

EMC TEST REPORT – 383565-1TRFEMC

Applicant:

Isaac Instruments

Product name:

ISAAC InMetrics Vehicular Router

Model:

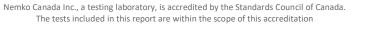
WRU201

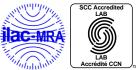
Specifications:

- FCC 47 CFR Part 15, Subpart B Verification
- ICES-003 Issue 6 January 2016

Date of issue: December 2, 2019

Yong Huang, Wireless/EMC Specialist


Tested by


Daniel Hynes, Senior EMC Specialist

Reviewed by

Signature Daniel Olguas

Signature

Lab and test locations

Company name	Nemko Canada Inc.			
Facilities	Ottawa site:	Montréal site:	Cambridge site:	Almonte site:
	303 River Road	292 Labrosse Avenue	1-130 Saltsman Drive	1500 Peter Robinson Road
	Ottawa, Ontario	Pointe-Claire, Québec	Cambridge, Ontario	West Carleton, Ontario
	Canada	Canada	Canada	Canada
	K1V 1H2	H9R 5L8	N3E 0B2	KOA 1LO
	Tel: +1 613 737 9680	Tel: +1 514 694 2684	Tel: +1 519 650 4811	Tel: +1 613 256-9117
	Fax: +1 613 737 9691	Fax: +1 514 694 3528		Fax: +1 613 256-8848
Tast site registration	Organization	Recognition numbers and location	"	
Test site registration				
	FCC/ISED	CA2040 (Ottawa/Almonte); CA204	41 (Montreal); CA0101 (Cambrid	lge)
Website	www.nemko.com			

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. © Nemko Canada Inc.

Table of Contents

Table of C	Contents	3
Section 1	Report summary	4
1.1	Test specifications	4
1.2	Exclusions	4
1.3	Statement of compliance	4
1.4	Test report revision history	4
Section 2	Engineering considerations	5
2.1	Modifications incorporated in the EUT for compliance	5
2.2	Technical judgment	5
2.3	Deviations from laboratory tests procedures	5
Section 3	Test conditions	6
3.1	Atmospheric conditions	6
3.2	Power supply range	6
Section 4	Measurement uncertainty	7
4.1	Uncertainty of measurement	7
Section 5	Summary of test results	8
5.1	Testing location	8
5.2	Testing period	8
5.3	Sample information	8
5.4	North America test results	8
Section 6	Information provided by the applicant	9
6.1	Disclaimer	9
6.2	Applicant	9
6.3	Manufacturer	9
6.4	EUT information	9
6.5	EUT setup details	.10
Section 7	Terms and definitions	12
7.1	Product classifications definitions	.12
7.2	General definitions	.13
Section 8	Testing data	14
8.1	Radiated emissions	.14
Section 9	EUT photos	21
9.1	External photos	.21

Section 1 Report summary

1.1 Test specifications

FCC 47 CFR Part 15, Subpart B – Verification	Title 47: Telecommunication; Part 15—Radio Frequency Devices
ICES-003 Issue 6 January 2016	Information Technology Equipment (ITE) – Limits and methods of measurement

1.2 Exclusions

None

1.3 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard except as noted in section 1.2 above. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.4 Test report revision history

Table 1.4-1: Test report revision history

Revision #	Date of issue	Details of changes made to test report
TRF	December 2, 2019	Original report issued

Section 2 Engineering considerations

2.1 Modifications incorporated in the EUT for compliance

There were no modifications performed to the EUT during this assessment.

2.2 Technical judgment

None

2.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 3 Test conditions

3.1 Atmospheric conditions

Temperature	15 °C – 35 °C
Relative humidity	30 % - 60 %
Air pressure	86 kPa (860 mbar) – 106 kPa (1060 mbar)

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

3.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 4 Measurement uncertainty

Uncertainty of measurement 4.1

Némko

Nemko Canada Inc. has calculated measurement uncertainty and is documented in EMC/MUC/001 "Uncertainty in EMC measurements." Measurement uncertainty was calculated using the methods described in CISPR 16-4-2 Specification for radio disturbance and immunity measuring apparatus and methods - Part 4-2: Uncertainties, statistics and limit modelling - Measurement instrumentation uncertainty. The expression of Uncertainty in EMC Testing. Measurement uncertainty calculations assume a coverage factor of K=2 with 95% certainty.

Table 4.1-1: Measurement uncertainty calculations

		Ucispr	U _{lab} dB			
Measurement		dB	Ottawa	Montreal	Cambridge	Almonte
Conducted disturbance at AC mains and other port power	(9 kHz to 150 kHz)	3.8	2.9	2.8	2.8	N/A
using a V-AMN	(150 kHz to 30 MHz)	3.4	2.3	2.2	2.2	N/A
Conducted disturbance at telecommunication port using AAN	(150 kHz to 30 MHz)	5.0	4.3	4.3	4.3	N/A
Conducted disturbance at telecommunication port using CVP	(150 kHz to 30 MHz)	3.9	2.9	2.8	2.8	N/A
Conducted disturbance at telecommunication port using CP	(150 kHz to 30 MHz)	2.9	1.4	1.1	1.1	N/A
Conducted disturbance at telecommunication port using CP and CVP	(150 kHz to 30 MHz)	4.0	3.1	3.0	3.0	N/A
Disturbance power	(30 MHz to 300 MHz)	4.0	3.7	3.7	3.7	N/A
Radiated disturbance (electric field strength at an OATS or in a SAC)	(30 MHz to 1 GHz)	6.3	5.7	5.5	5.5	5.5
Radiated disturbance (electric field strength in a FAR)	(1 GHz to 6 GHz)	5.2	4.8	5.1	4.8	N/A
Radiated disturbance (electric field strength in a FAR)	(6 GHz to 18 GHz)	5.5	5.1	5.0	4.7	N/A

If U_{lab} is less than or equal to U_{cispr} then:

compliance is deemed to occur is no measured disturbance level exceeds the disturbance limit;

_ non-compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit

If U_{lab} is greater than U_{cispr} then:

compliance is deemed to occur is no measured disturbance level, increased by (U_{iab} - U_{cispr}), exceeds the disturbance limit;

non-compliance is deemed to occur if any measured disturbance level, increased by (U_{lab} - U_{cisp},), exceeds the disturbance limit _

Section 5 Summary of test results

5.1 **Testing** location

Test	location	(s)
------	----------	-----

Montreal

Testing period 5.2

Test start date	November 11, 2019
Test end date	November 11, 2019

5.3 Sample information

Receipt date	November 11, 2019
Nemko sample ID number	Item # 1

5.4 North America test results

Table 5.4-1: Result summary for emissions

Standard	Clause	Test description	Verdict
FCC 47 CFR Part 15, Subpart B	§15.109	Radiated emissions limits ¹	Pass
FCC 47 CFR Part 15, Subpart B	§15.107	Conducted emissions limits (AC mains) ¹	Not applicable ²
ICES-003 Issue 6	6.1	AC Power Line Conducted Emissions Limits ¹	Not applicable ²
ICES-003 Issue 6	6.2	Radiated Emissions Limits ¹	Pass
Notes: ¹ Product classification B			

¹ Product classification B

² The EUT is Battery powered

Section 6 Information provided by the applicant

6.1 Disclaimer

Nèmko

This section contains information provided by the applicant and has been utilized to support the test plan. Inaccurate information provided by the applicant can affect the validity of the results contained within this test report. Nemko accepts no responsibility for the information contained within this section and the impact it may have on the test plan and resulting measurements.

6.2 Applicant

Company name	Isaac Instruments
Address	1300 Boulevard Clairevue O, Saint-Bruno-de-Montarville, QC J3V 0B7

6.3 Manufacturer

Company name	Isaac Instruments
Address	1300 Boulevard Clairevue O, Saint-Bruno-de-Montarville, QC J3V 0B7

6.4 EUT information

Product name	ISAAC InMetrics Vehicular Router
Model	WRU201
Serial number	2006
Part number	WRU201
Power requirements	Battery: 12 V _{DC}
Description/theory of operation	Cellular – Wifi vehicular router with data acquisition system capability.
Operational frequencies	Xtal: 32.768 kHz, 8 MHz, 24 MHz
	Operating frequencies max: 198 MHz, 396 MHz, 528 MHz, 792 MHz
Software details	software 1.0-1

6.5 EUT setup details

6.5.1 EUT Exercise and monitoring

EUT description of the methods used to exercise the EUT and all relevant ports:

- EUT was configured and exercised by client on site as worst representative case.
- Unit has been powered using 12V wall mount adapter.
- The available ports are: 1x RS-232, 2x CAN 2.0, 1x J1708, 4x digital inputs.
- 3 Fakra antenna connectors

EUT setup/configuration rationale:

- The EUT setup in a configuration that was expected to produce the highest amplitude emissions relative to the limit and that satisfy normal
 operation/installation practice by the end user.
- The type and construction of cables used in the measurement set-up were consistent with normal or typical use. Cables with mitigation features (for example, screening, tighter/more twists per length, ferrite beads) have been noted below:
 - None
- The EUT was setup in a manner that was consistent with its typical arrangement and use. The measurement arrangement of the EUT, local AE
 and associated cabling was representative of normal practice. Any deviations from typical arrangements have been noted below:
 - None

EUT monitoring method:

- EUT was monitored by client on site.
- We have monitored the behavior of the unit using the diagnostic LED's.
- The result of the emission of the unit have been monitored through the test equipment reading.

6.5 EUT setup details, continued

6.5.2 EUT test configuration

Table 6.5-1: EUT sub assemblies			
Description Brand name Model, Part number, Serial number, Revision level			
ISAAC InMetrics Vehicular Router	ISAAC	MN: WRU201, PN: WRU201, SN: 2006, Rev. 1.0	

Table 6.5-2: EUT interface ports

Description	Qty.
Power input Digital inputs RS-232	1
Digital inputs	4
RS-232	1
USB	1
CAN 2.0	2
J1708	1

Table 6.5-3: Support equipment

Description	Brand name	Model, Part number, Serial number, Revision level	
Power supply	Triad	PN: WSU120-2000-13	
Wifi Antenna	2J	PN: 2J0202-2.4-C934r	
Cellular Antenna	2J	PN: 2J4941PGF-300LL195-C231_300LL100-C95_IsCa	

Table 6.5-4: Inter-connection cables

Cable description	From	То	Length (m)
Antenna cable	EUT	Antenna	3
Power cable	Battery	EUT	1.5

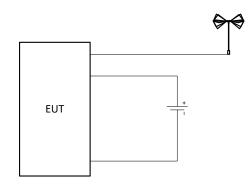


Figure 6.5-1: block diagram

Section 7 Terms and definitions

Nemko

7.1 Product classifications definitions

7.1.1 Title 47: Telecommunication – Part 15-Radio Frequency devices, Subpart A – General – Equipment classification

Class A digital device	A digital device that is marketed for use in a commercial, industrial or business environment, exclusive of a device which is marketed for use by the general public or is intended to be used in the home.
Class B digital device	A digital device that is marketed for use in a residential environment notwithstanding use in commercial, business and industrial environments. Examples of such devices include, but are not limited to, personal computers, calculators, and similar electronic devices that are marketed for use by the general public. Note: The responsible party may also qualify a device intended to be marketed in a commercial, business or industrial environment as a Class B device, and in fact is encouraged to do so, provided the device complies with the technical specifications for a Class B digital device. In the event that a particular type of device has been found to repeatedly cause harmful interference to radio communications, the Commission may classify such a digital device as a Class B digital device, regardless of its intended use.

7.1.2 ICES-003 – Equipment classification

Class B ITE	limits of radio noise for ITE for residential operation
Class A ITE	limits of radio noise for ITE for non-residential operation
Conditions	Only ITE intended strictly for non-residential use in commercial, industrial or business environments, and whose design or other characteristics strongly preclude the possibility of its use in a residential environment, shall be permitted to comply with the less stringent Class A limits. All ITE that cannot meet the conditions for Class A operation shall comply with the Class B limits. The ITE shall comply with both the power line – conducted and the radiated emissions limits within the same Class, with no intermixing.

7.2 General definitions

7.2.1 Title 47: Telecommunication – Part 15-Radio Frequency devices, Subpart A – General – Digital device definitions

Digital device (Previously defined as a computing device) An unintentional radiator (device or system) that generates and uses timing signals or pulses at a rate in excess of 9,000 pulses (cycles) per second and uses digital techniques; inclusive of telephone equipment that uses digital techniques or any device or system that generates and uses radio frequency energy for the purpose of performing data processing functions, such as electronic computations, operations, transformations, recording, filing, sorting, storage, retrieval, or transfer. A radio frequency device that is specifically subject to an emanation requirement in any other FCC Rule part or an intentional radiator subject to subpart C of this part that contains a digital device is not subject to the standards for digital devices, provided the digital device is used only to enable operation of the radio frequency device and the digital device does not control additional functions or capabilities.

Note: Computer terminals and peripherals that are intended to be connected to a computer are digital devices.

7.2.2 ICES-003 – Definitions

Information technology equipment (ITE)	Information Technology Equipment (ITE) is defined as devices or systems that use digital techniques for purposes such as data processing and computation. ITE is any unintentional radiator (device or system) that generates and/or uses
	timing signals or pulses having a rate of at least 9 kHz and employs digital techniques for purposes such as computation, display, data processing and storage, and control.

Section 8 Testing data

8.1 Radiated emissions

8.1.1 References and limits

FCC 47 CFR Part 15, Subpart B: Clause §15.109 (Test method ANSI C63.4:2014)

– ICES-003: Section 6.2

Frequency range [MHz]	Measurement		limits
	Distance [m]	Detector type/ bandwidth	[dBµV/m]
30–88	10		29.5
88–216		Quasi Peak/120 kHz	33.1
216–960			35.6
960–1000			43.5
30–88	3	Quasi Peak/120 kHz	40.0
88–216			43.5
216–960		Quasi Peak/120 kHz	46.0
960–1000			54.0
>1000	10	Linear average/1 MHz	43.6
		Peak/1 MHz	63.6
>1000	3	Linear average/1 MHz	54.0
>1000		Peak/1 MHz	74.0

Notes: Where there is a step in the relevant limit, the lower value was applied at the transition frequency.

8.1.2 Test summary

Verdict	Pass		
Tested by	Yong Huang	Test date	November 11, 2019

8.1.3 Notes

- The spectral plots within this section are a summation of a vertical and horizontal scans. The spectral scans have been corrected with the associated applicable transducer factors.
- Where tabular data has not been provided, no emissions were observed within 10 dB of the specified limit when measured with the appropriate detector. Additionally; where less than 6 measurements per detector has been provided, fewer than 6 emissions were observed within 10 dB of the specified limit when measured with the appropriate detector.
- The spectrum was scanned to 6 GHz according to the EUT highest digital operating frequency.

	Highest internal frequency [F _x]	Highest measured frequency	
F _X ≤ 108 MHz		1 GHz	
	108 MHz < F _X ≤ 500 MHz	2 GHz	
	500 MHz < $F_X \le 1$ GHz	5 GHz	
	F _x > 1 GHz	$5 \times F_x$ up to a maximum of 40 GHz	
Notes:	Highest internal frequency [Fx] – highest fundamental frequency generated or used within the EUT or highest frequency at which it operates. This		
	includes frequencies which are solely used within an integrated circui	t.	
	For FM and TV broadcast reactives F, is determined from the highest frequency generated or used evaluating the level escillator and tuned		

For FM and TV broadcast receivers F_x is determined from the highest frequency generated or used excluding the local oscillator and tuned frequencies.

Testing data Radiated emissions FCC Part 15 Subpart B and ICES-003 Issue 6

8.1.4 Setup details

Port under test	Enclosure Port
EUT power input during test	Battery: 12 V _{DC}
EUT setup configuration	Table top
Test facility	Semi anechoic chamber
Measuring distance	3 m
Antenna height variation	1–4 m
Turn table position	0–360°
Measurement details	A preview measurement was generated with receiver in continuous scan or sweep mode while the EUT was rotated
	and antenna adjusted to maximize radiated emission. Emissions detected within 10 dB or above the limit were re-
	measured with the appropriate detector against the correlating limit and recorded as the final measurement.

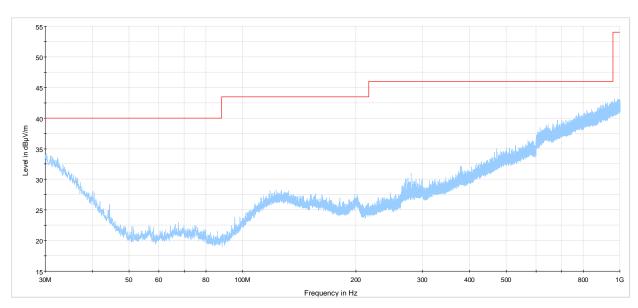
Receiver/spectrum analyzer settings.

Resolution bandwidth	Measurements below 1 GHz: 120 kHz, Measurements above 1 GHz: 1 MHz
Video bandwidth	Measurements below 1 GHz: 300 kHz, Measurements above 1 GHz:3 MHz
Detector mode	Measurements below 1 GHz: Peak (Preview), Quasi-peak (Final) Measurements above 1GHz: Peak (Preview), Peak and CAverage (Final)
Trace mode	Max Hold
Measurement time	100 ms

Table 8.1-3: Radiated emissions equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
3 m EMI test chamber (Emissions)	TDK	SAC-3	FA002532e	2 year	January 10, 2020
Flush mount turntable	Sunol	FM2022	FA002550	_	NCR
Controller	Sunol	SC104V	FA002551	—	NCR
Antenna mast	Sunol	TLT2	FA002552	_	NCR
Receiver/spectrum analyzer	Rohde & Schwarz	ESU 40	FA002071	1 year	December 6, 2019
Bilog antenna (20–2000 MHz)	Sunol	JB1	FA002517	1 year	January 3, 2020
Horn antenna (1–18 GHz)	EMCO	3115	FA001451	1 year	April 12, 2020
Pre-amplifier (0.5–18 GHz)	Com-Power	PAM-118A	FA002561	1 year	September 18, 2020

Notes: NCR - no calibration required


Table 8.1-4: Radiated emissions test software details

Manufacturer of Software	Details
Rohde & Schwarz	EMC32, Software for EMC Measurements, Version 9.26.01

Testing data Radiated emissions FCC Part 15 Subpart B and ICES-003 Issue 6

8.1.5 Test data

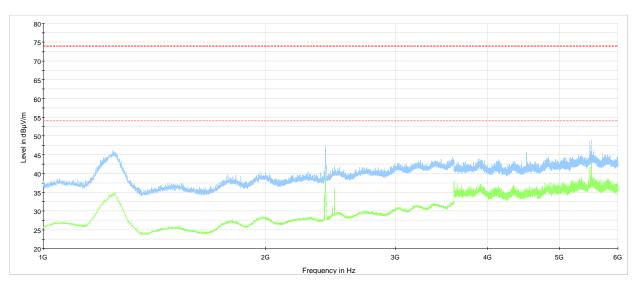

Preview Result 1-PK+ FCC Part 15 and ICES-003 Limit - Class B (Quasi-Peak and Average), 3 m

Figure 8.1-1: Radiated emissions spectral plot (30 to 1000 MHz)

Testing data Radiated emissions FCC Part 15 Subpart B and ICES-003 Issue 6

8.1.5 Test data, continued

Preview Result 2-AVG Preview Result 1-PK+ FCC Part 15 and ICES-003 Limit - Class B (Peak) above 1 GHz, 3 m FCC Part 15 and ICES-003 Limit - Class B (Quasi-Peak and Average), 3 m

Figure 8.1-2: Radiated emissions spectral plot (1 to 6 GHz)

Testing data Radiated emissions FCC Part 15 Subpart B and ICES-003 Issue 6

8.1.6 Setup photos

Figure 8.1-3: Radiated emissions setup photo - below 1 GHz

Figure 8.1-4: Radiated emissions setup photo – below 1 GHz

Testing data Radiated emissions FCC Part 15 Subpart B and ICES-003 Issue 6

8.1.6 Setup photos, continued

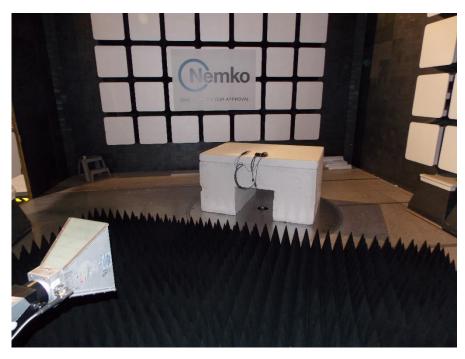


Figure 8.1-5: Radiated emissions setup photo – above 1 GHz

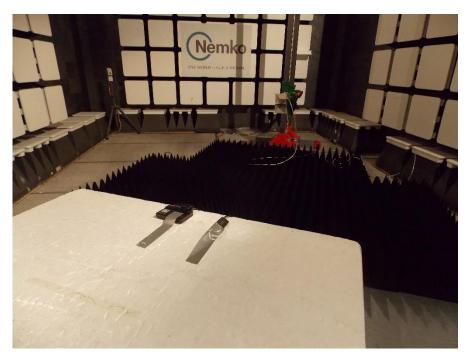


Figure 8.1-6: Radiated emissions setup photo - above 1 GHz

Section 9 EUT photos

9.1 External photos

Figure 9.1-1: Front view photo

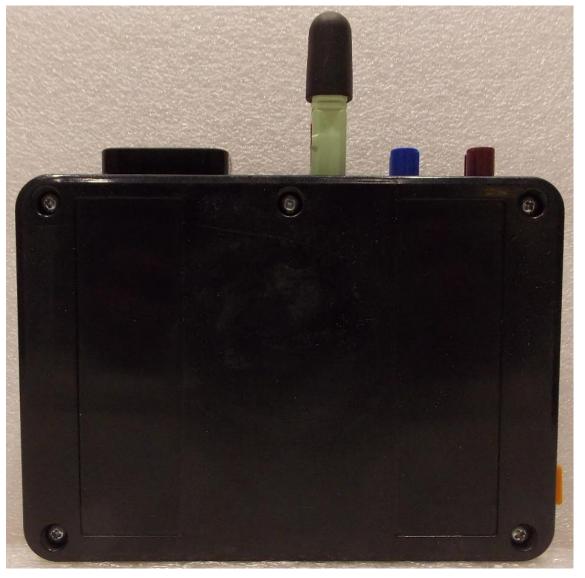


Figure 9.1-2: Rear view photo



Figure 9.1-3: Side view photo

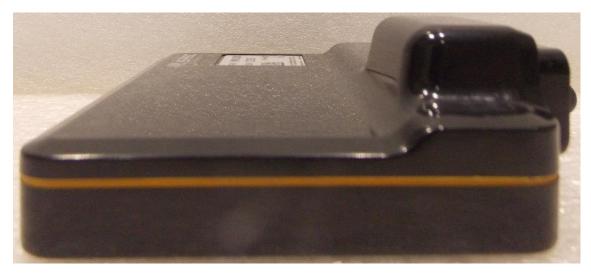
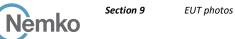
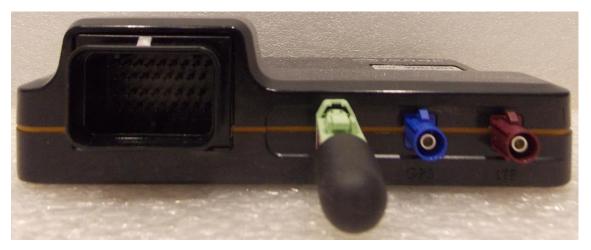




Figure 9.1-4: Side view photo

Figure 9.1-5: Top view photo

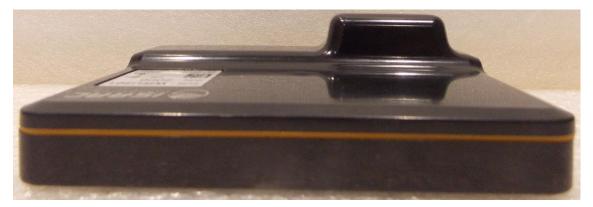


Figure 9.1-6: Bottom view photo

End of the test report