battery side up) 30-1000 MHzQuick Prescan
	(Antenna at 1m high)

Graph:


Notes: Since no emissions were detected. Only pre-scan was performed on this axis.


915 MHz Case - Transmit Low Channel (X-axis), 1-10 GHz

Test Information:

Date and Time	2/24/2019 9:20:54 AM
Client and Project Number	Renovia
Engineer	Kouma Sinn
Temperature	21C
Humidity	22%
Atmospheric Pressure	1004mbar
Comments	915 MHz Case, Low Channel, X-axis (Battery sied up), 1.5-10 GHz

Graph:

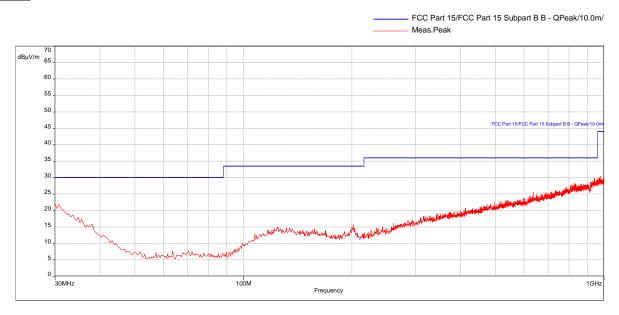
Results:

Peak (PASS) (3)

Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol. (dB)	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)			(dB)
1830	53.70	74.00	-20.30	224.00	1.70	Horizontal	1000000.00	-1.88
3660	55.68	74.00	-18.32	222.00	1.90	Horizontal	1000000.00	4.05
4574.736842	53.43	74.00	-20.57	53.00	1.15	Horizontal	1000000.00	6.24

Average (PASS) (3)

Frequency (MHz)	Level (dBuV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°) (dB)	Height (m) (dB)	Pol. (dB)	RBW (dB)	Correction (dB)
1830	51.34	54.00	-2.66	224.00	1.70	Horizontal	1000000.00	-1.88
3660	52.69	54.00	-1.31	222.00	1.90	Horizontal	1000000.00	4.05
4574.736842	47.62	54.00	-6.38	53.00	1.15	Horizontal	1000000.00	6.24

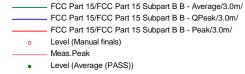

Notes: 1-1.5 GHz was performed manually with no emissions were detected

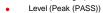
915 MHz Case - Transmit Low Channel (Y-axis), 30-1000 MHz

Test Information:

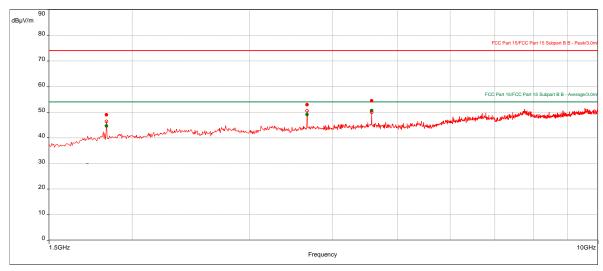
Date and Time	2/16/2019 12:21:27 PM
Client and Project Number	Renovia
Engineer	Kouma Sinn
Temperature	21C
Humidity	22%
Atmospheric Pressure	998mbar
Comments	915 MHz Case, Low Channel Y-axis (Pointing Down) 30-1000 MHz, Quick Prescan
	(Antenna at 1m high)

Graph:


Notes: Since no emissions were detected. Only pre-scan was performed on this axis.


915 MHz Case - Transmit Low Channel (Y-axis), 1-10 GHz

Test Information:


Date and Time	2/24/2019 9:50:45 AM
Client and Project Number	Renovia
Engineer	Kouma Sinn
Temperature	21C
Humidity	22%
Atmospheric Pressure	1004mbar
Comments	915 MHz Case, Low Channel, Y-axis (Pointing down), 1.5-10 GHz

Graph:

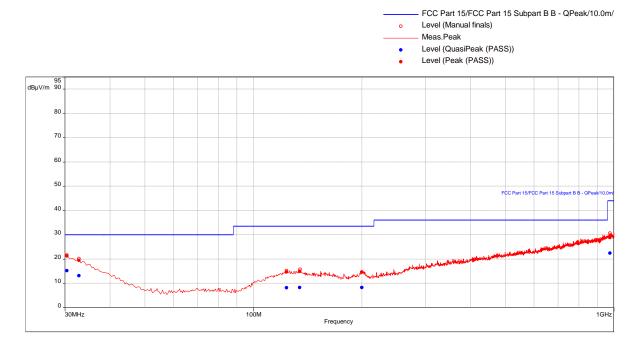
Results:

Peak (PASS) (3)

Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol. (dB)	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)			(dB)
1830	48.94	74.00	-25.06	32.00	2.15	Vertical	1000000.00	-1.88
3660	52.91	74.00	-21.09	39.00	3.25	Horizontal	1000000.00	4.05
4575	54.46	74.00	-19.54	255.00	1.45	Vertical	1000000.00	6.24

Average (PASS) (3)

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°) (dB)	Height (m) (dB)	Pol. (dB)	RBW (dB)	Correction (dB)
1830	44.58	54.00	-9.42	32.00	2.15	Vertical	1000000.00	-1.88
3660	49.01	54.00	-4.99	39.00	3.25	Horizontal	1000000.00	4.05
4575	50.53	54.00	-3.47	255.00	1.45	Vertical	1000000.00	6.24


Notes: 1-1.5 GHz was performed manually with no emissions were detected.

915 MHz Case - Transmit Low Channel (Z-axis), 30-1000 MHz

Test Information:

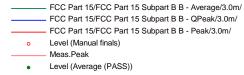
Date and Time	2/16/2019 10:35:19 AM
Client and Project Number	Renovia
Engineer	Kouma Sinn
Temperature	21C
Humidity	22%
Atmospheric Pressure	998mbar
Comments	915 MHz Case, Low Channel, Z-Axis (EUT sits straight up), 30-1000 MHz

Graph:

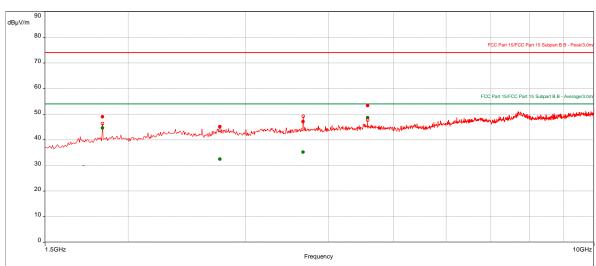
Results:

QuasiPeak (PASS) (6)

Quasii eak (i /	100) (0)							
Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol. (dB)	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)			(dB)
30.28421053	15.13	30.00	-14.87	313.00	1.12	Vertical	120000.00	-11.17
32.64210526	13.13	30.00	-16.87	357.00	1.29	Horizontal	120000.00	-12.96
123.6315789	8.14	33.50	-25.36	300.00	2.26	Horizontal	120000.00	-18.58
134.5157895	8.20	33.50	-25.30	122.00	2.84	Horizontal	120000.00	-18.64
199.8421053	8.20	33.50	-25.30	357.00	1.75	Horizontal	120000.00	-18.71
974.7368421	22.38	44.00	-21.62	151.00	2.94	Horizontal	120000.00	-3.92


Notes: No emissions were detected. Readings above are noise floor readings.

915 MHz Case - Transmit Low Channel (Z-axis), 1-10 GHz


Test Information:

Date and Time	2/24/2019 9:27:05 AM
Client and Project Number	Renovia
Engineer	Kouma Sinn
Temperature	21C
Humidity	22%
Atmospheric Pressure	1004mbar
Comments	915 MHz Case, Low Channel, Z-axis (Pointing up), 1.5-10 GHz

Graph:

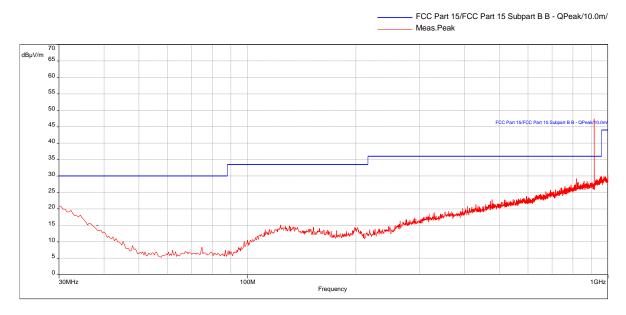
Results:

Peak (PASS) (4)

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°) (dB)	Height (m) (dB)	Pol. (dB)	RBW (dB)	Correction (dB)
1830	48.94	74.00	-25.06	327.00	1.55	Vertical	1000000.00	-1.88
2743.421053	45.13	74.00	-28.87	334.00	3.79	Vertical	1000000.00	1.63
3660.526316	47.04	74.00	-26.96	121.00	1.25	Horizontal	1000000.00	4.06
4575	53.30	74.00	-20.70	107.00	2.20	Vertical	1000000.00	6.24

Average (PASS) (4)

Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol. (dB)	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)			(dB)
1830	44.60	54.00	-9.40	327.00	1.55	Vertical	1000000.00	-1.88
2743.421053	32.47	54.00	-21.53	334.00	3.79	Vertical	1000000.00	1.63
3660.526316	35.18	54.00	-18.82	121.00	1.25	Horizontal	1000000.00	4.06
4575	48.59	54.00	-5.41	107.00	2.20	Vertical	1000000.00	6.24

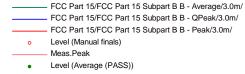

Notes: 1-1.5 GHz was performed manually with no emissions were detected.

915 MHz Case - Transmit Mid Channel (X-axis), 30-1000 MHz

Test Information:

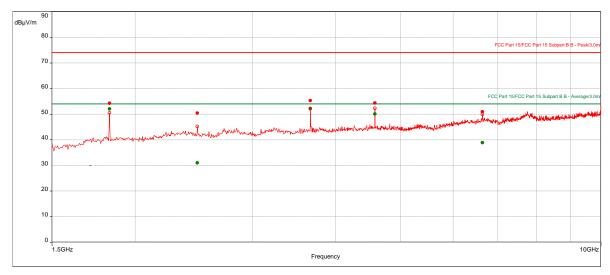
Date and Time	2/16/2019 1:32:16 PM
Client and Project Number	Renovia
Engineer	Kouma Sinn
Temperature	21C
Humidity	22%
Atmospheric Pressure	998mbar
Comments	915 MHz Case, Mid Channel X-axis (Battery side up) 30-1000 MHzQuick Prescan
	(Antenna at 1m high)

Graph:


Notes: Since no emissions were detected. Only pre-scan was performed on this axis. The fundamental frequency signal (highest peak) is not being evaluated.

915 MHz Case - Transmit Mid Channel (X-axis), 1-10 GHz

Test Information:


Date and Time	2/24/2019 10:57:52 AM
Client and Project Number	Renovia
Engineer	Kouma Sinn
Temperature	21C
Humidity	22%
Atmospheric Pressure	1004mbar
Comments	915 MHz Case, Mid Channel, X-axis (Battery side up), 1.5-10 GHz

Graph:

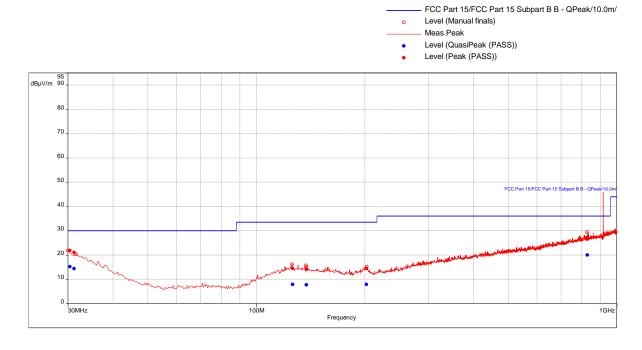
Results:

Peak (PASS) (5)

Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol. (dB)	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)			(dB)
1832.105263	54.25	74.00	-19.75	225.00	1.65	Horizontal	1000000.00	-1.87
2480	50.41	74.00	-23.59	24.00	2.60	Vertical	1000000.00	1.03
3663.947368	55.29	74.00	-18.71	210.00	2.05	Horizontal	1000000.00	4.07
4580	54.34	74.00	-19.66	106.00	1.05	Horizontal	1000000.00	6.26
6642.105263	50.93	74.00	-23.07	11.00	1.60	Horizontal	1000000.00	9.78

Average (PASS) (5)

Average (1710)	<u> </u>							
Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol. (dB)	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)			(dB)
1832.105263	52.04	54.00	-1.96	225.00	1.65	Horizontal	1000000.00	-1.87
2480	30.99	54.00	-23.01	24.00	2.60	Vertical	1000000.00	1.03
3663.947368	52.07	54.00	-1.93	210.00	2.05	Horizontal	1000000.00	4.07
4580	50.09	54.00	-3.91	106.00	1.05	Horizontal	1000000.00	6.26
6642.105263	38.88	54.00	-15.12	11.00	1.60	Horizontal	1000000.00	9.78


Notes: 1-1.5 GHz was performed manually with no emissions were detected.

915 MHz Case - Transmit Mid Channel (Y-axis), 30-1000 MHz

Test Information:

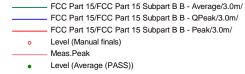
Date and Time	2/16/2019 12:45:58 PM
Client and Project Number	Renovia
Engineer	Kouma Sinn
Temperature	21C
Humidity	22%
Atmospheric Pressure	998mbar
Comments	915 MHz Case, Mid Channel, Y-Axis (Pointing down), 30-1000 MHz

Graph:

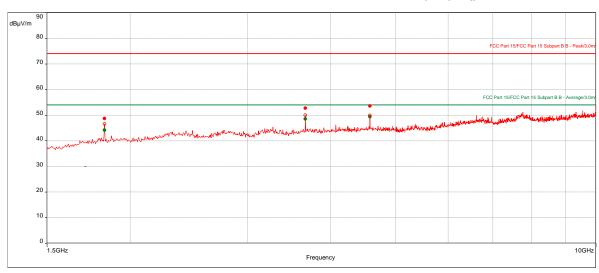
Results:

QuasiPeak (PASS) (6)

Quasii eak (i /	100) (0)							
Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol. (dB)	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)			(dB)
30.26842105	15.15	30.00	-14.85	306.00	2.93	Horizontal	120000.00	-11.16
31.28421053	14.35	30.00	-15.65	136.00	1.81	Horizontal	120000.00	-11.95
125.8526316	7.86	33.50	-25.64	290.00	2.39	Vertical	120000.00	-18.51
137.4842105	7.68	33.50	-25.82	70.00	1.97	Vertical	120000.00	-18.83
202.1789474	7.82	33.50	-25.68	283.00	2.20	Vertical	120000.00	-18.82
827.6105263	20.00	36.00	-16.00	106.00	3.55	Horizontal	120000.00	-6.38


Notes: No emissions were detected. Readings above are noise floor readings. The fundamental frequency signal (highest peak) is not being evaluated.

915 MHz Case - Transmit Mid Channel (Y-axis), 1-10 GHz


Test Information:

Date and Time	2/24/2019 10:13:46 AM
Client and Project Number	Renovia
Engineer	Kouma Sinn
Temperature	21C
Humidity	22%
Atmospheric Pressure	1004mbar
Comments	915 MHz Case, Mid Channel, Y-axis (Pointing down), 1.5-10 GHz

Graph:

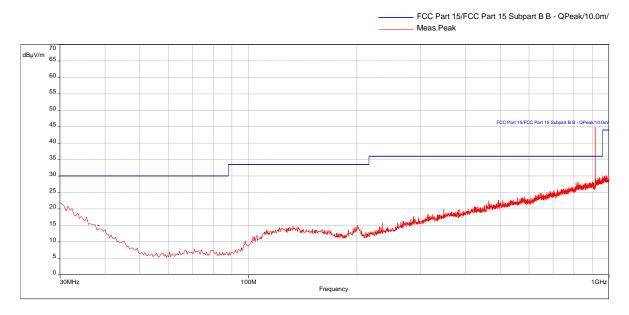
Results:

Peak (PASS) (3)

T Cak (T ACC) (<u> </u>							
Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol.	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)		(dB)
1831.842105	48.69	74.00	-25.31	48.00	1.00	Vertical	1000000.00	-1.88
3663.947368	52.66	74.00	-21.34	262.00	1.15	Vertical	1000000.00	4.07
4580	53.57	74.00	-20.43	247.00	1.35	Vertical	1000000.00	6.26

Average (PASS) (3)

Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol.	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)		(dB)
1831.842105	44.13	54.00	-9.87	48.00	1.00	Vertical	1000000.00	-1.88
3663.947368	48.50	54.00	-5.50	262.00	1.15	Vertical	1000000.00	4.07
4580	49.36	54.00	-4.64	247.00	1.35	Vertical	1000000.00	6.26

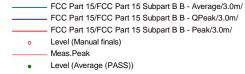

Notes: 1-1.5 GHz was performed manually with no emissions were detected.

915 MHz Case - Transmit Mid Channel (Z-axis), 30-1000 MHz

Test Information:

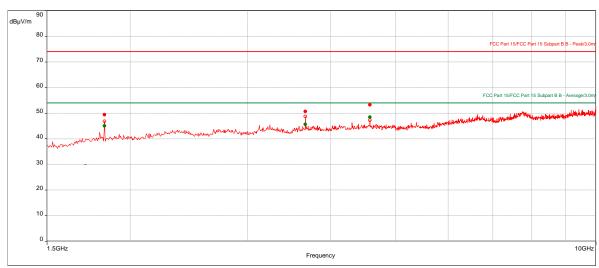
Date and Time	2/16/2019 1:41:52 PM
Client and Project Number	Renovia
Engineer	Kouma Sinn
Temperature	21C
Humidity	22%
Atmospheric Pressure	998mbar
Comments	915 MHz Case, Mid Channel Z-axis (Pointing up) 30-1000 MHz, Quick Prescan
	(Antenna at 1m high)

Graph:


Notes: Since no emissions were detected. Only pre-scan was performed on this axis. The fundamental frequency signal (highest peak) is not being evaluated.

915 MHz Case - Transmit Mid Channel (Z-axis), 1-10 GHz

Test Information:


Date and Time	2/24/2019 10:38:39 AM
Client and Project Number	Renovia
Engineer	Kouma Sinn
Temperature	21C
Humidity	22%
Atmospheric Pressure	1004mbar
Comments	915 MHz Case, Mid Channel, Z-axis (Pointing up), 1.5-10 GHz

Graph:

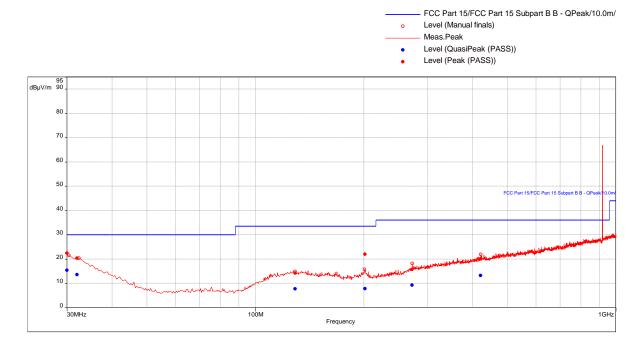
Results:

Peak (PASS) (3)

1 can (1 7100) (0)							
Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol.	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)		(dB)
1832.105263	49.35	74.00	-24.65	342.00	2.25	Vertical	1000000.00	-1.87
3663.947368	50.62	74.00	-23.38	99.00	2.40	Vertical	1000000.00	4.07
4580	53.18	74.00	-20.82	99.00	2.25	Vertical	1000000.00	6.26

Average (PASS) (3)

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°) (dB)	Height (m) (dB)	Pol. (dB)	RBW (dB)	Correction (dB)
1832.105263	45.04	54.00	-8.96	342.00	2.25	Vertical	1000000.00	-1.87
3663.947368	45.65	54.00	-8.35	99.00	2.40	Vertical	1000000.00	4.07
4580	48.46	54.00	-5.54	99.00	2.25	Vertical	1000000.00	6.26


Notes: 1-1.5 GHz was performed manually with no emissions were detected.

915 MHz Case - Transmit High Channel (X-axis), 30-1000 MHz

Test Information:

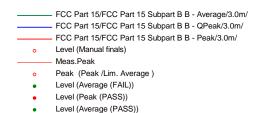
Date and Time	2/16/2019 1:55:17 PM
Client and Project Number	Renovia
Engineer	Kouma Sinn
Temperature	21C
Humidity	22%
Atmospheric Pressure	998mbar
Comments	915 MHz Case, High Channel, X-Axis (Battery side up), 30-1000 MHz

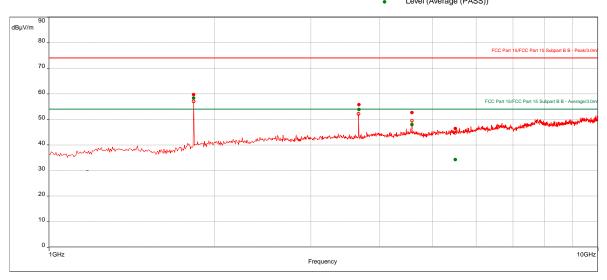
Graph:

Results:

QuasiPeak (PASS) (6)

Quasii eak (i /	100) (0)							
Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol. (dB)	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)			(dB)
30.05263158	15.38	30.00	-14.62	48.00	3.93	Horizontal	120000.00	-10.99
32.11578947	13.56	30.00	-16.44	158.00	2.50	Vertical	120000.00	-12.60
128.8631579	7.71	33.50	-25.79	144.00	1.37	Vertical	120000.00	-18.46
201.1473684	7.75	33.50	-25.75	158.00	2.03	Vertical	120000.00	-18.69
272.1157895	9.20	36.00	-26.80	165.00	3.15	Horizontal	120000.00	-17.97
421.4315789	13.23	36.00	-22.77	330.00	3.25	Vertical	120000.00	-14.38


Notes: The fundamental frequency signal (highest peak) is not being evaluated.


915 MHz Case - Transmit High Channel (X-axis), 1-10 GHz

Test Information:

Date and Time	2/8/2019 7:32:38 PM
Client and Project Number	Renovia_G103622007
Engineer	Vathana Ven
Temperature	21 deg C
Humidity	24%
Atmospheric Pressure	999 mB
Comments	RE 1 to 10 GHz_battery_Tx High channel_915 MHz CASE_X-axis

Graph:

Results:

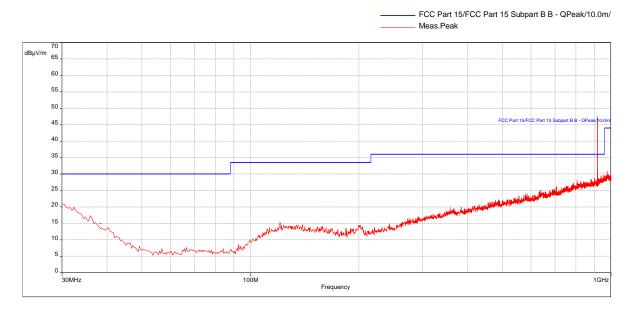
Average (PASS)

Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol. (dB)	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)			(dB)
3667.631579	53.82	54.00	-0.18	336.00	2.00	Horizontal	1000000.00	4.08
4584.473684	47.94	54.00	-6.06	284.00	1.35	Vertical	1000000.00	6.27
5498.684211	34.21	54.00	-19.79	144.00	1.05	Horizontal	1000000.00	7.70
1833.684211	58.27	75.70	-17.43	335.00	1.40	Horizontal	1000000.00	-1.87

Peak (PASS)

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°) (dB)	Height (m) (dB)	Pol. (dB)	RBW (dB)	Correction (dB)
1833.684211	59.66	95.70	-36.04	335.00	1.40	Horizontal	1000000.00	-1.87
3667.631579	55.74	74.00	-18.26	336.00	2.00	Horizontal	1000000.00	4.08
4584.473684	52.60	74.00	-21.40	284.00	1.35	Vertical	1000000.00	6.27
5498.684211	46.40	74.00	-27.60	144.00	1.05	Horizontal	1000000.00	7.70

Note: The emission at 1833.684211 MHz is not in the restricted band, therefore, the average limit is 20 dB down from the fundamental power which is 95.70 dB(uV/m).

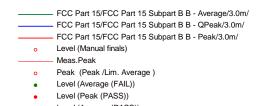

Page 61 of 75

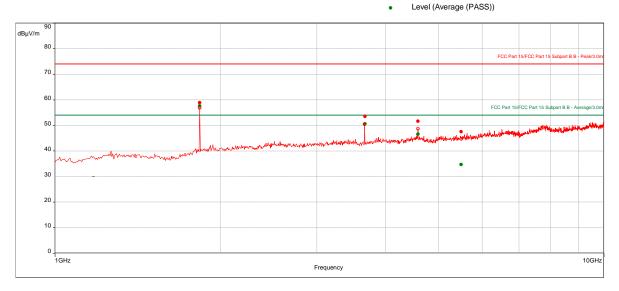
915 MHz Case - Transmit High Channel (Y-axis), 30-1000 MHz

Test Information:

Date and Time	2/16/2019 2:54:14 PM
Client and Project Number	Renovia
Engineer	Kouma Sinn
Temperature	21C
Humidity	22%
Atmospheric Pressure	998mbar
Comments	915 MHz Case, High Channel Y-axis (battery lead down 30-1000 MHzQuick Prescan
	(Antenna at 1m high)

Graph:


Notes: Since no emissions were detected. Only pre-scan was performed on this axis.


915 MHz Case - Transmit High Channel (Y-axis), 1-10 GHz

Test Information:

Date and Time	2/8/2019 7:54:57 PM
Client and Project Number	Renovia_G103622007
Engineer	Vathana Ven
Temperature	21 deg C
Humidity	24%
Atmospheric Pressure	999 mB
Comments	RE 1 to 10 GHz_battery_Tx High channel_915 MHz CASE_Y-axis

Graph:

Results:

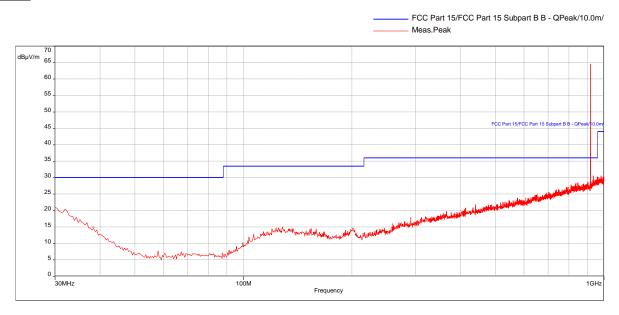
Average (PASS)

Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol. (dB)	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)			(dB)
3667.631579	50.57	54.00	-3.43	0.00	1.40	Vertical	1000000.00	4.08
4584.473684	46.55	54.00	-7.45	300.00	1.55	Horizontal	1000000.00	6.27
5495.789474	34.67	54.00	-19.33	277.00	3.69	Horizontal	1000000.00	7.70
1833.684211	57.55	78.15	-20.60	326.00	1.35	Horizontal	1000000.00	-1.87

Peak (PASS) (4)

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°) (dB)	Height (m) (dB)	Pol. (dB)	RBW (dB)	Correction (dB)
1833.684211	58.89	98.15	-39.26	326.00	1.35	Horizontal	1000000.00	-1.87
3667.631579	53.50	74.00	-20.50	0.00	1.40	Vertical	1000000.00	4.08
4584.473684	51.57	74.00	-22.43	300.00	1.55	Horizontal	1000000.00	6.27
5495.789474	47.50	74.00	-26.50	277.00	3.69	Horizontal	1000000.00	7.70

Note: The emission at 1833.684211 MHz is not in the restricted band, therefore, the average limit is 20 dB down from the fundamental power which is 98.15 dB(uV/m).

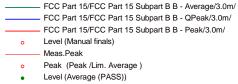

Page 63 of 75

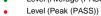
915 MHz Case - Transmit High Channel (Z-axis), 30-1000 MHz

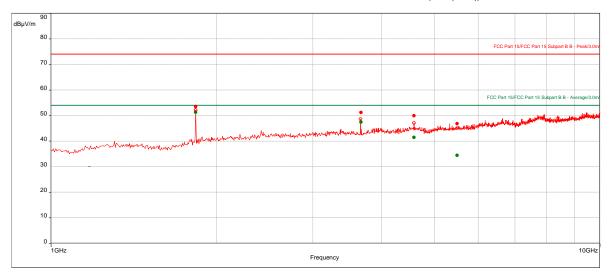
Test Information:

Date and Time	2/16/2019 2:42:49 PM
Client and Project Number	Renovia
Engineer	Kouma Sinn
Temperature	21C
Humidity	22%
Atmospheric Pressure	998mbar
Comments	915 MHz Case, High Channel Z-axis (EUT sits straight up) 30-1000 MHzQuick
	Prescan (Antenna at 1m high)

Graph:


Notes: Since no emissions were detected. Only pre-scan was performed on this axis.


915 MHz Case - Transmit High Channel (Z-axis), 1-10 GHz


Test Information:

Date and Time	2/8/2019 8:16:31 PM
Client and Project Number	Renovia_G103622007
Engineer	Vathana Ven
Temperature	21 deg C
Humidity	24%
Atmospheric Pressure	999 mB
Comments	RE 1 to 10 GHz_battery_Tx High channel_915 MHz CASE_Z-axis

Graph:

Results:

Peak (PASS) (4)

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°) (dB)	Height (m) (dB)	Pol. (dB)	RBW (dB)	Correction (dB)
1833.684211	53.47	96.57	-43.10	113.00	1.00	Vertical	1000000.00	-1.87
3667.631579	51.16	74.00	-22.84	291.00	1.00	Vertical	1000000.00	4.08
4584.473684	49.85	74.00	-24.15	77.00	3.49	Horizontal	1000000.00	6.27
5496.052632	46.81	74.00	-27.19	47.00	1.70	Vertical	1000000.00	7.70

Average (PASS) (4)

Average (i Ao	J) (T)							
Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol. (dB)	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)			(dB)
1833.684211	51.27	76.57	-25.30	113.00	1.00	Vertical	1000000.00	-1.87
3667.631579	47.42	54.00	-6.58	291.00	1.00	Vertical	1000000.00	4.08
4584.473684	41.44	54.00	-12.56	77.00	3.49	Horizontal	1000000.00	6.27
5496.052632	34.41	54.00	-19.59	47.00	1.70	Vertical	1000000.00	7.70

Note: The emission at 1833.684211 MHz is not in the restricted band, therefore, the average limit is 20 dB down from the fundamental power which is 95.70 dB(uV/m).

Intertek

Report Number: 103622007BOX-012c Issued: 07/12/2019

02/08/2019, 02/16/2019, Test Date: Test Personnel: Kouma Sinn 02/24/2019 Supervising/Reviewing Engineer: (Where Applicable) N/A CFR47 FCC Part 15.247 Product Standard: RSS-247 Limit Applied: See report section 10.3 Internal Battery Powered Input Voltage: Pretest Verification w/ Ambient Temperature: 21, 21, 21 °C Ambient Signals or BB Source: BB Source Relative Humidity: 24, 22, 22 % Atmospheric Pressure: 999, 998, 1004 mbars

Deviations, Additions, or Exclusions: None

11 Digital Device and Receiver Radiated Spurious Emissions

11.1 Method

Tests are performed in accordance with FCC Part 15 Subpart B, ICES 003, and ANSI C 63.4.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.6dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	5.3 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.5 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	5.2 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	5.0 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	5.0 dB	5.5 dB

As shown in the table above our radiated emissions $U_{\it lab}$ is less than the corresponding $U_{\it CISPR}$ reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Page 67 of 75

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB_{\mu}V/m$

RA = Receiver Amplitude (including preamplifier) in dBµV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $RA = 52.0 dB\mu V$ AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB $FS = 32 dB\mu V/m$

To convert from $dB\mu V$ to μV or mV the following was used:

```
UF = 10^{(NF/20)} where UF = Net Reading in \muV NF = Net Reading in dB\muV
```

Example:

```
FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 UF = 10^{(32 \text{ dB}\mu\text{V}\,/\,20)} = 39.8 \ \mu\text{V/m}
```

Alternately, when BAT-EMC Emission Software is used, the "Level" includes all losses and gains and is compared directly in the "Margin" column to the "Limit". The "Correction" includes Antenna Factor, Preamp, and Cable Loss. These are already accounted for in the "Level" column.

Intertek

Report Number: 103622007BOX-012c Issued: 07/12/2019

11.2 Test Equipment Used:

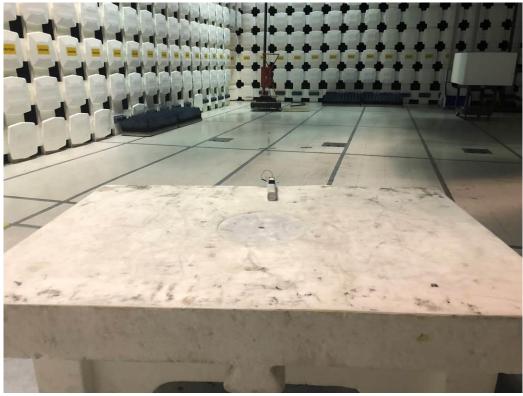
Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
BAR1'	Digital 4 Line Barometer	Mannix	0ABA116	BAR1	04/30/2018	04/30/2019
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/22/2018	03/22/2019
145-410'	Cables 145-420 145-421 145-422 145-406	Huber + Suhner	10m Track A Cables	multiple	07/25/2018	07/25/2019
PRE11'	50dB gain pre-amp	Keith H	PRE11	PRE11	12/02/2017	12/02/2018
145145'	Broadband Hybrid Antenna 30 MHz - 3 GHz	Sunol Sciences Corp.	JB3	A122313	05/16/2018	05/16/2019
ETS005'	1-18GHz horn antenna	ETS-Lindgren	3117	00218279	05/14/2018	05/14/2019
145014'	Preamplifier (1 GHz to 26.5 GHz)	Hewlett Packard	8449B	3008A00232	06/14/2018	06/14/2019
REA008'	band reject filter 2.4GHz	Reactel, Inc	12RX7-2441.75-x140 S	17-01	07/13/2018	07/13/2019
145-416'	Cables 145-420 145-423 145-425 145-408	Huber + Suhner	3m Track B cables	multiple	07/25/2018	07/25/2019

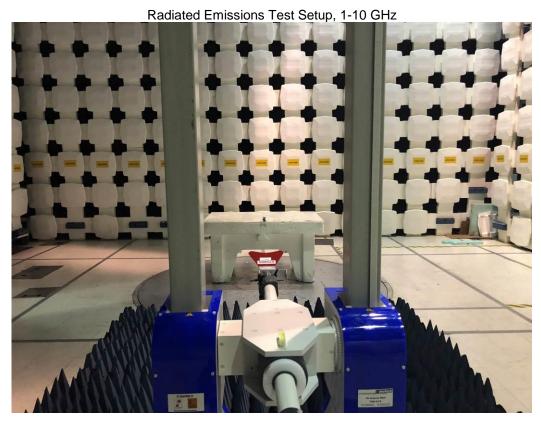
Software Utilized:

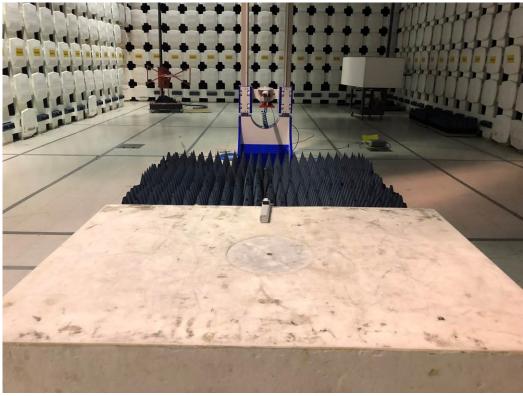
Name	Manufacturer	Version
BAT-EMC	Nexio	3.17.0.3

11.3 Results:

The sample tested was found to Comply.


§15.109 Radiated emission limits.

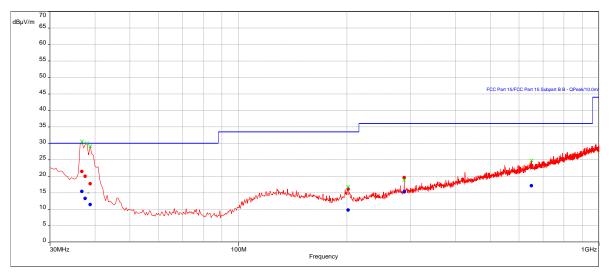

The field strength of radiated emissions form unintentional radiators at a distance of 3 meters shall not exceed the following values.


Frequency of emission (MHz)	Field strength (microvolts/meter)	Field strength (dBµV/m)
30-88	100	40.00
88-216	150	43.52
216-960	200	46.02
Above 960	500	54.00

11.4 Setup Photographs:

11.5 Plots/Data:

915 MHz Case, Receive Mode, 30-1000MHz


Test Information:

Date and Time	3/31/2019 3:23:47 PM
Client and Project Number	Renovia
Engineer	Kouma Sinn
Temperature	21C
Humidity	29%
Atmospheric Pressure	998mbar
Comments	915 MHz Case, receive mode, X-axis, 30-1000MHz

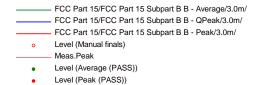
Graph:

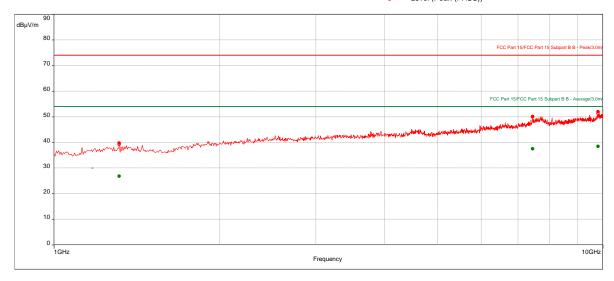
- Level (QuasiPeak (PASS))
- Level (Peak (PASS))

Results:

QuasiPeak (PASS) (6)

Frequency (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Azimuth (°) (dB)	Height (m) (dB)	Pol. (dB)	RBW (dB)	Correction (dB)
36.89473684	15.37	30.00	-14.63	88.00	2.18	Vertical	120000.00	-16.26
37.49473684	13.27	30.00	-16.73	69.00	1.74	Vertical	120000.00	-16.74
38.83157895	11.39	30.00	-18.61	49.00	3.21	Vertical	120000.00	-17.71
201.6315789	9.73	33.50	-23.77	42.00	1.65	Vertical	120000.00	-18.74
288.5578947	15.24	36.00	-20.76	10.00	2.83	Horizontal	120000.00	-17.79
650.2736842	17.12	36.00	-18.88	54.00	1.52	Vertical	120000.00	-9.60


Page 72 of 75


915 MHz Case, Receive Mode, 1 to 10 GHz

Test Information:

Date and Time	3/30/2019 12:28:01 PM
Client and Project Number	Renovia
Engineer	Kouma Sinn
Temperature	21C
Humidity	27%
Atmospheric Pressure	1011mbar
Comments	915 MHz Case Receive Mode, X-axis (Side Battery on Top), 1 to 10 GHz

Graph:

Results:

Peak (PASS) (3)

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°) (dB)	Height (m) (dB)	Pol. (dB)	RBW (dB)	Correction (dB)
1316.052632	39.73	74.00	-34.27	147.00	3.84	Horizontal	1000000.00	-4.91
7445.263158	49.97	74.00	-24.03	133.00	1.00	Horizontal	1000000.00	10.73
9800.526316	51.93	74.00	-22.07	341.00	1.05	Horizontal	1000000.00	12.15

Average (PASS) (3)

Twelage (1 Nee) (6)								
Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol. (dB)	RBW (dB)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)			(dB)
1316.052632	26.76	54.00	-27.24	147.00	3.84	Horizontal	1000000.00	-4.91
7445.263158	37.44	54.00	-16.56	133.00	1.00	Horizontal	1000000.00	10.73
9800.526316	38.38	54.00	-15.62	341.00	1.05	Horizontal	1000000.00	12.15

Page 73 of 75

Intertek

Report Number: 103622007BOX-012c Issued: 07/12/2019

Test Personnel: Kouma Sinn 45 Test Date: _03/30/2019, 03/31/2019 Supervising/Reviewing Engineer: (Where Applicable) CFR47 FCC Part 15.247 RSS-247 Product Standard: Limit Applied: See report section 11.3 Input Voltage: Internal Battery Ambient Temperature: 21, 21 °C Pretest Verification w/ Ambient Signals or BB Source: BB Source Relative Humidity: 27, 29 % Atmospheric Pressure: 998 mbars

Deviations, Additions, or Exclusions: None

Intertek

Report Number: 103622007BOX-012c Issued: 07/12/2019

12 Revision History

Revision	Date	Report Number	Prepared	Reviewed	Notes
Level			Ву	Ву	
0	07/12/2019	103511832BOX-012c	KPS LPS	MFM ##	Original Issue