Reference number: HELEM2206000300-1 Page 1 of 15

Test Report

Electromagnetic Compatibility (EMC)
HELEM2206000300-1

TESTS ACCORDING TO FCC PART 15 B AND ISED CANADA REQUIREMENTS

Equipment Under Test:	Hublet Smart Docking Station
-----------------------	------------------------------

Model: Hublet-M2

Customer: Hublet Oy

Itälahdenkatu 22 B 00210 Helsinki Finland

FCC Rule Part: FCC CFR 47 Part 15 Subpart B, Class B

IC Rule Part: ICES-003 Issue 7, Class B

Date: 30 September 2022

Issued by:

Mu Ch

Lauri Sippola Testing Engineer Date: 4 October 2022

Checked by:


Rauno Repo

Senior EMC Specialist

TABLE OF CONTENTS

TABLE OF CONTENTS	2
GENERAL REMARKS	
RELEASE HISTORY	4
PRODUCT DESCRIPTION Equipment Under Test (EUT) General description Samples and modifications Ports and cables Peripherals	5 5 5 5
TEST CONDITION EUT Test Conditions During EMC-Testing Operation modes Emission Measurement Uncertainty	7 7
SUMMARY OF TESTING	8
EMISSION TESTSConducted Emissions In The Frequency Range 150 kHz - 30 MHzRadiated Emissions In The Frequency Range 30 MHz - 18 GHz	9
TEST EQUIPMENT	15

Disclaimer

GENERAL REMARKS

Disclaimer

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Page 4 of 15

Release History

RELEASE HISTORY

Version	Changes	Issued
1.0	Initial release	30 September 2022

PRODUCT DESCRIPTION

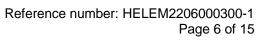
Equipment Under Test (EUT)

EUT information			
General Product Description	Hublet Smart Docking Station		
Model	Hublet-M2		
Serial number	-		
Power input port type	AC (L, N, PE)		
Rated voltage	100-120 VAC		
Rated current	3.0 A		
Rated frequency	60 Hz		
Rated power	-		
EUT Highest operation freq.	-		
Hardware Version (if any)	-		
Software Version (if any)	-		
Mechanical size of the EUT	59 x 126 x 59 cm		
Parallel models	-		
Radio module or chip	Integrated in Rasberry Pi (FCC ID: 2ABCB-RPI4B)		

The EUT was tested as a floor standing unit.

General description

Tablet docking station contains a power supply, PCB, Rasberry Pi single board computer and a barcode scanner and RFID card reader and has slots for either 3 or 6 tablets. The docking station uses a 5 V internal voltage to power a tablet locking mechanism, indicator LED lights and the Rasberry Pi computer through the PCB. Tablet locking/release and the lights are controlled by the computer.


The RFID reader (reading either 125 kHz or 13.56 MHz RFID tag) or barcode scanner are connected to the Rasperry Pi computer via USB 3.0, and they are used to read information from the customers, e.g. a library card, and the information is processed in the Rasberry Pi. The information can be sent to either the Hublet docking station owner's information network or Hublet cloud service via either WLAN connection or Ethernet/LAN connection, depending on how the owner wants the dock connected. Through the interaction and information gotten from the server a tablet may be unlocked from the dock for the customer to use.

Samples and modifications

No.	Name	Description
1	Sample 1	Normal sample

Ports and cables

Cable / Port	Description
AC mains	L, N, PE 1 m
Ethernet	Unshielded, 2.5 m

Product Description

Peripherals

Peripheral	Description / Usage	
Test PC	Device configuration	
WiFi router	WiFi connection	

TEST CONDITION

EUT Test Conditions During EMC-Testing

Configuration of the EUT was made to correspond to the actual assembling conditions as far as possible. Wifi communication link was established between the EUT and peripheral router. RFID reader was transmitting continuously.

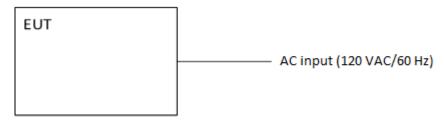


Figure 1: Test setup block diagram

Operation modes

During the tests the EUT was in the following operation modes:

Mode	Description
1	Normal operation mode after power on.

Emission Measurement Uncertainty

The uncertainties comply with CISPR 16-4-2 ed.2 requirements ($U_{lab} < U_{cispr}$).

Summary of Testing

SUMMARY OF TESTING

Test Specification	Description of Test	Result
FCC CFR 47 15/B §15.107, ICES-003 3.2.1	Conducted Emissions, Class B	PASS
FCC CFR 47 15/B §15.109, ICES 003 3.2.2	Radiated Emissions, Class B	PASS

Decision rule used for the emission tests are defined in standard CISPR 16-4-2 / EN 55016-4-2 clause 4.2

Test Facility

Testing Laboratory / address: FCC designation number: FI0002 ISED CAB identifier: T004	SGS Fimko Ltd Takomotie 8 FI-00380, HELSINKI FINLAND
Test Site:	 ☐ K10LAB, ISED Canada registration number: 8708A-1 ☑ K5LAB, ISED Canada registration number: 8708A-2 ☐ T10LAB

Conducted Emissions In The Frequency Range 150 kHz - 30 MHz

EMISSION TESTS

Conducted Emissions In The Frequency Range 150 kHz - 30 MHz

ANSI C63.4 (2014)Standard:

Tested by: LAS

Date: 28 July 2022

Humidity: 47 % Temperature: 24 °C

Barometric pressure: 860 - 1 060 mbar

Level of confidence 95 % (k = 2)Measurement uncertainty: ± 2.9 dB

FCC Rule: 15.107(a) ICES-003: 3.2.1

Test Plan

Conducted disturbance voltage was measured with an artificial main network from 150 kHz to 30 MHz with a resolution bandwidth of 9 kHz. Measurements were carried out with peak and average detectors from the phase(s) and neutral lines of the power supply cable.

The EUT was working as described in the section "EUT Test Conditions".

Class B limits:

Formula of anti-alian (MILA)	Conducted limit (dBµV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*}Decreases with the logarithm of the frequency.

Reference number: HELEM2206000300-1

Conducted Emissions In The Frequency Range 150 kHz - 30 MHz

Test results

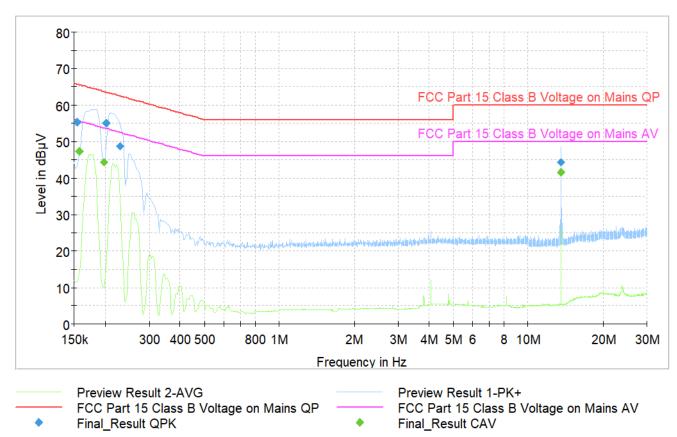


Figure 2: The measured results

Final measurements from the worst frequencies

Table 1: Final quasi-peak results

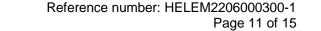

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.154000	55.27	15x1000.0	9.000	N	9.7	10.51	65.78
0.202250	55.03	15x1000.0	9.000	N	9.7	8.49	63.52
0.230250	48.86	15x1000.0	9.000	L1	9.7	13.58	62.44
13.558500	44.26	15x1000.0	9.000	N	10.4	15.74	60.00

Table 2: Final average results

Frequency (MHz)	Average (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.158000	47.21	15x1000.0	9.000	L1	9.7	8.36	55.57
0.198250	44.27	15x1000.0	9.000	L1	9.7	9.41	53.68
13.558500	41.49	15x1000.0	9.000	N	10.4	8.51	50.00

Correction factor (dB) in the final result tables contains the sum of the transducers (cables + transient limiter + LISN).

QuasiPeak and Average values are the measured values corrected with the correction factor.

Radiated Emissions In The Frequency Range 30 MHz - 18 GHz.

Radiated Emissions In The Frequency Range 30 MHz - 18 GHz.

Standard: ANSI C63.4 (2014)

Tested by: LAS

Date: 19 July 2022

Humidity: 45 % Temperature: 23.9 °C

Barometric pressure: 860 – 1 060 mbar

Measurement uncertainty: $\pm 4.9 \text{ dB } (30 - 200 \text{ MHz})$ Level of confidence 95 % (k = 2).

 \pm 4.1 dB (200 – 1 000 MHz) \pm 4.3 dB (1 – 18 GHz)

FCC Rule: 15.109(a) ICES-003: 3.2.2

Test plan

The radiated emission measurements were done within a semi anechoic screened chamber. Additional floor absorbers were used on the floor between the EUT and receiving antenna in radiated emission test above 1 GHz. The EUT was tested as a floor-standing unit. The measurement distance was 3 meters. The worst interferences were determined during measurements by rotating the turntable and adjusting the antenna height. The measurements were done in horizontal and vertical antenna polarizations. The supply voltage to the turntable was fed through the filter.

The EUT was working as described in the section "EUT Test Conditions".

Radiated measurement settings

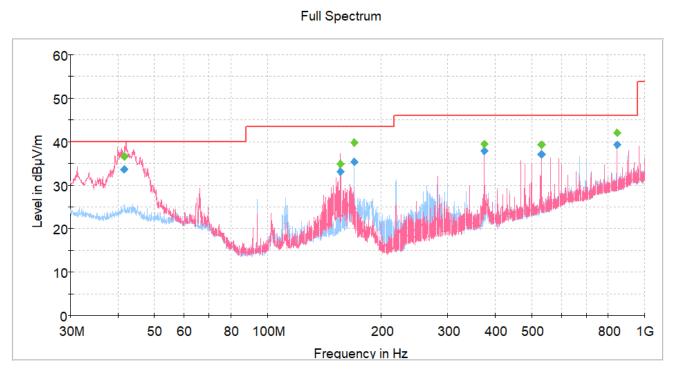
Preliminary testing:

Turntable movement: 30 ° step
Turntable position: 15 ° to 345°
Antenna movement: 1.5 m step
Antenna height: 1.0 m to 4.0 m

Antenna polarization: Vertical and horizontal

Final testing:

Turntable movement: Continuous Turntable position: $\pm 30^{\circ}$ Antenna movement: Continuous Antenna height: $\pm 1.50 \text{ m}$


Antenna polarization: Vertical and horizontal

Radiated Emissions In The Frequency Range 30 MHz - 18 GHz.

Reference number: HELEM2206000300-1

Measured Quasi-Peak Values In The Frequency Range 30 MHz - 1000 MHz.

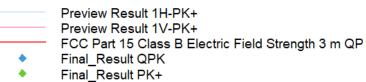
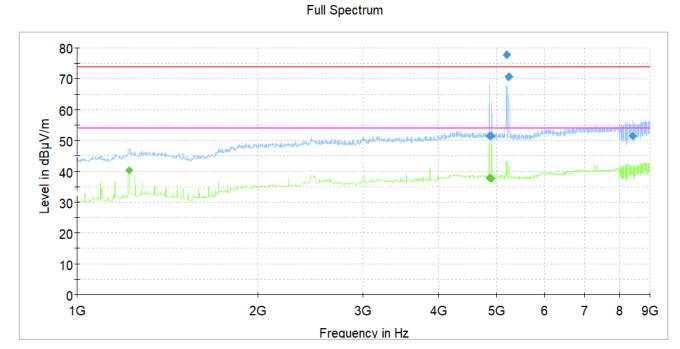


Figure 3: Measured results

Final measurements from the worst frequencies

Table 3: Final quasi-peak results

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
41.520000	33.67	15x1000.0	120.000	100.0	V	243.0	17.3	6.33	40.00
156.260000	33.10	15x1000.0	120.000	100.0	٧	195.0	18.6	10.40	43.50
169.390000	35.39	15x1000.0	120.000	199.0	Н	177.0	17.9	8.11	43.50
375.000000	37.82	15x1000.0	120.000	108.0	٧	69.0	21.5	8.18	46.00
531.250000	37.07	15x1000.0	120.000	100.0	V	225.0	24.8	8.93	46.00
843.770000	39.19	15x1000.0	120.000	100.0	Н	292.0	30.3	6.81	46.00


Correction factor (dB) in the final result tables contains the sum of the transducers (antenna + amplifier + cables).

QuasiPeak values are measured values corrected with the correction factor.

Reference number: HELEM2206000300-1

Radiated Emissions In The Frequency Range 30 MHz - 18 GHz.

Measured Peak and Average Values In The Frequency Range 1 GHz - 9 GHz.

Preview Result 2-AVG Preview Result 1-PK+ FCC Part 15 Class B Electric Field Strength 3 m PK FCC Part 15 Class B Electric Field Strength 3 m AV Final_Result PK+ Final_Result CAV

Figure 4: Measured results

Final measurements from the worst frequencies

Table 4: Final results

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Mar- gin (dB)	Limit (dBµV/m)
1218.775000		40.25	15x1000.0	1000.000	103.0	V	331.0	9.9	13.65	53.90
4862.775000	51.49		15x1000.0	1000.000	228.0	V	34.0	16.5	22.41	73.90
4869.375000		37.83	15x1000.0	1000.000	165.0	٧	43.0	16.5	16.07	53.90
4899.375000		37.76	15x1000.0	1000.000	292.0	V	169.0	16.5	16.14	53.90
4902.175000	51.62		15x1000.0	1000.000	288.0	V	186.0	16.5	22.28	73.90
5239.025000	70.70		15x1000.0	1000.000	315.0	٧	242.0	16.9	3.20	73.90
8419.425000	51.48	-	15x1000.0	1000.000	384.0	Н	262.0	21.5	22.42	73.90

Correction factor (dB) in the final result tables contains the sum of the transducers (antenna + amplifier + cables).

Reference number: HELEM2206000300-1

Radiated Emissions In The Frequency Range 30 MHz - 18 GHz.

Measured Peak and Average Values In The Frequency Range 9 GHz – 18 GHz.

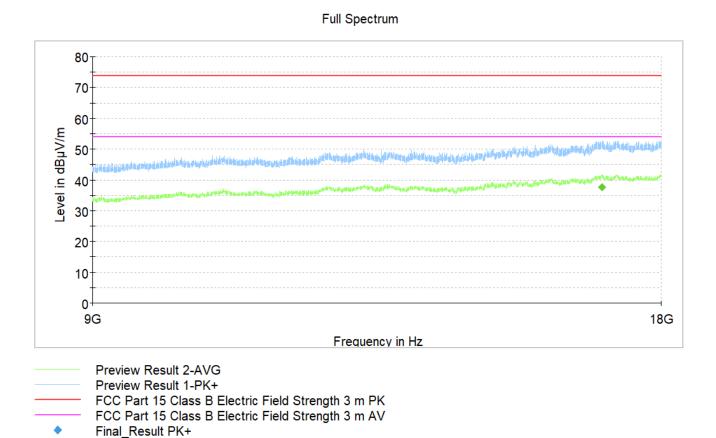


Figure 5: Measured results

Final_Result CAV

Final measurements from the worst frequencies

Table 5: Final peak and average measurement from the worst frequencies

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Mar- gin	Limit (dBµV/m)
16741.650000		37.55	15x1000.0	1000.000	286.0	V	344.0	23.7	16.35	53.90

Correction factor (dB) in the final result tables contains the sum of the transducers (antenna + amplifier + cables).

TEST EQUIPMENT

Radiated emissions

Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due
ANTENNA	SCHWARZBECK	VULB 9168	inv. 8911	2020-11-04	2022-11-04
ANTENNA	EMCO	3117, emi 1-18GHz	inv. 7293	2022-06-12	2024-06-16
ANTENNA MAST	MATURO	TAM 4.0E	inv. 10181	NA	NA
ATTENUATOR	PASTERNACK	PE 7004-4 (4dB)	inv. 10126	2021-03-30	2023-03-30
EMI TEST RECEIVER	ROHDE & SCHWARZ	ESW26	inv. 10679	2022-06-20	2023-06-20
MAST & TURNTABLE CONTROLLER	MATURO	NCD	inv. 10183	NA	NA
POWER SUPPLY	CALIFORNIA INSTR.	5001 iX Series II	inv. 7826	-	-
RF PREAMPLIFIER	CIAO	CA118-3123	inv. 10278	2022-09-21	2023-09-21
TEMPERATURE/ HUMIDITY SENSOR	EDS	OW-ENV-TH, K5 SAC	inv. 10517	2021-10-22	2022-10-22
TEST SOFTWARE	ROHDE & SCHWARZ	EMC-32	-	-	-
TURNTABLE	MATURO	DS430 UPGRADED	inv. 10182	NA	NA

Conducted emissions

Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due
EMI TEST RECEIVER	ROHDE & SCHWARZ	ESW26	inv. 10679	2022-06-20	2023-06-20
ISN	TESEQ	ISN T8-Cat6	inv. 10492	2022-05-30	2023-05-30
LISN	ROHDE & SCHWARZ	ENV216	inv. 9611	2022-02-02	2023-02-02
PASSIVE VOLTAGE PROBE	SCHAFFNER	CVP 2200	inv. 7946	2017-12-13	-
TEST SOFTWARE	ROHDE & SCHWARZ	EMC-32	-	-	-
POWER SUPPLY	CALIFORNIA INSTR.	5001 iX Series II	inv. 7826	-	-

NCR = No calibration required

END OF REPORT