

Test Report

Test report no.: 22077597-28000-0 Date of issue: 2022-09-27

Test result: The test item - passed - and complies with below listed standards.

Applicant

RFbeam Microwave GmbH

Manufacturer

RFbeam Microwave GmbH

Test Item

K-MC1

RF-Spectrum Testing according to:

FCC 47 CFR Part 15

Radio Frequency Devices, Subpart C - §15.245 Operation within the bands 902-928 MHz, 2435-2465 MHz, 5785-5815 MHz, 10500–10550 MHz and 24075-24175 MHz

Tested by (name, function, signature)

Sebastian Janoschka Lab Manager RF

Approved by (name, function, signature)

Andreas Bender
Deputy Managing Director

signature

signature

Applicant and Test item details		
Applicant	RFbeam Microwave GmbH Schuppisstrasse 7 9016, St. Gallen, Germany Phone: +41 71 245 33 80 Fax: +41 71 245 33 81	
Manufacturer	RFbeam Microwave GmbH Schuppisstrasse 7 9016, St. Gallen, Germany	
Test item description	24 GHz Doppler transceiver	
Model/Type reference	odel/Type reference K-MC1	
FCC ID	2ASYV-K-MC1	
Frequency	24.05 GHz – 24.250 GHz	
Antenna	Dual 30 patch antenna	
Power supply	4.8 V – 5.2 V DC	
Temperature range	-20 °C to +85 °C	

Disclaimer and Notes

The content of this test report relates to the mentioned test sample(s) only. Without a written permit of IBL-Lab GmbH, this test report shall not be reproduced, except in full.

The last valid version is available at TAMSys®.

Copyright ©: All rights reserved by IBL-Lab GmbH

Within this test report, a \boxtimes point / \square comma is used as a decimal separator. If otherwise, a detailed note is added adjected to its use.

IBL-Lab GmbH does not take test samples. The samples used for testing are provided by the applicant.

Decision rule:

Decision rule based on simple acceptance without guard bands, binary statement, based on mutually agreed uncertainty tolerances with expansion factor k=2 according to ILAC-G8:09/2019

IBL-Lab GmbH 2 / 52

TABLE OF CONTENTS

1

1	TABLE OF CONTENTS	3
2	GENERAL INFORMATION	4
2.1	Administrative details	4
2.2	Possible test case verdicts	4
2.3	Observations	5
2.4	Opinions and interpretations	5
2.5	Revision history	5
2.6	Further documents	5
3	ENVIRONMENTAL & TEST CONDITIONS	6
3.1	Environmental conditions	6
3.2	Normal and extreme test conditions	6
4	TEST STANDARDS AND REFERENCES	6
5	EQUIPMENT UNDER TEST (EUT)	7
5.1	Product description	7
5.2	Description of test item	7
5.3	Technical data of test item	7
5.4	Additional information	7
6	SUMMARY OF TEST RESULTS	8
7	TEST RESULTS	9
7.1	Occupied bandwidth	9
7.2	Transmitter frequency stability	11
7.3	Field strength of emissions (wanted signal)	18
7.4	Field strength of emissions (spurious and harmonics)	20
7.5	AC Conducted Emissions	28
8	Test Setup Description	31
8.1	Semi Anechoic Chamber with Ground Plane	32
8.2	Fully Anechoic Chamber	34
8.3	Radiated measurements > 18 GHz	36
8.4	Radiated measurements > 50 GHz	36
9	Measurement procedures	
9.1	Radiated spurious emissions from 9 kHz to 30 MHz	
9.2	Radiated spurious emissions from 30 MHz to 1 GHz	39
9.3	Radiated spurious emissions from 1 GHz to 18 GHz	40
9.4	Radiated spurious emissions above 18 GHz	41
9.5	AC conducted Emissions	
10	MEASUREMENT UNCERTAINTIES	43
Annex 1	EUT Photographs, external	
Annex 2	EUT Photographs, internal	47
Annex 3	Test Setup Photographs	49

2 GENERAL INFORMATION

2.1 Administrative details	S	
Testing laboratory	IBL-Lab GmbH Heinrich-Hertz-Allee 7 66386 St. Ingbert / Germany Fon: +49 6894 38938-0 Fax: +49 6894 38938-99 URL: www.ib-lenhardt.de E-Mail: info@ib-lenhardt.de	
Accreditation The testing laboratory is accredited by Deutsche Akking GmbH (DAkkS) in compliance with DIN EN ISO/IEC Scope of testing and registration number:		
	Electronics	D-PL-21375-01-01
	Electromagnetic Compatibility	D-PL-21375-01-02
	 Electromagnetic Compatibility and Telecommunication (FCC requirements) Testing Laboratory Designation Number Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards ISED Company Number 	D-PL-21375-01-03 DE0024 D-PL-21375-01-04 27156
	Testing Laboratory CAB Identifier	DE0020
	Telecommunication (TC) Website DAkkS: https://www.dakks.de/ The Deutsche Akkreditierungsstelle GmbH (Dathe ILAC Mutual Recognition Arrangement)	D-PL-21375-01-05 AkkS) is also a signatory to
Testing location	IBL-Lab GmbH	
	Heinrich-Hertz-Allee 7 66386 St. Ingbert / Germany	
Date of receipt of test samples	2022-09-09	
Start – End of tests	2022-09-12 - 2022-09-21	

2.2 Possible test case verdicts	
Test sample meets the requirements	P (PASS)
Test sample does not meet the requirements	F (FAIL)
Test case does not apply to the test sample	N/A (Not applicable)
Test case not performed	N/P (Not performed)

IBL-Lab GmbH 4/52

2.3 Observations

No additional observations other than the reported observations within this test report have been made.

2.4 Opinions and interpretations

No appropriate opinions or interpretations according ISO/IEC 17025:2017 clause 7.8.7 are within this test report.

2.5 Revision history

-0 Initial Version

2.6 Further documents

List of further applicable documents belonging to the present test report:

no additional documents –

IBL-Lab GmbH 5 / 52

3 ENVIRONMENTAL & TEST CONDITIONS

3.1 Environmental conditions		
Temperature	20°C ± 5°C	
Relative humidity	25-75% r.H.	
Barometric Pressure	860-1060 mbar	
Power supply	230 V AC ± 5%	

3.2 Normal and extreme test conditions			
	minimum	nominal	maximum
Temperature	-20 °C	20 °C	+85 °C
Relative humidity	-/-	45 % r.h.	-/-
Power supply	4.8 V DC	5.0 V DC	5.2 V DC

4 TEST STANDARDS AND REFERENCES

Test standard (accredited)	Description
FCC 47 CFR Part 15	Radio Frequency Devices, Subpart C -
	§15.245 Operation within the bands 902-928 MHz, 2435-2465 MHz,
	5785-5815 MHz, 10500–10550 MHz and 24075-24175 MHz

Reference	Description
	American National Standard for Methods of Measurement of Radio- Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

IBL-Lab GmbH 6 / 52

5 EQUIPMENT UNDER TEST (EUT)

5.1 Product description

24 GHz Doppler transceiver

5.2 Description of test item		
Model name*	K-MC1	
Serial number*	L2202n00864	
PCB identifier*	K-MC1-RFB	
Hardware status*	A1	
Software status*	-	

^{*:} as declared by applicant

5.3 Technical data of test item			
Operational frequency band*	24.050 GHz – 24.25 GHz		
Type of radio transmission*	Continuous wave		
Modulation type*	Continuous wave		
Number of channels*	1		
Channel bandwidth*	<200 MHz		
Channel spacing*	NA		
Receiver category*	NA		
Receiver bandwidth*	NA		
Duty cycle*	NA		
Antenna*	Dual 30 patch antenna		
Power supply*	4.8 V – 5.2 V DC		
Temperature range*	-20 °C to +85 °C		

^{*:} as declared by applicant

5.4 Additional information	
Model differences	-
Ancillaries tested with	-
Additional equipment used for testing	-

IBL-Lab GmbH 7 / 52

S SUMMARY OF TEST RESULTS

Test specification

FCC 47 CFR Part 15

Clause	Requirement / Test case	Test Conditions	Result / Remark	Verdict
§2.1049	Occupied bandwidth (99% bandwidth)	Normal	300.164 kHz	Р
§15.215(c)	Transmitter frequency stability	Normal/Extreme	< limit	Р
§15.245(b)	Field strength of emissions (wanted signal)	Normal	116.77 dBµV	Р
§15.245(b) §15.209(a)	Field strength of emissions (spurious & harmonics)	Normal	< limit	Р
§15.207	Conducted limits	Normal	< limit	Р

Notes

FCC's Millimeter Wave Test Procedures:

I. A radiated method of measurements in order to demonstrate compliance with the various regulatory requirements has been chosen in consideration of test equipment availability and the limitations of many external harmonic mixers. A conducted method of measurement could be employed if EUT and mixer waveguides both are accessible and of the same type (WG number) and if waveguide sections and transitions can be found. Another potential problem is that the peak power output may exceed the +20 dBm input power limit of many commercially available mixers. For these reasons a radiated method is preferred.

Comments and observations

– none –

IBL-Lab GmbH 8 / 52

■ INGENIEURBÜRO
■ LENHARDT

TEST RESULTS

7.1 Occupied bandwidth

Description

7

§2.1049 Measurements required: Occupied bandwidth.

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.

Limits

The radar device's occupied bandwidth (i.e. 99% emission bandwidth) shall be contained in the frequency band.

Test procedure

ANSI C63.10, 6.9.3

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

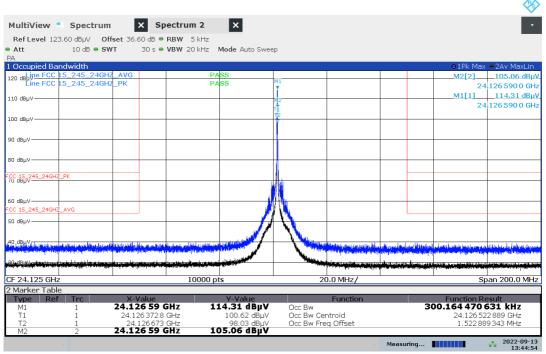
The following procedure shall be used for measuring 99% power bandwidth:

- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

Note

Measurements with the peak detector are also suitable to demonstrate compliance of an EUT, as long as the required resolution bandwidth is used, because peak detection will yield amplitudes equal to or greater than amplitudes measured with RMS detector. The measurement data from a spectrum analyser peak detector will represent the worst-case results (see ANSI C63.10).

Test setup: 6.3 (test distance correction factor of 20dB/decade is already considered in the plots / result table)


Test results:

. oot i oodiitoi				
EUT mode	Test distance	f∟ [GHz]	f _H [GHz]	99% OBW [kHz]
Normal	2 m	24.1264	24.1267	300.164

IBL-Lab GmbH 9 / 52

Plot no. 1: 99% OBW, Peak detector

01:44:54 09/13/2022

IBL-Lab GmbH 10 / 52

7.2 Transmitter frequency stability

Description

TR no.: 22077597-28000-0

§2.1055 Measurements required: Frequency stability.

- (a) The frequency stability shall be measured with variation of ambient temperature as follows:
- (1) From -30° to + 50° centigrade for all equipment except that specified in paragraphs (a) (2) and (3) of this section.
- (b) Frequency measurements shall be made at the extremes of the specified temperature range and at intervals of not more than 10° centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. The short term transient effects on the frequency of the transmitter due to keying (except for broadcast transmitters) and any heating element cycling normally occurring at each ambient temperature level also shall be shown. Only the portion or portions of the transmitter containing the frequency determining and stabilizing circuitry need be subjected to the temperature variation test.
- (d) The frequency stability shall be measured with variation of primary supply voltage as follows:
- (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
- (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.
- (3) The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.

Limits

The radar device's occupied bandwidth (i.e. 99% emission bandwidth) shall be contained in the frequency band.

Test procedure

ANSI C63.10, 6.9.3

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

The following procedure shall be used for measuring 99% power bandwidth:

- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

Note

Measurements with the peak detector are also suitable to demonstrate compliance of an EUT, as long as the required resolution bandwidth is used, because peak detection will yield amplitudes equal to or greater than

IBL-Lab GmbH 11 / 52

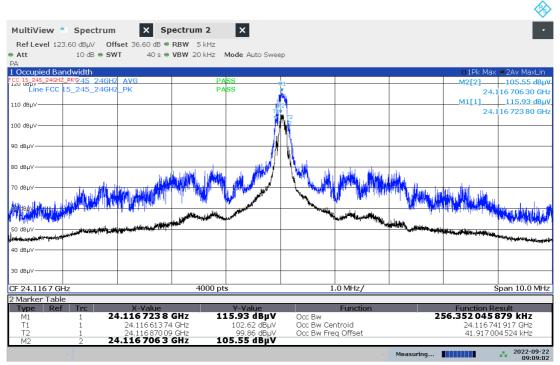
amplitudes measured with RMS detector. The measurement data from a spectrum analyser peak detector will represent the worst-case results (see ANSI C63.10).

Test setup: 8.3 (EUT placed in climatic chamber)


Test results

EUT mode	Temperature / Voltage	f∟ [GHz]	f _H [GHz]	99% OBW [kHz]
	T _{nom} / V _{nom}	24.12489	24.12514	244.433
	T _{nom} / V _{min}	24.11661	24.11687	256.352
	T _{nom} / V _{max}	24.13074	24.13103	278.182
	T _{min} / V _{nom}	24.13048	24.13072	243.607
Normal	T _{min} / V _{min}	24.12414	24.12433	184.799
	T _{min} / V _{max}	24.13689	24.13709	201.451
	T _{max} / V _{nom}	24.13230	24.13257	269.311
	T _{max} / V _{min}	24.12521	24.12548	263.703
	T _{max} / V _{max}	24.13954	24.13982	286.282

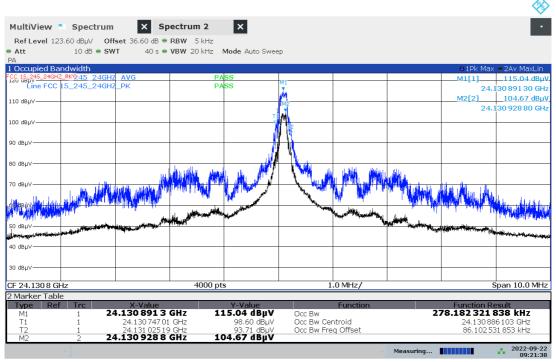
IBL-Lab GmbH 12 / 52



Plot no. 2: 99% OBW, Peak detector, Normal mode, Tnom, Vnom

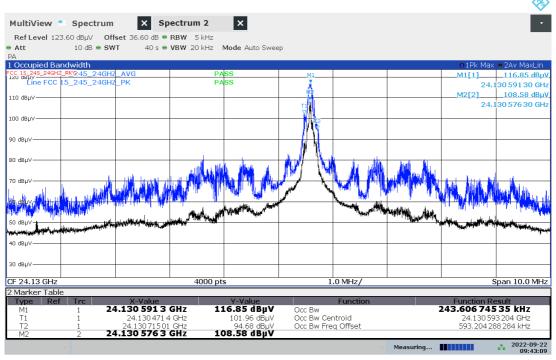
09:05:25 09/22/2022

Plot no. 3: 99% OBW, Peak detector, Normal mode, Tnom, Vmin



09:09:02 09/22/2022

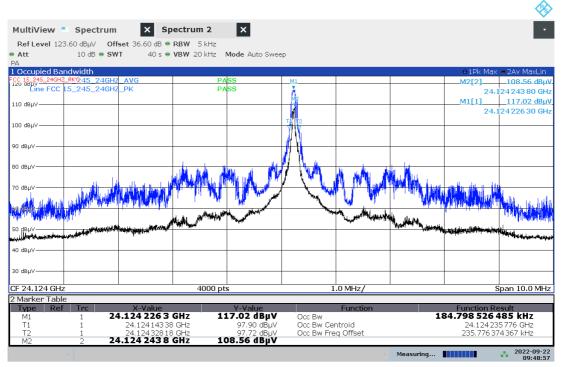
IBL-Lab GmbH 13 / 52



Plot no. 4: 99% OBW, Peak detector, Normal mode, Tnom, Vmax

09:21:39 09/22/2022

Plot no. 5: 99% OBW, Peak detector, Normal mode, Tmin, Vnom



09:43:10 09/22/2022

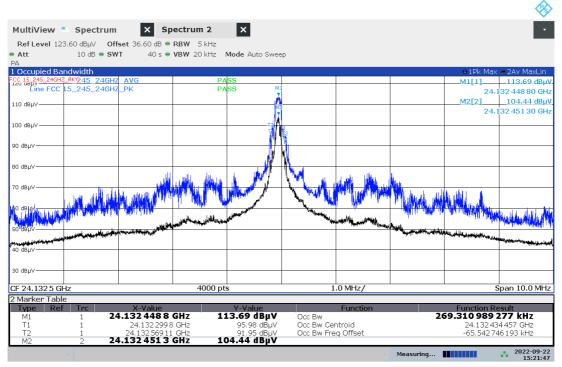
IBL-Lab GmbH 14 / 52



Plot no. 6: 99% OBW, Peak detector, Normal mode, Tmin, Vmin

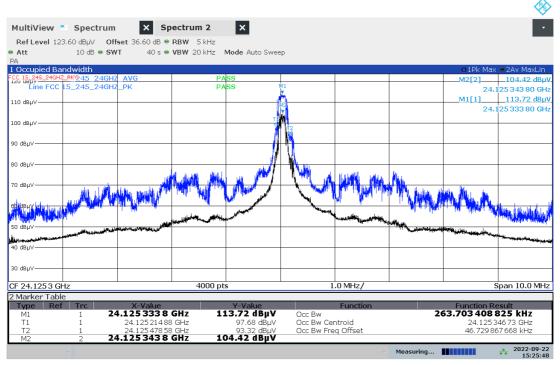
09:48:57 09/22/2022

Plot no. 7: 99% OBW, Peak detector, Normal mode, Tmin, Vmax



09:39:34 09/22/2022

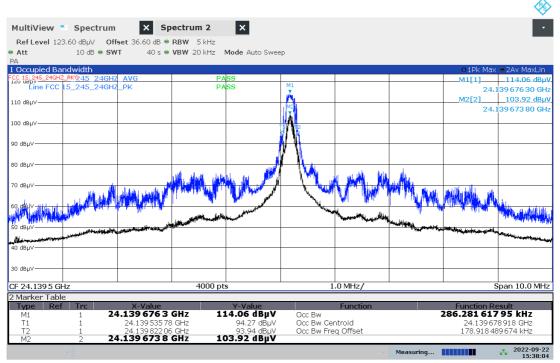
IBL-Lab GmbH 15 / 52



Plot no. 8: 99% OBW, Peak detector, Normal mode, T_{max}, V_{nom}

03:21:47 09/22/2022

Plot no. 9: 99% OBW, Peak detector, Normal mode, $T_{\text{max}},\,V_{\text{min}}$



03:25:49 09/22/2022

IBL-Lab GmbH 16 / 52

Plot no. 10: 99% OBW, Peak detector, Normal mode, T_{max} , V_{max}

03:38:05 09/22/2022

IBL-Lab GmbH 17 / 52

7.3 Field strength of emissions (wanted signal)

Description / Limits

§15.245 (b) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental	Field strength of harmonics
902 – 928 MHz	500 mV/m (114 dBμV/m)	1.6 mV/m (64 dBµV/m)
2435 – 2465 MHz	500 mV/m (114 dBμV/m)	1.6 mV/m (64 dBµV/m)
5785 – 5815 MHz	500 mV/m (114 dBμV/m)	1.6 mV/m (64 dBµV/m)
10500 – 10550 MHz	2500 mV/m (128 dBμV/m)	25 mV/m (88 dBµV/m)
24.075 – 24.175 GHz	2500 mV/m (128 dBμV/m)	25 mV/m (88 dBµV/m)

§15.245 (b)(2) Field strength limits are specified at a distance of 3 meters.

Test procedure

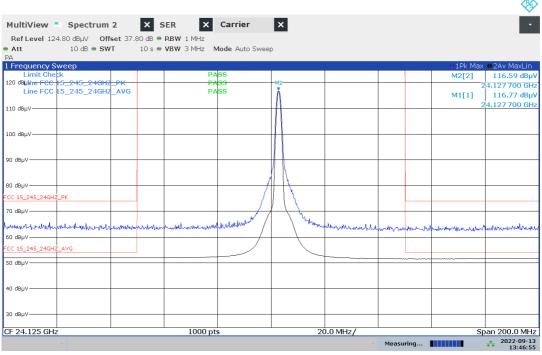
§15.31 (c) Except as otherwise indicated in §15.256, for swept frequency equipment, measurements shall be made with the frequency sweep stopped at those frequencies chosen for the measurements to be reported. §15.31 (m) Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table:

Frequency range	Number of frequencies	Location
< 1MHz bandwidth	1	middle
1 – 10 MHz bandwidth	2	1 near bottom and 1 near top
> 10 MHz bandwidth	3	1 near bottom / middle / top

§15.35 (b) Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1 MHz. When average radiated emission measurements are specified in this part, including average emission measurements below 1000 MHz, there also is a limit on the peak level of the radio frequency emissions. Unless otherwise specified, e.g.,see §§15.250, 15.252, 15.253(d), 15.255, 15.256, and 15.509 through 15.519, the limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device, e.g., the total peak power level. Note that the use of a pulse desensitization correction factor may be needed to determine the total peak emission level. The instruction manual or application note for the measurement instrument should be consulted for determining pulse desensitization factors, as necessary.

§15.35 (c) Unless otherwise specified, e.g., §§15.255(b), and 15.256(l)(5), when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to Supplier's Declaration of Conformity.

Test setup: 6.3 (test distance correction factor of 20dB/decade is already considered in the plots / result table)


Test results

EUT mode	Test distance	Frequency (GHz)	AVG field strength [dBµV/m]	PK field strength [dΒμV/m]
Normal	2 m	24.1277	116.77	116.59

IBL-Lab GmbH 18 / 52

Plot no. 11: Peak / Average field strength, normal mode

01:46:56 09/13/2022

IBL-Lab GmbH 19 / 52

7.4 Field strength of emissions (spurious and harmonics)

Description / Limits

§15.249 (a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental	Field strength of harmonics
902 – 928 MHz	500 mV/m (114 dBμV/m)	1.6 mV/m (64 dBµV/m)
2435 – 2465 MHz	500 mV/m (114 dBμV/m)	1.6 mV/m (64 dBµV/m)
5785 – 5815 MHz	500 mV/m (114 dBμV/m)	1.6 mV/m (64 dBµV/m)
10500 – 10550 MHz	2500 mV/m (128 dBµV/m)	25 mV/m (88 dBµV/m)
24.075 – 24.175 GHz	2500 mV/m (128 dBµV/m)	25 mV/m (88 dBµV/m)

§15.245 (b)(2) Field strength limits are specified at a distance of 3 meters.

§15.245 (b)(3) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation:

Frequency	Field Strength	Measurement distance
0.009 – 0.490 MHz	2400/F[kHz] μV/m	300 m
0.490 – 1.705 MHz	24000/F[kHz] μV/m	30 m
1.705 – 30.0 MHz	30.0 μV/m / 29.5 dBμV/m	30 m
30 – 88 MHz	100 μV/m / 40.0 dBμV/m	3 m
88 – 216 MHz	150 μV/m / 43.5 dBμV/m	3 m
216 – 960 MHz	200 μV/m / 46.0 dBμV/m	3 m
960 – 100 000 MHz	500 μV/m / 54.0 dBμV/m	3 m

§15.249 (e) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

Test procedure

§15.31 (c) Except as otherwise indicated in §15.256, for swept frequency equipment, measurements shall be made with the frequency sweep stopped at those frequencies chosen for the measurements to be reported. §15.31 (m) Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table:

Frequency range	Number of frequencies	Location
< 1MHz bandwidth	1	middle
1 – 10 MHz bandwidth	2	1 near bottom and 1 near top
> 10 MHz bandwidth	3	1 near bottom / middle / top

§15.35 (b) Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1 MHz. When average radiated emission measurements are specified in this part, including average emission measurements below 1000 MHz, there also is a limit on the peak level of the radio frequency emissions. Unless otherwise specified, e.g. see §§15.250, 15.252, 15.253(d), 15.255, 15.256, and 15.509 through 15.519, the limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device, e.g., the total peak power level. Note that the use of a pulse desensitization correction factor may be needed to determine the total peak emission level. The instruction manual or application note for the measurement instrument should be consulted for determining pulse desensitization factors, as necessary.

IBL-Lab GmbH 20 / 52

§15.35 (c) Unless otherwise specified, e.g., §§15.255(b), and 15.256(l)(5), when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to Supplier's Declaration of Conformity.

Calculation of the far field distance (Rayleigh distance):

The aperture dimensions of these horn antennas shall be small enough so that the measurement distance in meters is equal to or greater than the Rayleigh distance (i.e. $R_m = 2D^2 / \lambda$), where D is the largest linear dimension (i.e. width or height) of the antenna aperture in m and λ is the free-space wavelength in meters at the frequency of measurement.

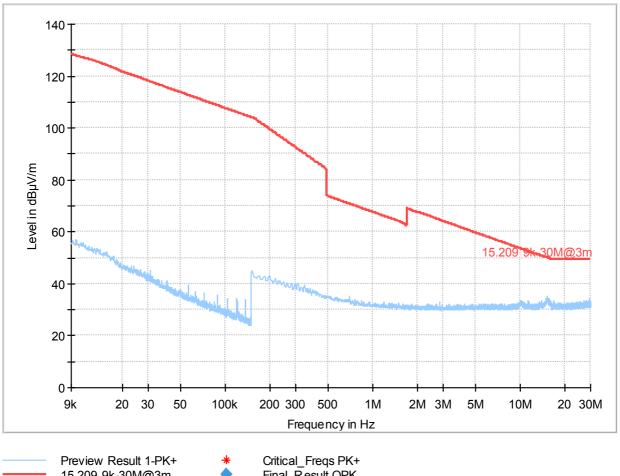
Antenna type	Frequency range [GHz]	D [m]	Highest frequency in use [GHz]	Far field distance R _m [m]
20240-20	17.6 – 26.7	0.0520	26.5	0.478
22240-20	26.4 – 40.1	0.0342	40	0.312
23240-20	33.0 - 50.1	0.0280	50	0.261
24240-20	39.3 – 59.7	0.0230	60	0.212
25240-20	49.9 – 75.8	0.0185	75	0.171
26240-20	60.5 – 91.5	0.0150	90	0.135
27240-20	73.8 – 112	0.0124	110	0.113

Typical test distances

Up to 18 GHz: 3.00 m 18 – 50 GHz: 1.0 m 50 – 110 GHz: 0.25 m In-band / OOB: 2 m

Test setup: 6.1 - 6.4

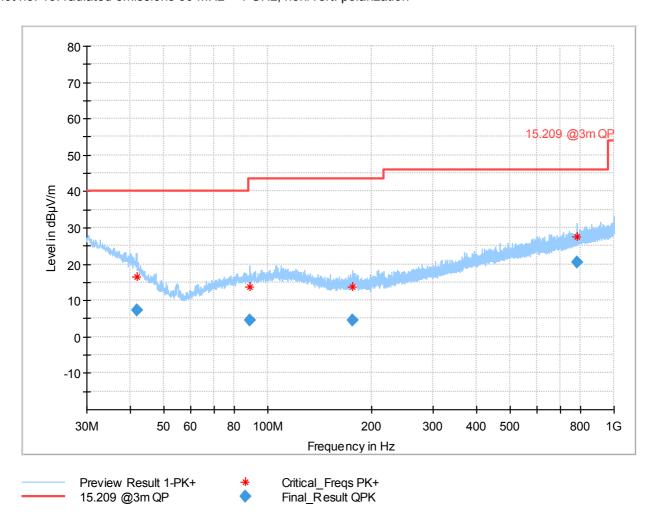
Test distance correction factor of 20dB/decade is already considered in the plots / result table.


Test results:

rest results.					
Channel / Mode	Frequency [GHz]	Detector	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]
Normal	(see plots)	(see plots)	(see plots)	(see plots)	(see plots)

IBL-Lab GmbH 21 / 52

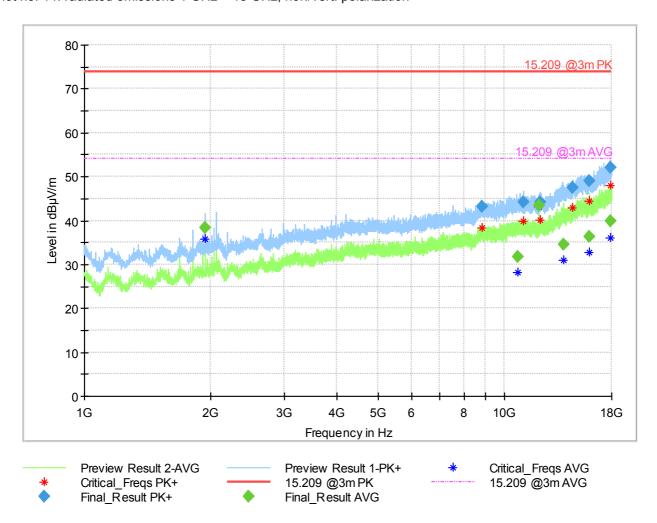
Plot no. 12: radiated emissions 9 kHz - 30 MHz, loop antenna



——— 15.209 9k-30M@3m ♦ Final_Result QPK

IBL-Lab GmbH 22 / 52

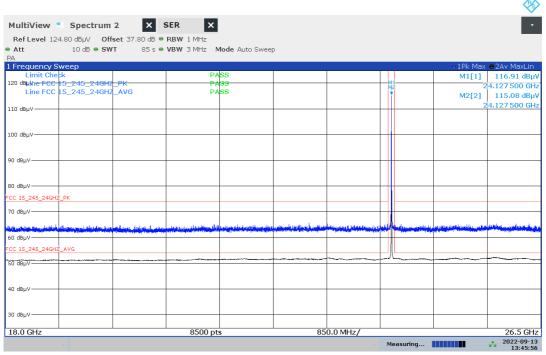
Plot no. 13: radiated emissions 30 MHz – 1 GHz, hor./vert. polarization


Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
41.835500	7.33	40.00	32.67	100.0	120.000	100.0	٧	137.0
88.802500	4.52	43.50	38.98	100.0	120.000	198.0	V	170.0
175.776000	4.57	43.50	38.93	100.0	120.000	240.0	Н	145.0
782.126000	20.46	46.00	25.54	100.0	120.000	184.0	Н	62.0

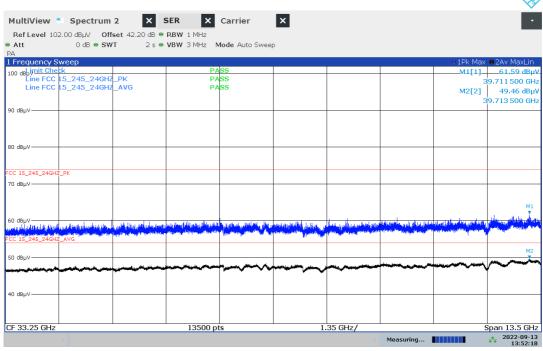
IBL-Lab GmbH 23 / 52

Plot no. 14: radiated emissions 1 GHz – 18 GHz, hor./vert. polarization


Final Result

Frequency (MHz)	MaxPeak (dBuV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol
1937.563889		38.25	54.00	15.75	100.0	1000.000	150.0	V
8858.033333	43.07		74.00	30.93	100.0	1000.000	150.0	Н
10743.369444	l	31.72	54.00	22.28	100.0	1000.000	150.0	٧
11072.111111	44.13		74.00	29.87	100.0	1000.000	150.0	Н
12061.752778		43.42	54.00	10.58	100.0	1000.000	150.0	Н
12169.405556	44.18		74.00	29.82	100.0	1000.000	150.0	Н
13816.666667		34.54	54.00	19.46	100.0	1000.000	150.0	V
14529.961111	47.37		74.00	26.63	100.0	1000.000	150.0	V
15914.111111	-	36.34	54.00	17.66	100.0	1000.000	150.0	V
15963.283333	49.01		74.00	24.99	100.0	1000.000	150.0	V
17869.516667	I	39.77	54.00	14.23	100.0	1000.000	150.0	Н
17932.269444	52.15		74.00	21.85	100.0	1000.000	150.0	V

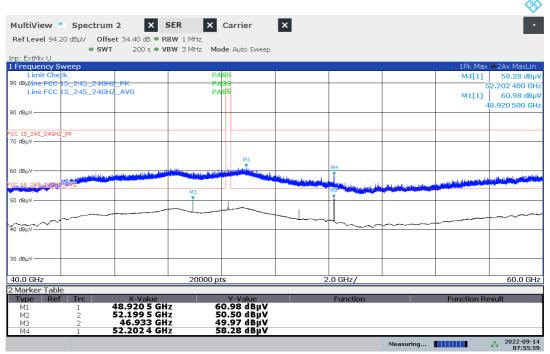
IBL-Lab GmbH 24 / 52



Plot no. 15: radiated emissions 18 GHz – 24 GHz, hor./vert. polarization

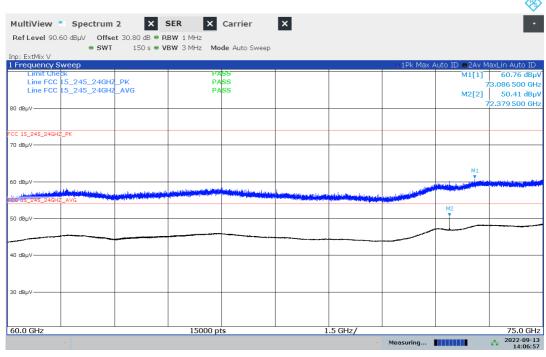
01:45:57 09/13/2022

Plot no. 16: radiated emissions 26.5 GHz - 40 GHz, hor./vert. polarization



01:52:18 09/13/2022

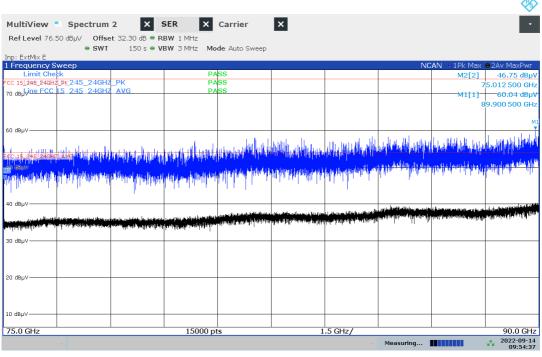
IBL-Lab GmbH 25 / 52



Plot no. 17: radiated emissions 40 GHz – 60 GHz, hor./vert. polarization

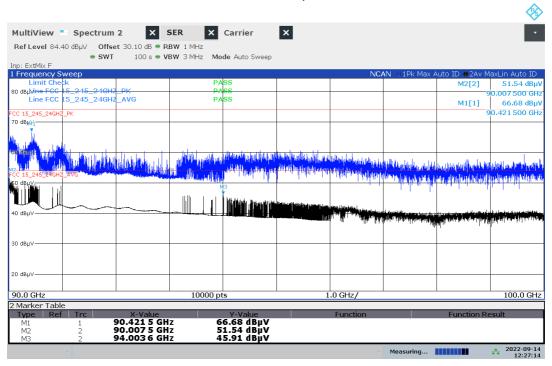
07:56:00 09/14/2022

Plot no. 18: radiated emissions 60 GHz - 75 GHz, hor./vert. polarization



02:06:58 09/13/2022

IBL-Lab GmbH 26 / 52



Plot no. 19: radiated emissions 75 GHz – 90 GHz, hor./vert. polarization

09:54:37 09/14/2022

Plot no. 20: radiated emissions 90 GHz - 100 GHz, hor./vert. polarization

12:27:14 09/14/2022

IBL-Lab GmbH 27 / 52

7.5 AC Conducted Emissions

Description / Limits

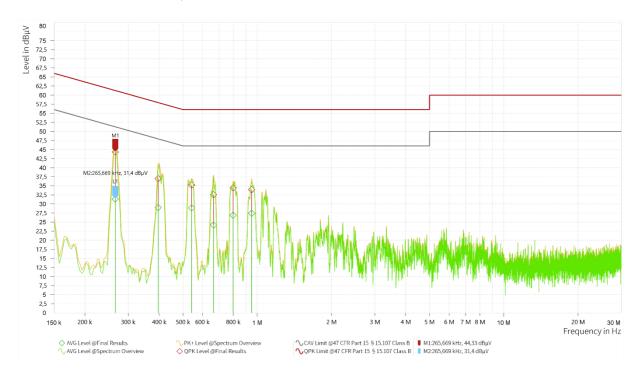
TR no.: 22077597-28000-0

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of emission	Conducted	limit [dBµV]				
[MHz]	Quasi-Peak	Average				
0.15 – 0.5	66 to 56*	56 to 46*				
0.5 - 5.0	56	46				
5.0 – 30	60	50				
*Decreases with the logarithm of the frequency.						

§15.207 (c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

Test setup: see 8.5


Test results

See next pages!

IBL-Lab GmbH 28 / 52

Plot no. 21: conducted emissions, line L1

EMI Final Results

Rg	Frequency [MHz]	QPK Level [dBµV]	QPK Limit [dBµV]	QPK Margin [dB]	AVG Level [dBµV]	AVG: CAV Limit [dBµV]	AVG Margin [dB]	Correction [dB]	Line	Meas. BW [kHz]	Meas. Time [ms]	Time	Source	Comment
1	0,266	44,33	61,25	16,92	31,40	51,25	19,86	9,75	L1	9,000	15.000,000	15:39:31	Critical Points	
1	0,396	36,97	57,93	20,96	29,02	47,93	18,91	10,04	L1	9,000	15.000,000	15:39:48	Critical Points	
1	0,542	35,22	56,00	20,78	28,92	46,00	17,08	10,07	L1	9,000	15.000,000	15:40:05	Critical Points	
1	0,665	32,58	56,00	23,42	24,19	46,00	21,81	10,03	L1	9,000	15.000,000	15:40:21	Critical Points	
1	0,799	34,45	56,00	21,55	26,87	46,00	19,13	9,97	L1	9,000	15.000,000	15:40:38	Critical Points	·
1	0,948	33,95	56,00	22,05	27,42	46,00	18,58	9,93	L1	9,000	15.000,000	15:40:55	Critical Points	

IBL-Lab GmbH 29 / 52

Plot no. 22: conducted emissions, neutral N

EMI Final Results

Rg	Frequency [MHz]	QPK Level [dBµV]	QPK Limit [dBµV]	QPK Margin [dB]	AVG Level [dBµV]	AVG: CAV Limit [dBµV]	AVG Margin [dB]	Correction [dB]	Line	Meas. BW [kHz]	Meas. Time [ms]	Time	Source	Comment
1	0,150	26,01	66,00	39,99	10,32	56,00	45,68	10,79	N	9,000	15.000,000	15:44:52	Critical Points	
1	0,273	43,89	61,02	17,13	28,91	51,02	22,11	9,77	N	9,000	15.000,000	15:45:09	Critical Points	
1	0,400	43,46	57,85	14,39	29,20	47,85	18,65	10,06	N	9,000	15.000,000	15:45:25	Critical Points	
1	0,546	41,17	56,00	14,83	26,60	46,00	19,40	10,07	N	9,000	15.000,000	15:45:42	Critical Points	
1	0,665	34,57	56,00	21,43	20,61	46,00	25,39	10,03	N	9,000	15.000,000	15:45:59	Critical Points	
1	0,822	31,80	56,00	24,20	21,17	46,00	24,83	9,97	N	9,000	15.000,000	15:46:16	Critical Points	
1	0,971	31,49	56,00	24,51	17,02	46,00	28,98	9,94	N	9,000	15.000,000	15:46:32	Critical Points	
1	1,046	29,43	56,00	26,57	12,62	46,00	33,38	9,93	N	9,000	15.000,000	15:46:49	Critical Points	

IBL-Lab GmbH 30 / 52

8 Test Setup Description

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Cyclic chamber inspections and range calibrations are performed. Where possible, RF generating and signalling equipment as well as measuring receivers and analysers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

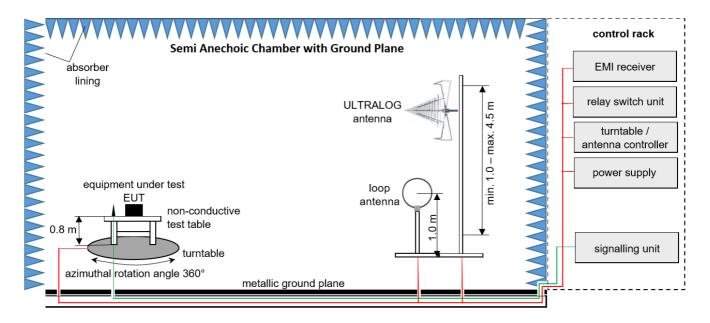
In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Kind of calibration (abbreviations):

C = calibrated

CM = cyclic maintenance

NR = not required


L = locked

IBL-Lab GmbH 31 / 52

8.1 Semi Anechoic Chamber with Ground Plane

Radiated measurements are performed in vertical and horizontal plane in the frequency range 30 MHz to 1 GHz in a Semi Anechoic Chamber with a metallic ground plane. The EUT is positioned on a non-conductive test table with a height of 0.80 m above the metallic ground plane that covers the whole chamber. The receiving antennas conform to specification ANSI C63.10-2013, American National Standard for Testing Unlicensed Wireless Devices. These antennas can be moved over the height range between 1.0 m and 4.5 m in order to search for maximum field strength emitted from the EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by a spectrum analyzer where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: ULTRALOG antenna at 3 m; loop antenna at 3 m

EMC32 software version: 11.20.00

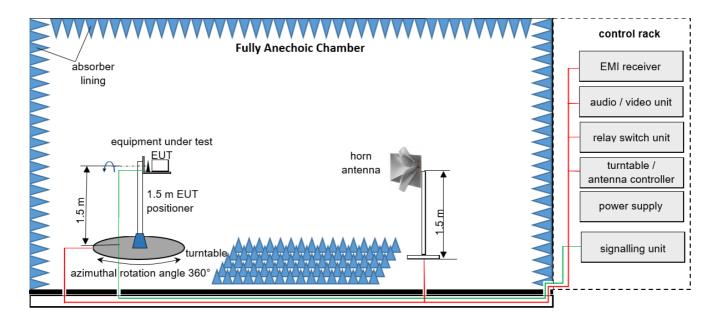
FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

 $FS \left[dB\mu V/m \right] = 12.35 \left[dB\mu V/m \right] + 1.90 \left[dB \right] + 16.80 \left[dB/m \right] = 31.05 \left[dB\mu V/m \right] (35.69 \ \mu V/m)$

IBL-Lab GmbH 32 / 52


List of test equipment used:

No.	Equipment	Manufacturer	Туре	Serial No.	IBL No.	Kind of Calibration	Last / Next Calibration
1	Power Supply	Elektro-Automatik GmbH & Co. KG	EA-PSI 9080-40 T	2000230001	LAB000313	NR	_
2	Test table	innco systems GmbH	PT1208-080-RH	-	LAB000306	NR	_
3	Power Supply	Chroma	61604	616040005416	LAB000285	NR	_
4	Positioner	maturo GmbH	TD 1.5-10KG		LAB000258	NR	_
5	Compressed Air	Implotex	1-850-30	-	LAB000256	NR	_
6	EMI Test Receiver	Rohde & Schwarz	ESW26	101481	LAB000236	С	2022-07-07 → 12M → 2023-07-07
7	Semi/Fully Anechoic Chamber (SFAC)	Albatross Projects GmbH	Babylon 5 (SAC 5)	20168.PRB	LAB000235	NR	_
8	Measurement Software	Rohde & Schwarz	EMC32 V11.20		LAB000226	NR	_
9	Turntable	maturo GmbH	TT2.0-2t	TT2.0-2t/921	LAB000225	NR	_
10	Antenna Mast	maturo GmbH	CAM4.0-P	CAM4.0-P/316	LAB000224	NR	_
11	Antenna Mast	maturo GmbH	BAM4.5-P	BAM4.5-P/272	LAB000223	NR	_
12	Controller	maturo GmbH	FCU 3.0	10082	LAB000222	NR	_
13	Power Supply	Elektro-Automatik GmbH & Co. KG	EA-PS 2042-10 B	2878350292	LAB000191	NR	-
14	Pre-Amplifier	Schwarzbeck Mess- Elektronik OHG	BBV 9718 C	84	LAB000169	NR	-
15	Antenna	Rohde & Schwarz	HF907	102899	LAB000151	С	2020-04-23 → 36M → 2023-04-23
16	Antenna	Rohde & Schwarz	HL562E	102005	LAB000150	С	$2020-07-05 \rightarrow 36M \rightarrow 2023-07-05$
17	Open Switch and Control Platform	Rohde & Schwarz	OSP200 Base Unit 2HU	101748	LAB000149	NR	_
18	Antenna	Rohde & Schwarz	HF907	102898	LAB000124	С	2020-04-23 → 36M → 2023-04-23
19	Antenna	Rohde & Schwarz	HL562E	102001	LAB000123	С	2020-07-05 → 36M → 2023-07-05
20	Antenna	Rohde & Schwarz	HFH2-Z2E - Active Loop Antenna	100954	LAB000108	С	2020-03-25 → 36M → 2023-03-25

 $18L-Lab\ GmbH$ 33 / 52

8.2 Fully Anechoic Chamber

Measurement distance: horn antenna at 3 m

EMC32 software version: 11.20.00

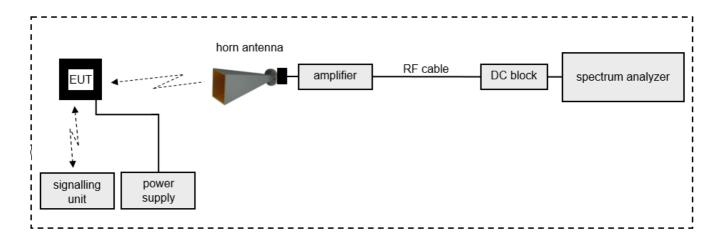
FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

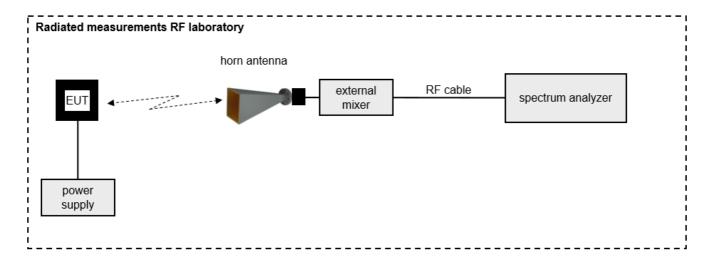
Example calculation:

FS [dB μ V/m] = 40.0 [dB μ V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB μ V/m] (71.61 μ V/m)

IBL-Lab GmbH 34 / 52


List of test equipment used:

No.	Equipment	Manufacturer	Туре	Serial No.	IBL No.	Kind of Calibration	Last / Next Calibration
1	Power Supply	Elektro-Automatik GmbH & Co. KG	EA-PSI 9080-40 T	2000230001	LAB000313	NR	-
2	Test table	innco systems GmbH	PT1208-080-RH	-	LAB000306	NR	_
3	Power Supply	Chroma	61604	616040005416	LAB000285	NR	_
4	Positioner	maturo GmbH	TD 1.5-10KG		LAB000258	NR	_
5	Compressed Air	Implotex	1-850-30	-	LAB000256	NR	_
6	EMI Test Receiver	Rohde & Schwarz	ESW26	101481	LAB000236	С	$2022-07-07 \rightarrow 12M \rightarrow 2023-07-07$
7	Semi/Fully Anechoic Chamber (SFAC)	Albatross Projects GmbH	Babylon 5 (SAC 5)	20168.PRB	LAB000235	NR	-
8	Measurement Software	Rohde & Schwarz	EMC32 V11.20		LAB000226	NR	-
9	Turntable	maturo GmbH	TT2.0-2t	TT2.0-2t/921	LAB000225	NR	_
10	Antenna Mast	maturo GmbH	CAM4.0-P	CAM4.0-P/316	LAB000224	NR	_
11	Antenna Mast	maturo GmbH	BAM4.5-P	BAM4.5-P/272	LAB000223	NR	_
12	Controller	maturo GmbH	FCU 3.0	10082	LAB000222	NR	_
13	Power Supply	Elektro-Automatik GmbH & Co. KG	EA-PS 2042-10 B	2878350292	LAB000191	NR	-
14	Pre-Amplifier	Schwarzbeck Mess- Elektronik OHG	BBV 9718 C	84	LAB000169	NR	-
15	Antenna	Rohde & Schwarz	HF907	102899	LAB000151	С	2020-04-23 → 36M → 2023-04-23
16	Antenna	Rohde & Schwarz	HL562E	102005	LAB000150	С	2020-07-05 → 36M → 2023-07-05
17	Open Switch and Control Platform	Rohde & Schwarz	OSP200 Base Unit 2HU	101748	LAB000149	NR	-
18	Antenna	Rohde & Schwarz	HF907	102898	LAB000124	С	2020-04-23 → 36M → 2023-04-23
19	Antenna	Rohde & Schwarz	HL562E	102001	LAB000123	С	2020-07-05 → 36M → 2023-07-05
20	Antenna	Rohde & Schwarz	HFH2-Z2E - Active Loop Antenna	100954	LAB000108	С	2020-03-25 → 36M → 2023-03-25


 $18L-Lab\ GmbH$ 35 / 52

8.3 Radiated measurements > 18 GHz

8.4 Radiated measurements > 50 GHz

Measurement distance: horn antenna e.g. 50 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

 $FS \left[dB\mu V/m \right] = 40.0 \left[dB\mu V/m \right] + (-60.1) \left[dB \right] + 36.74 \left[dB/m \right] = 16.64 \left[dB\mu V/m \right] (6.79 \ \mu V/m)$

Note: conversion loss of mixer is already included in analyzer value.

IBL-Lab GmbH 36 / 52

List of test equipment used:

No.	Equipment	Manufacturer	Туре	Serial No.	IBL No.	Kind of Calibration	Last / Next Calibration
1	Test table	innco systems GmbH	PT0707-RH light	-	LAB000303	_	-
2	Spectrum Analyser	Rohde & Schwarz	FSW43	101391	LAB000289	NR	-
3	Power Supply	Elektro-Automatik GmbH & Co. KG	PS 2042-10 B	2878350263	LAB000190	NR	-
4	WG-Coax-Adapter	Flann Microwave Ltd	23373-TF30 UG383/U	273385	LAB000185	СМ	2022-09-01 → 12M → 2023-09-01
5	WG-Coax-Adapter	Flann Microwave Ltd	22093-TF30 UG599/U	273263	LAB000183	СМ	2022-09-01 → 12M → 2023-09-01
6	WG-Coax-Adapter	Flann Microwave Ltd	20093-TF30 UBR220	273374	LAB000181	CM	2022-09-01 → 12M → 2023-09-01
7	Coaxial Cable	Huber & Suhner	SF101/1.0m	503989/1	LAB000163	CM	2022-05-31 → 12M → 2023-05-31
9	Coaxial Cable	Huber & Suhner	ST18/48"	2276454-01	LAB000157	CM	2022-05-31 → 12M → 2023-05-31
10	Coaxial Cable	Rosenberger	LU7-022-1000	34	LAB000154	NR	-
11	Coaxial Cable	Rosenberger	LU7-022-1000	33	LAB000153	NR	-
12	Antenna	Flann Microwave Ltd	27240-20	273367	LAB000137	CM	$2022-09-01 \rightarrow 12M \rightarrow 2023-09-01$
13	Antenna	Flann Microwave Ltd	25240-20	272860	LAB000133	CM	$2022-09-01 \rightarrow 12M \rightarrow 2023-09-01$
14	Antenna	Flann Microwave Ltd	23240-20	273430	LAB000132	CM	2022-09-01 → 12M → 2023-09-01
15	Antenna	Flann Microwave Ltd	22240-20	270448	LAB000130	С	2020-06-29 → 36M → 2023-06-29
16	Antenna	Flann Microwave Ltd	20240-20	266403	LAB000128	С	2020-06-29 → 36M → 2023-06-29
17	Harmonic Mixer	Rohde & Schwarz	FS-Z110	102000	LAB000114	С	2022-04-14 → 12M → 2023-04-14
18	Harmonic Mixer	Rohde & Schwarz	FS-Z75	102015	LAB000112	С	2022-04-20 → 12M → 2023-04-20
19	Spectrum Analyser	Rohde & Schwarz	FSW50	101450	LAB000111	С	2022-07-28 → 12M → 2023-07-28
20	Antenna Mast	Schwarzbeck Mess- Elektronik OHG	AM 9104	99	LAB000109	NR	_
21	Climatic Chamber	CTS GmbH	T-65/50	204002	LAB000110	CM	$2022-05-11 \rightarrow 12M \rightarrow 2023-05-11$

IBL-Lab GmbH 37 / 52

9 Measurement procedures

9.1 Radiated spurious emissions from 9 kHz to 30 MHz

Test setup

- The EUT is set up according to its intended use, as described in the user manual or as defined by the manufacturer.
- In case of floor standing equipment, it is placed in the middle of the turn table.
 In case of tabletop equipment it is placed on a non-conductive table with a height of 80 cm.
- Additional equipment, cables, ... necessary for testing, are positioned like under normal operation.
- Interface cables, e.g. power supply, network, ... are connected to the connection box in the turn table.
- EUT is powered on and set into operation.

Pre-scan

- Turntable performs an azimuthal rotation from 0° to 315° in 45° steps.
- For each turntable step the EMI-receiver/spectrum analyser performs a positive-peak/max-hold sweep (=worst-case). Data is transferred to EMI-software and recorded. EMI-software will show the maximum level of all single sweeps as the final result for the pre-scan.

Final measurement

- Significant emissions found during the pre-scan will be maximized by the EMI-software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated with special 3D adapter set to find maximum level of emissions.
- Plot of the pre-scan with frequencies of identified emissions including levels, correction factors, turn table position and settings of measuring equipment is recorded.

Distance correction (extrapolation)

When performing measurements on test distances other than defined in the rules, the results shall be extrapolated to the specified distance by conservatively presuming that the field strength decays at 40 dB/decade of distance in the region closer than λ in m divided by 2π (i.e., $\lambda/2\pi$), and at 20 dB/decade of distance beyond that, using the measurement of a single point at the radial angle that produces the maximum emission.

This correction is already included in the limit line of corresponding measurement plots.

Detailed requirements can be found in e.g. ANSI C63.4 / C63.10

IBL-Lab GmbH 38 / 52

9.2 Radiated spurious emissions from 30 MHz to 1 GHz

Test setup

- The EUT is set up according to its intended use, as described in the user manual or as defined by the manufacturer.
- In case of floor standing equipment, it is placed in the middle of the turn table.
 In case of tabletop equipment it is placed on a non-conductive table with a height of 80 cm.
- Additional equipment, cables, ... necessary for testing, are positioned like under normal operation.
- Interface cables, e.g. power supply, network, ... are connected to the connection box in the turn table.
- EUT is powered on and set into operation.

Pre-scan

- Turntable performs an azimuthal rotation from 0° to 315° in 45° steps.
- Antenna polarisation is changed (H-V / V-H) and antenna height is changed from 1 meter to 4 meters.
- For each turntable step / antenna polarisation / antenna height the EMI-receiver/spectrum analyser performs a positive-peak/max-hold sweep (=worst-case). Data is transferred to EMI-software and recorded. EMI-software will show the maximum level of all single sweeps as the final result for the prescan.

Final measurement

- Significant emissions found during the pre-scan will be maximized by the EMI-software based on evaluated data during the pre-scan by rotating the turntable and changing antenna height and polarisation.
- Final measurement will be performed with measuring equipment settings as defined in the applicable test standards (e.g. ANSI C6.4).
- Plot of the pre-scan with frequencies of identified emissions including levels, correction factors, turn table position, antenna polarisation and settings of measuring equipment is recorded.

Distance correction (extrapolation)

- When performing measurements on test distances other than defined in the rules, the results shall be extrapolated to the specified distance by conservatively presuming that the field strength decays at 20 dB/decade of distance beyond the region λ in m divided by 2π (i.e., λ/2π), using the measurement of a single point at the radial angle that produces the maximum emission.

This correction is already included in the corresponding measurement plots.

Detailed requirements can be found in e.g. ANSI C63.4 / C63.10

IBL-Lab GmbH 39 / 52

9.3 Radiated spurious emissions from 1 GHz to 18 GHz

Test setup

- The EUT is set up according to its intended use, as described in the user manual or as defined by the manufacturer.
- In case of floor standing equipment, it is placed in the middle of the turn table.

 In case of tabletop equipment it is placed on a non-conductive table with a height of 80 cm.
- Additional equipment, cables, ... necessary for testing, are positioned like under normal operation.
- Interface cables, e.g. power supply, network, ... are connected to the connection box in the turn table.
- EUT is powered on and set into operation.

Pre-scan

- Turntable performs an azimuthal rotation from 0° to 315° in 45° steps.
- Antenna polarisation is changed (H-V / V-H) and antenna height is changed from 1 meter to 4 meters.
- For each turntable step / antenna polarisation / antenna height the EMI-receiver/spectrum analyser performs a positive-peak/max-hold sweep (=worst-case). Data is transferred to EMI-software and recorded. EMI-software will show the maximum level of all single sweeps as the final result for the prescan.

Final measurement

- Significant emissions found during the pre-scan will be maximized by the EMI-software based on evaluated data during the pre-scan by rotating the turntable and changing antenna height and polarisation.
- Final measurement will be performed with measuring equipment settings as defined in the applicable test standards (e.g. ANSI C6.4).
- Plot of the pre-scan with frequencies of identified emissions including levels, correction factors, turn table position, antenna polarisation and settings of measuring equipment is recorded.

Distance correction (extrapolation)

- When performing measurements on test distances other than defined in the rules, the results shall be extrapolated to the specified distance by conservatively presuming that the field strength decays at 20 dB/decade of distance beyond the region λ in m divided by 2π (i.e., $\lambda/2\pi$), using the measurement of a single point at the radial angle that produces the maximum emission.

This correction is already included in the corresponding measurement plots.

Detailed requirements can be found in e.g. ANSI C63.4 / C63.10

IBL-Lab GmbH 40 / 52

9.4 Radiated spurious emissions above 18 GHz

Test setup

- The EUT is set up according to its intended use, as described in the user manual or as defined by the manufacturer.
- Additional equipment, cables, ... necessary for testing, are positioned like under normal operation.
- EUT is powered on and set into operation.
- Test distance depends on EUT size and test antenna size (farfield conditions shall be met).

Pre-scan

 The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and for different polarizations of the antenna.

Final measurement

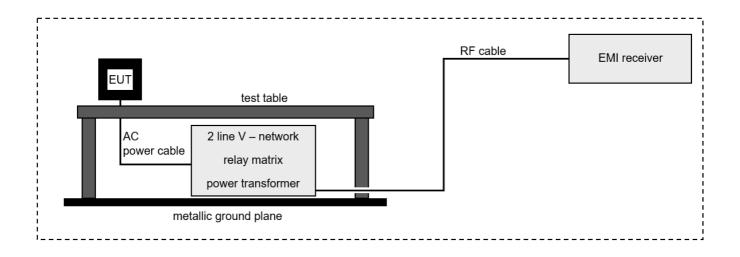
- Significant emissions found during the pre-scan will be maximized, i.e. position and antenna orientation causing the highest emissions with Peak and RMS detector
- Final measurement will be performed with measuring equipment settings as defined in the applicable test standards (e.g. ANSI C63.4 / C63.10).
- Final plot showing measurement data, levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit is recorded.

Note

- In case of measurements with external harmonic mixers (e.g. above 50 GHz) special care is taken to avoid possible overloading of the external mixer's input.
- As external harmonic mixers may generate false images, care is taken to ensure that any emission measured by the spectrum analyzer is indeed radiated from the EUT and not internally generated by the external harmonic mixer. Signal identification feature of spectrum analyzer is used to eliminate/reduce images of the external harmonic mixer.

Distance correction (extrapolation)

- When performing measurements on test distances other than defined in the rules, the results shall be extrapolated to the specified distance by conservatively presuming that the field strength decays at 20 dB/decade of distance beyond the region λ in m divided by 2π (i.e., $\lambda/2\pi$), using the measurement of a single point at the radial angle that produces the maximum emission.


This correction is already included in the corresponding measurement plots.

Detailed requirements can be found in e.g. ANSI C63.4 / C63.10

IBL-Lab GmbH 41 / 52

9.5 AC conducted Emissions

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

 $\frac{\textit{Example calculation:}}{\text{FS [dB}\mu\text{V/m]} = 37.62 \ [dB}\mu\text{V/m]} + 9.90 \ [dB] + 0.23 \ [dB] = 47.75 \ [dB}\mu\text{V/m]} \ (244.06 \ \mu\text{V/m})$

List of test equipment used:

No.	Equipment	Manufacturer	Туре	Serial No.	IBL No.	Kind of Calibration	Last / Next Calibration
1	Open Switch and Control Platform	Rohde & Schwarz	OSP-B200S2	101443	LAB000239	NR	
2	EMI Test Receiver	Rohde & Schwarz	ESW26	101481	LAB000236	С	$2022-07-07 \rightarrow 12M \rightarrow 2023-07-07$
3	Two-Line V-Network	Rohde & Schwarz	ENV216	102598	LAB000217	С	$2022\text{-}05\text{-}27 \to 24\text{M} \to 2023\text{-}05\text{-}27$

IBL-Lab GmbH 42 / 52

10 MEASUREMENT UNCERTAINTIES

Radio frequency	≤ ± 10 ppm			
Radiated emission	≤ ± 6 dB			
Temperature	≤±1°C			
Humidity	≤ ± 5 %			
DC and low frequency voltages	≤ ± 3 %			

The indicated expanded measurement uncertainty corresponds to the standard measurement uncertainty for the measurement results multiplied by the coverage factor k = 2. It was determined in accordance with EA-4/02 M:2013. The true value is located in the corresponding interval with a probability of 95 %.

IBL-Lab GmbH 43 / 52