

RADIO TEST REPORT FCC ID: 2ASYX-TABIC1

Product: ISAAC InControl tablet Trade Mark: N/A Model No.: TABIC1 Family Model: N/A Report No.: S19043003503002 Issue Date: 20 May. 2019

Prepared for

ISAAC Instruments Inc.

240 Frechette Chambly (Qc) Canada J3L 2Z5

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599 Website:http://www.ntek.org.cn

TABLE OF CONTENTS

ACCREDITED

Certificate #4298.01

1 TES	ST RESULT CERTIFICATION	3
2 SU	MMARY OF TEST RESULTS	4
3 FA	CILITIES AND ACCREDITATIONS	5
3.1	FACILITIES	5
3.2	LABORATORY ACCREDITATIONS AND LISTINGS	
3.3	MEASUREMENT UNCERTAINTY	5
4 GE	NERAL DESCRIPTION OF EUT	6
5 DE	SCRIPTION OF TEST MODES	8
6 SE	TUP OF EQUIPMENT UNDER TEST	9
6.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	9
6.2	SUPPORT EQUIPMENT	
6.3	EQUIPMENTS LIST FOR ALL TEST ITEMS	11
7 TES	ST REQUIREMENTS	13
7.1	CONDUCTED EMISSIONS TEST	13
7.2	RADIATED SPURIOUS EMISSION	-
7.3	6DB BANDWIDTH	-
7.4		
7.5 7.6	POWER SPECTRAL DENSITY	
7.6 7.7	CONDUCTED BAND EDGE MEASUREMENT	
7.8	ANTENNA APPLICATION	
1.0		

1 TEST RESULT CERTIFICATION

Applicant's name:	ISAAC Instruments Inc.
Address:	240 Frechette Chambly (Qc) Canada J3L 2Z5
Manufacturer's Name:	ISAAC Instruments Inc.
Address:	240 Frechette Chambly (Qc) Canada J3L 2Z5
Product description	
Product name:	ISAAC InControl tablet
Model and/or type reference:	TABIC1
Family Model:	N/A

Measurement Procedure Used:

APPLICABLE STANDARDS

APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J	
FCC 47 CFR Part 15, Subpart C	Complied
ANSI C63.10-2013	
KDB 558074 D01 15.247 Meas Guidance v05r02	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	05 May. 2019 ~ 17 May. 2019	
Testing Engineer	:	(Allen Liu)	
Technical Manager	:	Juson chen (Jason Chen)	
Authorized Signatory	:	(Sam Chew	

	FCC Part15 (15.247), Subpart C	2	
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	1
15.247 (a)(2)	6dB Bandwidth	PASS	
15.247 (b)	Peak Output Power	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247 (e)	Power Spectral Density	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

 "N/A" denotes test is not applicable in this Test Report.
All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Laboratory has been assessed and proved to be in compliance with CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)
	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A-1.
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification					
Equipment ISAAC InControl tablet					
Trade Mark	N/A				
FCC ID	2ASYX-TABIC1				
Model No.	TABIC1				
Family Model	N/A				
Model Difference	N/A				
Operating Frequency	2402MHz~2480MHz				
Modulation	GFSK				
Number of Channels	40 Channels				
Bluetooth Version	BT V4.1				
Antenna Type	FPCB Antenna				
Antenna Gain	2dBi				
	☑DC supply: DC 3.7V/8500mAh from Battery or DC 5V from Adapter.				
Power supply	Adapter supply: Model: AW018WR-0500300UH Input: 100-240V~50/60Hz 0.5A Output: 5V3A				
HW Version	EM_T86_MB_PCB_V13R3				
SW Version	Android 8.1.0				

ACO

Certificate #4298.01

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

ACCREDITED

Certificate #4298.01

Report No.	Version	Description	Issued Date
Report No.	Version	Description	
S19043003503002	Rev.01	Initial issue of report	May 20, 2019

5 DESCRIPTION OF TEST MODES

NTEK 11:10

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)	
0	2402	
1	2404	
19	2440	
20	2442	
38	2478	
39	2480	

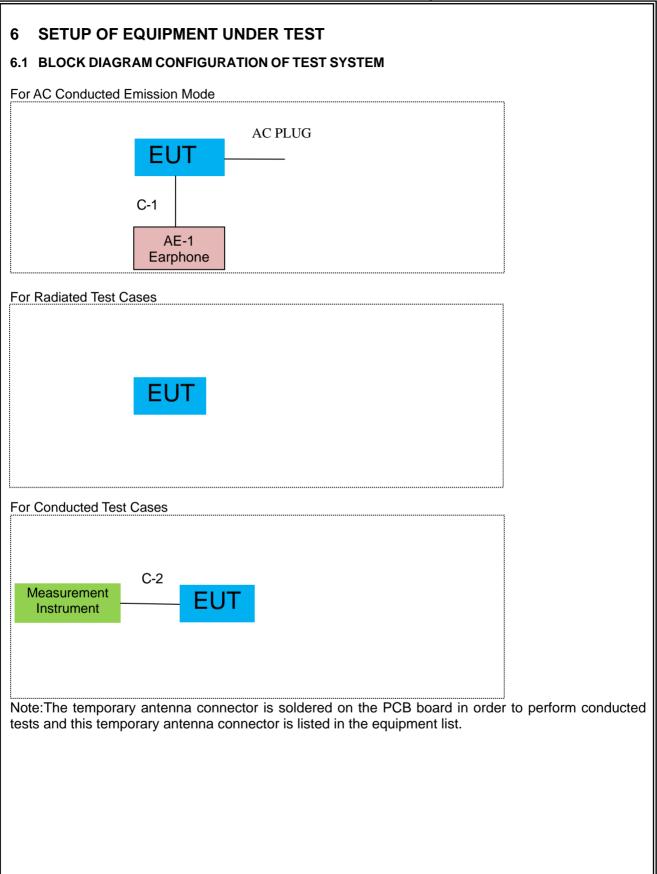
Note: fc=2402MHz+k×2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases				
Test Item	Data Rate/ Modulation			
lest item	Bluetooth 4.1_LE / GFSK			
AC Conducted Emission	Mode 1: normal link mode			
	Mode 1: normal link mode			
Radiated Test	Mode 2: Bluetooth Tx Ch00_2402MHz_1Mbps			
Cases	Mode 3: Bluetooth Tx Ch19_2440MHz_1Mbps			
	Mode 4: Bluetooth Tx Ch39_2480MHz_1Mbps			
Constructed Test	Mode 2: Bluetooth Tx Ch00_2402MHz_1Mbps			
Conducted Test	Mode 3: Bluetooth Tx Ch19_2440MHz_1Mbps			
Cases	Mode 4: Bluetooth Tx Ch39_2480MHz_1Mbps			

Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.


2. AC power line Conducted Emission was tested under maximum output power.

3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

4. EUT is set to continuous transmission mode. duty cycle greater than 98%.

5. EUT built-in battery-powered, the battery is fully-charged.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
AE-1	Earphone	N/A	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	Earphone Cable	NO	NO	1.2m
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

aulatic	ona Conducted I	estequipment	-				
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2018.05.19	2019.05.18	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2018.10.08	2019.10.07	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2018.10.08	2019.10.07	1 year
4	Test Receiver	R&S	ESPI7	101318	2018.05.19	2019.05.18	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2019.04.15	2020.04.14	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2018.05.19	2020.05.18	2 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2019.04.15	2020.04.14	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2018.12.11	2019.12.10	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2018.08.05	2019.08.04	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2018.12.11	2019.12.10	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2018.08.05	2019.08.04	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2017.04.21	2020.04.20	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2017.04.21	2020.04.20	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2017.04.21	2020.04.20	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2017.04.21	2020.04.20	3 year
16	Filter	TRILTHIC	2400MHz	29	2017.04.19	2020.04.18	3 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

AC

Certificate #4298.01

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Cc	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	· R&S	ESCI	101160	2018.05.19	2019.05.18	1 year
2	LISN	R&S	ENV216	101313	2019.04.15	2020.04.14	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2018.05.19	2019.05.18	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2018.05.19	2020.05.18	2 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2017.04.21	2020.04.20	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2017.04.21	2020.04.20	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2017.04.21	2020.04.20	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

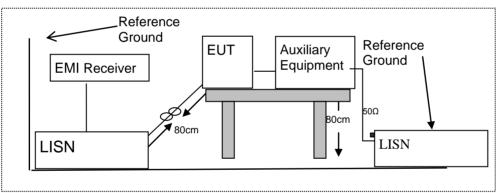
7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

	Conducted	d Emission Limit
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56*	56-46*
0.5-5.0	56	46
5.0-30.0	60	50


Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.1.4 Test Configuration

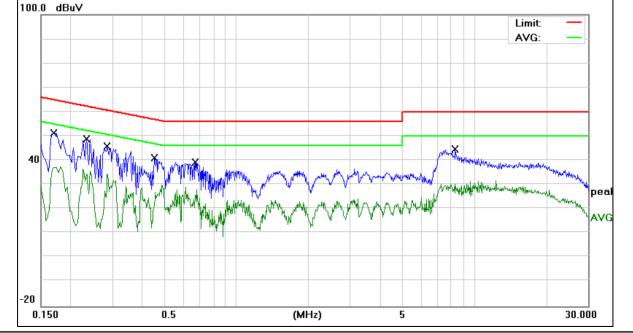
7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.6 Test Results

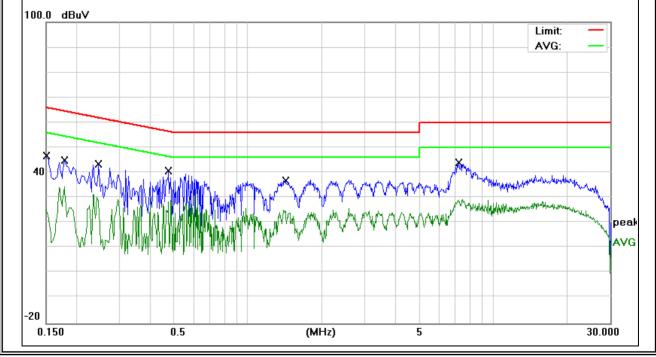
EUT:	ISAAC InControl tablet	Model Name :	TABIC1
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1


Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1700	41.56	9.76	51.32	64.96	-13.64	QP
0.1700	27.82	9.76	37.58	54.96	-17.38	AVG
0.2340	39.08	9.76	48.84	62.30	-13.46	QP
0.2340	26.72	9.76	36.48	52.30	-15.82	AVG
0.2860	36.24	9.75	45.99	60.64	-14.65	QP
0.2860	25.48	9.75	35.23	50.64	-15.41	AVG
0.4500	31.28	9.74	41.02	56.87	-15.85	QP
0.4500	20.38	9.74	30.12	46.87	-16.75	AVG
0.6700	29.61	9.74	39.35	56.00	-16.65	QP
0.6700	19.92	9.74	29.66	46.00	-16.34	AVG
8.3020	34.73	9.94	44.67	60.00	-15.33	QP
8.3020	20.30	9.94	30.24	50.00	-19.76	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.


EUT:	ISAAC InControl tablet	Model Name :	TABIC1
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	N
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demerle
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1500	36.99	9.74	46.73	65.99	-19.26	QP
0.1500	24.72	9.74	34.46	55.99	-21.53	AVG
0.1780	35.16	9.73	44.89	64.57	-19.68	QP
0.1780	22.32	9.73	32.05	54.57	-22.52	AVG
0.2460	33.67	9.74	43.41	61.89	-18.48	QP
0.2460	21.58	9.74	31.32	51.89	-20.57	AVG
0.4740	30.89	9.75	40.64	56.44	-15.80	QP
0.4740	20.33	9.75	30.08	46.44	-16.36	AVG
1.4220	27.22	9.76	36.98	56.00	-19.02	QP
1.4220	17.35	9.76	27.11	46.00	-18.89	AVG
7.2140	33.95	9.97	43.92	60.00	-16.08	QP
7.2140	19.38	9.97	29.35	50.00	-20.65	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to Foo Fart 15.205, Restricted bands			
MHz	MHz	GHz	
16.42-16.423	399.9-410	4.5-5.15	
16.69475-16.69525	608-614	5.35-5.46	
16.80425-16.80475	960-1240	7.25-7.75	
25.5-25.67	1300-1427	8.025-8.5	
37.5-38.25	1435-1626.5	9.0-9.2	
73-74.6	1645.5-1646.5	9.3-9.5	
74.8-75.2	1660-1710	10.6-12.7	
123-138	2200-2300	14.47-14.5	
149.9-150.05	2310-2390	15.35-16.2	
156.52475-156.52525	2483.5-2500	17.7-21.4	
156.7-156.9	2690-2900	22.01-23.12	
162.0125-167.17	3260-3267	23.6-24.0	
167.72-173.2	3332-3339	31.2-31.8	
240-285	3345.8-3358	36.43-36.5	
322-335.4	3600-4400	(2)	
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358	

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

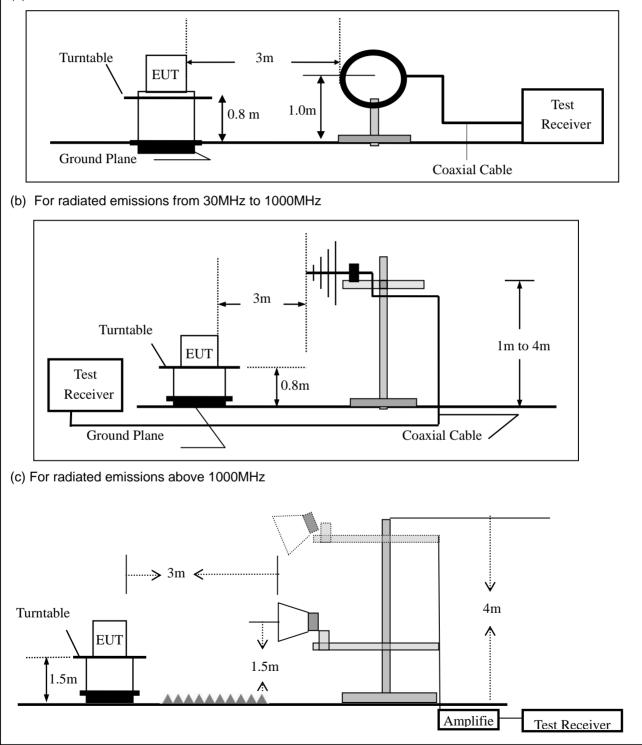
Frequency(MHz)	Class B (dBuV/m) (at 3M)		
Frequency(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting		
Attenuation	Auto		
Start Frequency	1000 MHz		
Stop Frequency	10th carrier harmonic		
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average		

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission t	est, the Spectrum An	alyzer was set with the follow	ving configurations:
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

Spurious Emission	n below 30MHz (9KHz to	o 30MHz)	
EUT:	ISAAC InControl tablet	Model No.:	TABIC1
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

■ Spurious Emission below 1GHz (30MHz to 1GHz)

All the modulation	n modes have been test	ed, and the worst result	was report as below:

EUT:	ISAAC InControl tablet	Model Name :	TABIC1
Temperature:	20 ℃	Relative Humidity:	48%
Pressure:	1010hPa	Test Mode:	Mode 1
Test Voltage :	DC 3.7V	-	

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	30.1054	11.99	18.84	30.83	40.00	-9.17	QP
V	122.4040	16.73	13.25	29.98	43.50	-13.52	QP
V	222.9502	16.82	12.02	28.84	46.00	-17.16	QP
V	308.9126	12.28	16.32	28.60	46.00	-17.40	QP
V	520.8882	12.59	22.32	34.91	46.00	-11.09	QP
V	818.8341	11.81	27.39	39.20	46.00	-6.80	QP
Remark							

Remark:

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit

Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark	
(1,, v)	(MHz)	(dBuV)	(dB) (dBuV/m)		(dBuV/m)	(dB)		
Н	90.2205	19.62	10.40	30.02	43.50	-13.48	QP	
Н	122.8340	16.88	13.26	30.14	43.50	-13.36	QP	
Н	222.9502	17.96	12.02	29.98	46.00	-16.02	QP	
Н	306.7536	18.30	16.25	34.55	46.00	-11.45	QP	
Н	372.0045	17.55	18.21	35.76	46.00	-10.24	QP	
H	520.8882	13.19	22.32	35.51	46.00	-10.49	QP	
Remark		al avalu Fact	or Moraia		(al limit			
72.0 dB	e Level= Readin	gLevel+ Fact	or, Margin	= Adsolute Lev	vei - Limit			
72.0 00						Limit:		
						Margir	r: —	
		F ====						
					4 5 V X	6	, and	
32		I	2	3		X mahamanda	moleman	
		MAN .	MARINA L	× ,	M. I. I. I. M.	4 Automation		
athen		Jun Mary	< MANA IN	and the street of	1 Why and a way why when a way when a w			
and the second s	W/m		2 Martin Martin	when a he had when the				
		ABAL'						
	WWWWWWWWWWWWWWW	19 17						
	man manager and the second	1P Y *						
-8								
	40 50 60	70 80	(MI		300 400 5	500 600 700		
-8			(MI		300 400 5	500 600 700	1000.000	
-8			(MI		300 400 5	500 600 700	1000.000	
-8			(MI		300 400 5	500 600 700	1000.000	
-8			(MI		300 400 5	500 600 700		
-8			(MI		300 400 5	500 600 700		
-8			(MI		300 400 5	500 600 700	1000.000	
-8			(MI		300 400 5	500 600 700	1000.000	
-8			(MI		300 400 5	500 600 700		
-8			(M1		300 400 5	500 600 700		
-8			(MI		300 400 5	500 600 700		
-8			(M		300 400 5	500 600 700		
-8			(M		300 400 5	500 600 700		
-8			(MI		300 400 5	<u>500</u> 600700		
-8			(MI		300 400 5	500 600 700		
-8			(M1	1z)	300 400 5	500 600 700		
-8			(MI		300 400 5	500 600 700		
-8			(MI	<u>+z</u>)	300 400 5	500 600 700		
-8			(Mi	<u></u>	300 400 5	500 600 700		
-8			(M		300 400 5	500 600 700		
-8			(M1	1z)	300 400 5	500 600 700		

EUT:		ISAAC	InControl 1	tablet	Mod	el No.:		TAE	BIC1		
Femperatu	re:	20 °C			Rela	tive Humid	ity:	48%	6		
Fest Mode:		Mode2/	/Mode3/Mo	ode4	Test	By:		Alle	n Liu		
			_								-
Frequenc y	Read Level	Cable loss	Antenna Factor	Prea Fac		Emission Level	Limit	ts	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dł	3)	(dBµV/m)	(dBµV	′/m)	(dB)		
			Low	Chan	nel (2	402 MHz)-/	Above ⁻	1G			
4804.389	63.88	5.21	35.59	44.	30	60.38	74.0	0	-13.62	Pk	Vertical
4804.389	42.02	5.21	35.59	44.	30	38.52	54.0	0	-15.48	AV	Vertical
7206.158	61.18	6.48	36.27	44.	60	59.33	74.0	0	-14.67	Pk	Vertical
7206.158	41.90	6.48	36.27	44.	60	40.05	54.0	0	-13.95	AV	Vertical
4804.220	63.87	5.21	35.55	44.	30	60.33	74.0	0	-13.67	Pk	Horizonta
4804.220	42.39	5.21	35.55	44.	30	38.85	54.0	0	-15.15	AV	Horizonta
7206.265	61.91	6.48	36.27	44.	52	60.14	74.00		-13.86	Pk	Horizonta
7206.265	41.35	6.48	36.27	44.	-	39.58	54.00		-14.42	AV	Horizonta
						440 MHz)-A	Above '	1G			
4880.524	63.55	5.21	35.66	44.	20	60.22	74.0	0	-13.78	Pk	Vertical
4880.524	43.86	5.21	35.66	44.	20	40.53	54.0	0	-13.47	AV	Vertical
7320.316	64.16	7.10	36.50	44.	43	63.33	74.0	0	-10.67	Pk	Vertical
7320.316	41.31	7.10	36.50	44.	43	40.48	54.0	0	-13.52	AV	Vertical
4880.417	62.27	5.21	35.66	44.		58.94	74.0	0	-15.06	Pk	Horizonta
4880.417	40.77	5.21	35.66	44.	20	37.44	54.0		-16.56	AV	Horizonta
7320.285	60.24	7.10	36.50	44.	-	59.41	74.0		-14.59	Pk	Horizonta
7320.285	43.14	7.10	36.50	44.		42.31	54.0		-11.69	AV	Horizonta
						480 MHz)-					
4960.533	63.72	5.21	35.52	44.		60.24	74.0		-13.76	Pk	Vertical
4960.533	41.39	5.21	35.52	44.		37.91	54.0		-16.09	AV	Vertical
7440.182	63.69	7.10	36.53	44.		62.72	74.0		-11.28	Pk	Vertical
7440.182	43.02	7.10	36.53	44.		42.05	54.0		-11.95	AV	Vertical
4960.377	62.09	5.21	35.52	44.		58.61	74.0		-15.39	Pk	Horizonta
4960.377	43.72	5.21	35.52	44.		40.24	54.0		-13.76	AV	Horizonta
7440.250	64.67	7.10	36.53	44.	60	63.70	74.0	0	-10.30	Pk	Horizonta
7440.250	45.28	7.10	36.53	44.	60	44.31	54.0	0	-9.69	AV	Horizonta

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

Spurious Emission	n in Restricted Band 231	0-2390MHz and 2483.	5-2500MHz						
EUT:	T: ISAAC InControl tablet Model No.: TABIC1								
Temperature:	20 ℃	Relative Humidity:	48%						
Test Mode:	Mode2/ Mode4	Test By:	Allen Liu						

Frequenc v	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
				GF	SK				
2310.00	65.39	2.97	27.80	43.80	52.36	74	-21.64	Pk	Horizontal
2310.00	45.15	2.97	27.80	43.80	32.12	54	-21.88	AV	Horizontal
2310.00	64.99	2.97	27.80	43.80	51.96	74	-22.04	Pk	Vertical
2310.00	44.21	2.97	27.80	43.80	31.18	54	-22.82	AV	Vertical
2390.00	65.58	3.14	27.21	43.80	52.13	74	-21.87	Pk	Vertical
2390.00	46.17	3.14	27.21	43.80	32.72	54	-21.28	AV	Vertical
2390.00	67.04	3.14	27.21	43.80	53.59	74	-20.41	Pk	Horizontal
2390.00	45.49	3.14	27.21	43.80	32.04	54	-21.96	AV	Horizontal
2483.50	64.20	3.58	27.70	44.00	51.48	74	-22.52	Pk	Vertical
2483.50	45.82	3.58	27.70	44.00	33.10	54	-20.90	AV	Vertical
2483.50	67.51	3.58	27.70	44.00	54.79	74	-19.21	Pk	Horizontal
2483.50	47.21	3.58	27.70	44.00	34.49	54	-19.51	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

UT:		ISA/	AC InCo	ntrol table	t Model N	No.:	-	TABIC1			
Temperature:	perature: 20 °C			Relative	Relative Humidity:			, D			
Test Mode:		Mod	le2/ Mod	e4	Test By		/	Allen Liu			
_			a							-	
Frequenc v		adin evel	Cable Loss	Antenn a	Preamp Factor	Emission Level	Lim	its	Margin	Detect or	0
(MHz)	(dB	βµV)	(dB)	dB/m	(dB)	(dBµ V/m)	(dE V/n		(dB)	Туре	Comment
3260	61	.21	4.04	29.57	44.70	50.12	74	4	-23.88	Pk	Vertical
3260	54	.61	4.04	29.57	44.70	43.52	54	4	-10.48	AV	Vertical
3260	63	.02	4.04	29.57	44.70	51.93	74	4	-22.07	Pk	Horizontal
3260	54	.86	4.04	29.57	44.70	43.77	54	4	-10.23	AV	Horizontal
3332	61	.71	4.26	29.87	44.40	51.44	74	4	-22.56	Pk	Vertical
3332	54	.65	4.26	29.87	44.40	44.38	54	4	-9.62	AV	Vertical
3332	62	.55	4.26	29.87	44.40	52.28	74	4	-21.72	Pk	Horizontal
3332	49	.64	4.26	29.87	44.40	39.37	54	4	-14.63	AV	Horizontal
17797	42	.79	10.99	43.95	43.50	54.23	74	4	-19.77	Pk	Vertical
17797	32	.26	10.99	43.95	43.50	43.70	54	4	-10.30	AV	Vertical
17788	42	.06	11.81	43.69	44.60	52.96	74	4	-21.04	Pk	Horizontal
17788	32	.85	11.81	43.69	44.60	43.75	54	4	-10.25	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \ge 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	ISAAC InControl tablet	Model No.:	TABIC1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Channel	Frequency (MHz)	6dB bandwidth (kHz)	Limit (kHz)	Result
Low	2402	695.5	≥500	Pass
Middle	2440	695.1	≥500	Pass
High	2480	700.5	≥500	Pass

6dB Bandwidth plot on ch	annel 39		1Mbps	
<mark>Agilent Spectrum Analyzer - Occupied BW</mark> ມິຊິ R L RF 50 Ω AC	Center Freq: 2,4800 Trig: Free Run #Atten: 30 dB	Avg Hold:>10/10	2 AM May 13, 2019 td: None levice: BTS	
10 dB/div Ref 20.00 dBm Log			Clear Writ Averag Max Ho	je
Center 2.48 GHz #Res BW 100 kHz	#VBW 3001	KHZ S	Span 3 MHz weep 1 ms	
Occupied Bandwidth	Total P			
1.U4 Transmit Freq Error x dB Bandwidth	36 MHz 2.596 kHz OBW F 700.5 kHz x dB	ower 99.00 % -6.00 dB	Detecte Peak Auto <u>Ma</u>	•
MSG		STATUS		

7.4 PEAK OUTPUT POWER

7.4.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

7.4.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

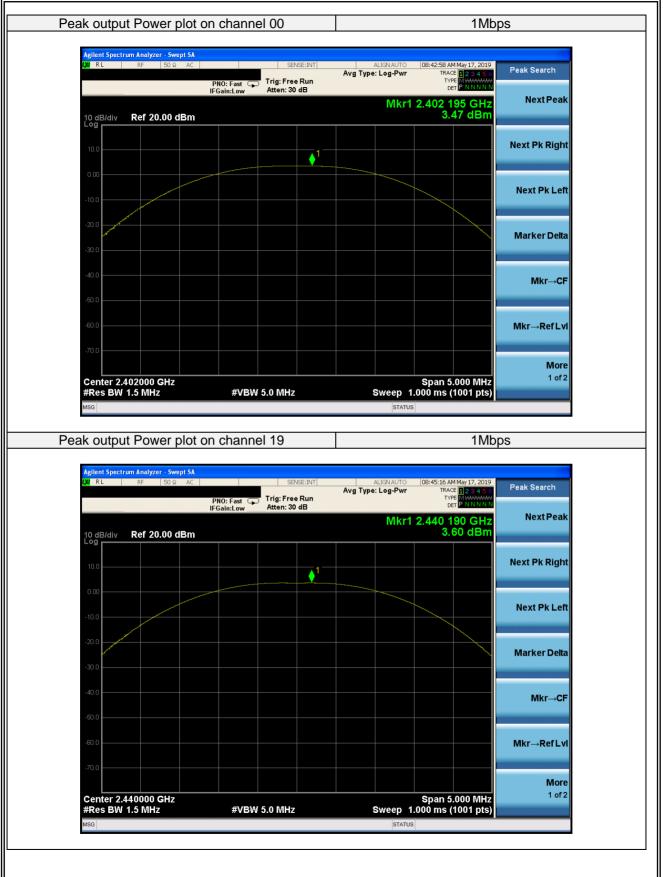
7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure


The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.4.6 Test Results

EUT:	ISAAC InControl tablet	Model No.:	TABIC1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Test Channel	Frequency (MHz)	Power Setting	Peak Output Power (dBm)	LIMIT (dBm)	Verdict		
1Mbps							
00	2402	Default	3.47	30	PASS		
19	2440	Default	3.60	30	PASS		
39	2480	Default	3.80	30	PASS		

Peak output Power plot on channel 39
Aglent Spectrum Analyzer - Swept SA Aug RL RF Do 0, 460 Peak Search PND: Fast Trig: Free Run Avg Type: Log-Pwr Trace Park Peak Search Next Peak Searce Next Peak Next Peak 10 dB/div Ref 20.00 dBm 3.80 dBm Next Pk Right 00 dB/div Ref 20.00 dBm Next Pk Right Next Pk Right 00 dB/div Ref 20.00 dBm Marker Delta Marker Delta 00 dB/div Ref 20.00 dBm Marker Delta Marker Delta 00 dB/div Ref 20.00 dBm Marker Delta Marker Delta 00 dB/div Ref 20.00 dBm Marker Delta Marker Delta 00 dB/div Ref 20.00 dBm Span 5.000 MHz More 00 dB/div Ref 20.00 GHz #VEW 5.0 MHz Sweep 1.000 ms (1001 pts)
DP EP 50.2 AC SENSE INT ALKINAUTO Desk add Mar 17, 2019 Peak Search Indextor in the search in the
PNO: Fast Trig: Free Run Mrg Type Log+ W Trig: Free Run Next Peak Io gE/div Ref 20.00 dBm Image 100 gB/div Ref 20.00 dBm Image 100 gB/div Next Pk Right Io gE/div Ref 20.00 dBm Image 100 gB/div Image 100 gB/div Image 100 gB/div Next Pk Right Image 100 gB/div Ref 20.00 dBm Image 100 gB/div Image 100 gB/div Image 100 gB/div Next Pk Right Image 100 gB/div Next Pk Right Image 100 gB/div Next Pk Left Image 100 gB/div Image 100 gB/div Image 100 gB/div Image 100 gB/div Image 100 gB/div Image 100 gB/div Image 100 gB/div Image 100 gB/div Image 100 gB/div Image 100 gB/div Image 100 gB/div Image 100 gB/div Image 100 gB/div Image 100 gB/div Image 100 gB/div Image 100 gB/div Image 100 gB/div Image 100 gB/div Image 100 gB/div Image 100 gB/div Image 100 gB/div Image 100 gB/div Image 100 gB/div Image 100 gB/div Image 100 gB/div
Mkr1 2.480 170 GHz 3.80 dBm Next Peak 100 dE/div Ref 20.00 dBm 1 1 1 Next Pk Right 100 div 1 1 1 1 Next Pk Right 100 div 1 1 1 Next Pk Right 100 div 1 1 1 Next Pk Left 100 div 1 1 1 1 Next Pk Left 100 div 1 1 1 1 Next Pk Left 100 div 1 1 1 1 Next Pk Left 100 div 1 1 1 1 Next Pk Left 101 div 1 1 1 1 Next Pk Left 101 div 1 1 1
Log Next Pk Right 100 1 101 1 101 1 101 1 101 1 101 1 101 1 101 1 101 1 101 1 101 1 101 1
000 0
000 Image: Constraint of the second seco
-100 Next Pk Left 200 Marker Delta -000 Marker Delta -000 Marker Delta -000 Mkr→CF -000 More -000 Nore 1 of 2 Span 5.000 MHz
-100 -100 Marker Delta -200 -100 Marker Delta -300 -100 -100 -400 -100 -100 -400 -100 -100 -400 -100 -100 -400 -100 -100 -400 -100 -100 -400 -100 -100 -400 -100 -100 -400 -100 -100 -400 -100 -100 -400 -100 -100 -400 -100 -100 -400 -100 -100 -400 -100 -100 -400 -100 -100 -400 -100 -100 -400 -100 -100 -400 -1000 -1000 -400 -1000 -1000 -400 -1000 -1000 -400 -1000 -1000 -400 -1000 -1000 -400 -1000 -1000 -400
-30.0
-300 -40.0
-50.0
-50.0
60.0 Mkr→Ref Lvl .70.0 More .70.0 More .70.0 More .70.0 1 of 2 #Res BW 1.5 MHz #VBW 5.0 MHz Sweep 1.000 ms (1001 pts)
-700 Center 2.480000 GHz #Res BW 1.5 MHz #VBW 5.0 MHz Sweep 1.000 ms (1001 pts)
Center 2.480000 GHz #Res BW 1.5 MHz #VBW 5.0 MHz Sweep 1.000 ms (1001 pts)
Center 2.480000 GHz Span 5.000 MHz 1 of 2 #Res BW 1.5 MHz #VBW 5.0 MHz Sweep 1.000 ms (1001 pts)
#Res BW 1.5 MHz #VBW 5.0 MHz Sweep 1.000 ms (1001 pts)

7.5 POWER SPECTRAL DENSITY

7.5.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.5.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

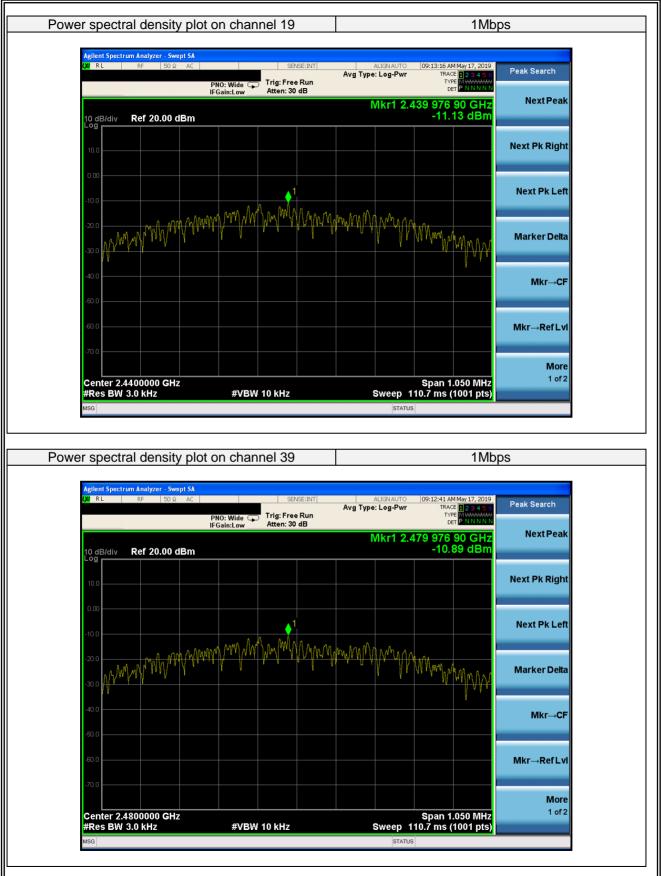
The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.


- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5*DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.5.6 Test Results

EUT:	ISAAC InCo				TABIC1	
emperature:	20 ℃		Relative Hu	midity:	48%	
Fest Mode:	Mode2/Mode	e3/Mode4	Test By: Allen Liu			
Test Channel	Frequency (MHz)		⁻ Density /3KHz)	(dl	Limit 3m/3KHz)	Verdict
	· · · · · · · · · · · · · · · · · · ·	· · · ·	1Mbps			
00	2402		1.16		8	PASS
19	2440		1.13		8	PASS
39	2480	-10	0.89		8	PASS
Power spe	ectral density plot or	n channel 0	0		1Mbps	3
Agilent	Spectrum Analyzer - Swept SA RF 50 Ω AC					
	PN		ree Run	ALIGNAUTO Ype: Log-Pwr	09:14:00 AM May 17, 2019 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Peak Search
10 dB/				Mkr1 2.4	01 976 90 GHz -11.16 dBm	Next Peak
Log - 10.0 - 0.00 -						Next Pk Right
-10.0 - -20.0 -	when why any appropriate	MMMMMM	1 MAMMANAMANAMANA	MARMAA	-A-	Next Pk Left
-30.0	WW WW WWW			,	Maynapapa	Marker Delta
-50.0 -						Mkr→CF Mkr→RefLvl
-70.0 —						
Cent	er 2.4020000 GHz				Span 1.050 MHz	More 1 of 2
	BW 3.0 kHz	#VBW 10 kHz	Z	Sweep 11	0.7 ms (1001 pts)	
MSG				STATUS		

7.6 CONDUCTED BAND EDGE MEASUREMENT

7.6.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.6.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

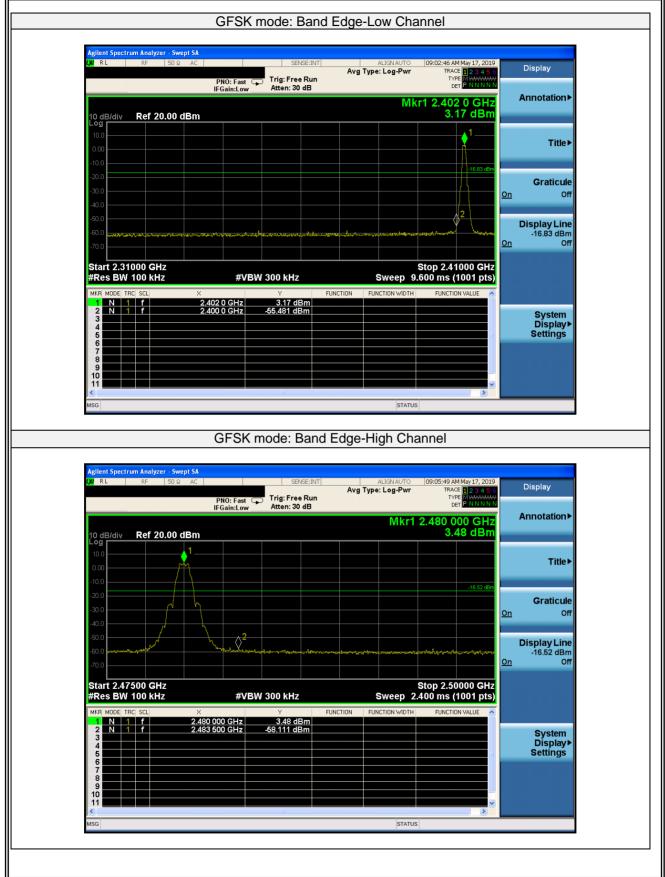
The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.


Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.6.6 Test Results

EUT:	ISAAC InControl tablet	Model No.:	TABIC1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Allen Liu

7.7 SPURIOUS RF CONDUCTED EMISSIONS

7.7.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

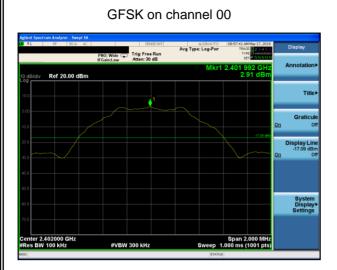
7.7.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.3 Test Setup

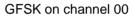
Please refer to Section 6.1 of this test report.

7.7.4 Test Procedure

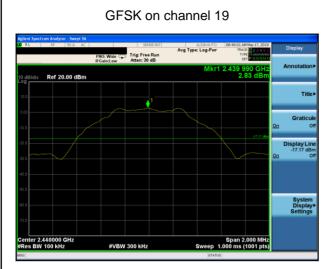

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequeny range from 9KHz to 26.5GHz.


7.7.5 Test Results

Remark: The measurement frequency range is from 9KHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.


Test Plot

GFSK on channel 00

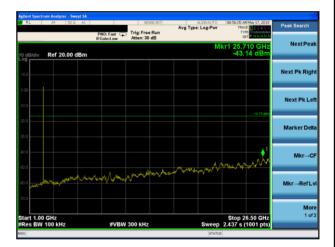

NO RL	RF 50 ₽ AC	PNO: Fast	e Run	ALIGNAUTO Type: Log-Pwr	08:59:00 AM May 17, 2019 TRACE 2 3 4 5 6 TVPE	Peak Search
10 dB/div	Ref 20.00 dBm	IFGain:Low Atten: 30) dB	M	kr1 931.13 MHz -59.91 dBm	NextPea
10.0						Next Pk Rig
-10.0						Next Pk Le
30.0					-17.09 dBm	Marker Del
40.0						Mkr→C
-60.0 44 66/ 04	while providence of the second second	an a	ormanyh,filsyd ^w erethol	aliyHaabadaaan	1 New James all Science and a	Mkr→RefL
-70.0 Start 30.0	0 MHz 100 kHz	#VBW 300 kHz		Sween 0	Stop 1.0000 GHz 2.73 ms (1001 pts)	Mo 1 of
150	100 KH2	#4B44 500 KH2		STATUS		

Test Plot

GFSK on channel 19

GFSK on channel 19

N RL	RF 50		PNO: Fast 🖵		Run		ALIGNAUTO E: Log-Pwr	TRAI	MMay 17, 2019 CE 1 2 3 4 5 6 PE NNNNN	Peak Search
10 dB/div	Ref 20.00		Guineow				M	kr1 425. -58.	76 MHz 83 dBm	NextPea
10.0										Next Pk Rigi
-10.0										Next Pk Le
-20.0									-17.17 dBri	Marker Del
-40.0										Mkr→C
-60.0	40.00 magazilianai	well manth at the	hannaribatani	∳ ¹ ake-tunpercen	i-menera	an blandar sono	والعلمه معصايهم	abballheine ferei	n water at	Mkr→RefL
Start 30.0			45/7014	/ 300 kHz			0	Stop 1.0	0000 GHz 1001 pts)	Mor 1 of



Test Plot

GFSK on channel 39

GFSK on channel 39

		PNO: Fast	Trig: Free Run Atten: 30 dB	Avg Type: Log-Pwr	TRACE 123456 TYPE NUMBER OF PANNEN	Peak Search
10 dB/div	Ref 20.00 dBr			Μ	kr1 947.62 MHz -59.57 dBm	Next Pea
10.0						Next Pk Rig
0.00 -10.0						Next Pk Le
-20.0					-16.79 dbn	Marker De
-40.0						Mkr→C
-50.0 -60.0	Water and the second states and the second	hannanggi gina ginanalah	stringen and south states	General Streements	1 Merculatory materia	Mkr→RefL
-70.0 Start 30.0 #Res BW			300 kHz		Stop 1.0000 GHz 92.73 ms (1001 pts)	Mo 1 of

7.8 ANTENNA APPLICATION

7.8.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.8.2 Result

The EUT antenna is permanent attached FPCB antenna (Gain: 2dBi). It comply with the standard requirement.

END OF REPORT