

Bundesnetzagentur

TEST REPORT

Test report no.: 1-0443/20-01-02-A

Testing laboratory

CTC advanced GmbH

BNetzA-CAB-02/21-102

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: <u>https://www.ctcadvanced.com</u> e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

RFbeam Microwave GmbHSchuppisstrasse 79016 St. Gallen / SWITZERLANDPhone:+41 7 12 45 33 80Contact:Léon Audergone-mail:audergon@rfbeam.chPhone:+41 7 12 45 33 80

Manufacturer

RFbeam Microwave GmbH Schuppisstrasse 7

9016 St. Gallen / SWITZERLAND

Test standard/s

47 CFR Part 15Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency
devicesRSS - 210 Issue 10Radio Standards Specification - Licence-Exempt Radio Apparatus: Category II

S - 210 Issue 10 Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item:	24 GHz Radar Transceiver
Model name:	K-LD7
FCC ID:	2ASYV-K-LD7
IC:	24358-KLD7
Frequency:	24.05 GHz – 24.25 GHz
Antenna:	Integrated patch antenna
Power supply:	3.2 V to 5.5 V DC by external power supply
Temperature range:	-40°C to +85°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Meheza Walla						
Lab Manager						
Radio Communications						

Test performed:

Sebastian Janoschka Lab Manager Radio Communications

1 Table of contents

1	Table	of contents	2
2	Gene	al information	3
	2.1 2.2 2.3	Notes and disclaimer Application details Test laboratories sub-contracted	3
3	Test s	standard/s and references	4
4	Test e	nvironment	4
5	Repo	ting statements of conformity – decision rule	5
6	Test i	tem	6
	6.1 6.2	General description Additional information	6
7	Descr	iption of the test setup	7
	7.1 7.2 7.3 7.4 7.5	Shielded semi anechoic chamber Shielded fully anechoic chamber Radiated measurements > 18 GHz Radiated measurements > 50/85 GHz AC conducted	10 12 12
8	Meas	urement uncertainty	15
9	Seque	ence of testing	16
	9.1 9.2 9.3 9.4 9.5	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 18 GHz Sequence of testing radiated spurious above 18 GHz Sequence of testing radiated spurious above 50/85 GHz with external mixers	17 18 19
10	Sur	nmary of measurement results	21
11	Меа	asurement results	22
	11.1 11.2 11.3 11.4 11.5	Field strength of fundamental emission Occupied bandwidth (99% bandwidth) Field strength of emissions (radiated spurious) Conducted emissions < 30 MHz Frequency Stability	26 27 38
Anı	nex A	Glossary	48
Anı	nex B	Document history	49
Anı	nex C	Accreditation Certificate	49

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2020-08-27
Date of receipt of test item:	2020-10-12
Start of test:*	2020-10-14
End of test:*	2020-10-27
Person(s) present during the test:	-/-

*Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

2.3 Test laboratories sub-contracted

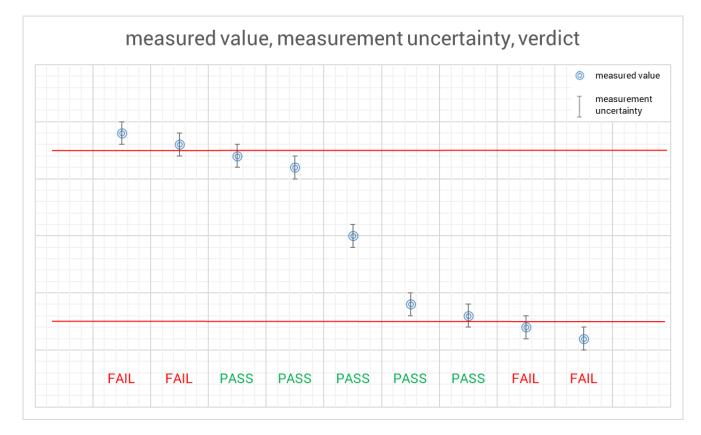
None

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15		Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 210 Issue 10	12-2019	Radio Standards Specification - Licence-Exempt Radio Apparatus: Category II Equipment
RSS-GEN	03-2019	General Requirements for Compliance of Radio Apparatus

Guidance	Version	Description
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices
	,	of unlicensed wireless devices

4 Test environment


Temperature		T _{nom} T _{max} T _{min}	 +20 °C during room temperature tests +85 °C during high temperature tests -40 °C during low temperature tests 			
Relative humidity content	:		48 %			
Barometric pressure	:		1000 hPa			
Power supply :		V _{nom} V _{max} V _{min}	 3.3 V DC by external power supply 5.5 V 3.2 V 			

5 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3. The measurement uncertainty is mentioned in this test report, see chapter 8, but is not taken into account neither to the limits nor to the measurement results. Measurement results with a smaller margin to the

corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong.

6 Test item

6.1 General description

Kind of test item	:	24 GHz Radar Transceiver
Type identification	:	K-LD7
S/N serial number	:	L2027n01939
HVIN	:	K-LD7
PMN	:	K-LD7
FVIN	:	-/-
HMN	:	-/-
HW hardware status	:	D
SW software status	:	01
Frequency band	:	24.05 GHz – 24.25 GHz
Type of modulation	:	FSK
Number of channels	:	3
Number of modes	:	2
Antenna	:	Integrated patch antenna
Power supply	:	3.2 V to 5.5 V DC by external power supply
Temperature range	:	-40°C to +85°C

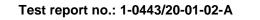
6.2 Additional information

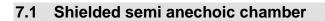
The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report:

1-0443/20-01-01_AnnexA 1-0443/20-01-01_AnnexB 1-0443/20-01-01_AnnexC

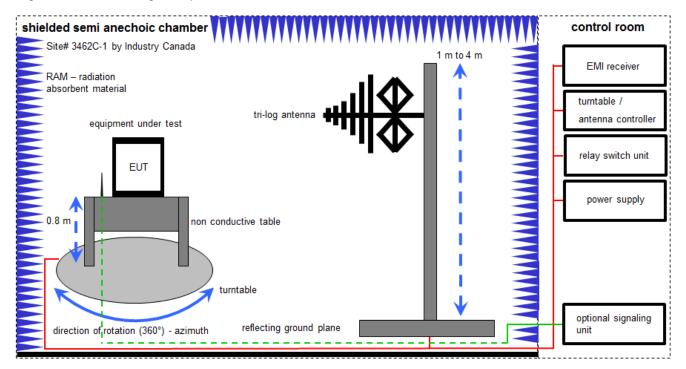
This test report replaces the test report with the number 1-0443/20-01-02 and dated 2020-11-24.


7 Description of the test setup


Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

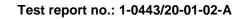
CTC I advanced

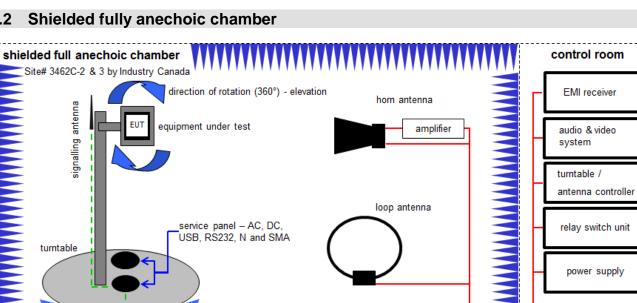
Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:


FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$


Test report no.: 1-0443/20-01-02-A

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	45	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	50	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-
3	93	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
4	n. a.	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	n. a.	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	295	300003787	vIKI!	19.02.2019	18.02.2021
7	n. a.	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	21.05.2019	20.11.2020
8	n. a.	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	viKi!	17.01.2020	16.01.2022
9	n. a.	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-

RAM - radiation absorbent material

CTC I advanced

member of RWTÜV group

optional signaling

unit

7.2

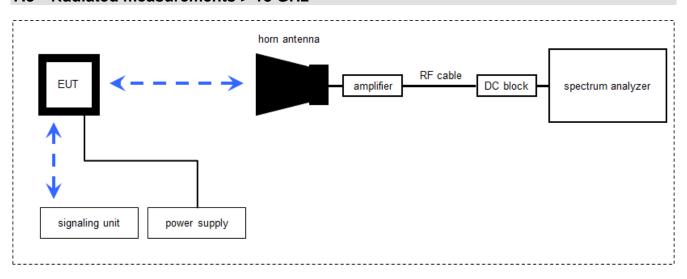
direction of rotation (360°) - azimuth

FS = UR + CA + AF(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

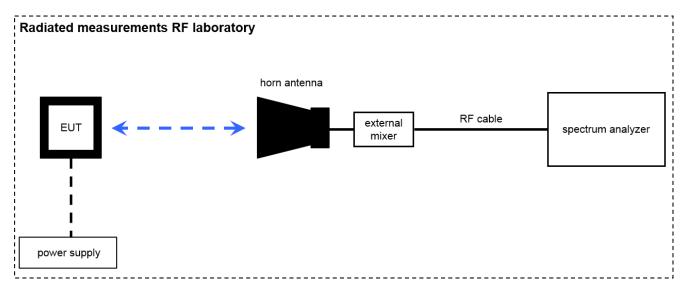
Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

Example calculation: $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

OP = AV + D - G + CA


(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation: OP [dBm] = -39.0 [dBm] + 57.0 [dB] - 12.0 [dBi] + (-36.0) [dB] = -30 [dBm] (1 μW)


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	viKi!	13.06.2019	12.06.2021
2	n. a.	NEXIO EMV- Software	BAT EMC V3.20.0.10	EMCO		300004682	ne	-/-	-/-
3	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	295	300003787	viKi!	19.02.2019	18.02.2021
4	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	vlKl!	12.12.2017	11.12.2020
5	n. a.	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
6	19	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	viKi!	27.02.2019	26.02.2021
7	n. a.	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
8	n. a.	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	11.12.2019	10.12.2020
9	n. a.	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
10	n. a.	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
11	n. a.	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
12	n. a.	PC	ExOne	F+W		300004703	ne	-/-	-/-
13	n. a.	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-

CTC I advanced

7.4 Radiated measurements > 50/85 GHz

Measurement distance: horn antenna e.g. 25 cm

FS = UR + CA + AF (FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

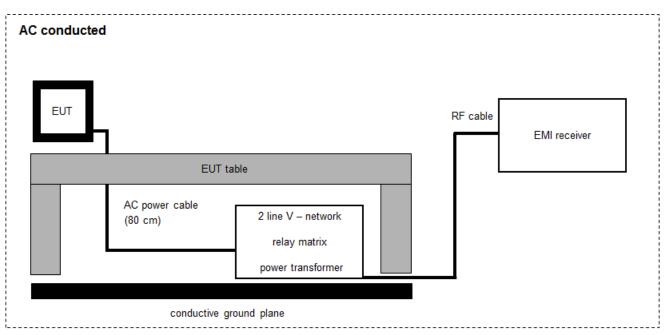
Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation:


OP [dBm] = -59.0 [dBm] + 44.0 [dB] - 20.0 [dBi] + 5.0 [dB] = -30 [dBm] (1 μW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Harmonic Mixer 3- Port, 50-75 GHz	FS-Z75	Rohde & Schwarz	101578	300005788	k	17.06.2020	16.06.2021
2	n. a.	Spectrum Analyzer	FSW50	Rohde & Schwarz	101332	300005935	k	26.02.2020	25.02.2021
3	A026	Std. Gain Horn Antenna 49.9-75.8 GHz	2524-20	Flann	*	300001986	ne	-/-	-/-
4	A027	Std. Gain Horn Antenna 73.8-112 GHz	2724-20	Flann	*	300001988	ne	-/-	-/-
5	A027	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	01096	300000486	viKi!	21.01.2020	20.01.2022
6	A031	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	82-16	300000510	viKi!	23.01.2020	22.01.2022
7	n.a.	Std. Gain Horn Antenna 33.0-50.1 GHz	2324-20	Flann	57	400000683	ne	-/-	-/-
8	n. a.	Broadband LNA 18- 50 GHz	CBL18503070PN	CERNEX	25240	300004948	ev	09.03.2020	08.03.2022
9	n. a.	Harmonic Mixer 3- Port, 75-110 GHz	FS-Z110	R&S	101411	300004959	k	19.06.2020	18.06.2021

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	101	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	893045/004	300000584	k	10.12.2020	09.12.2021
2	67	RF-Filter-section	85420E	HP	3427A00162	300002214	k	27.11.2006	-/-
3	27	EM-Injection Clamp	FCC-203i	emv	232	300000626	ev	18.05.2001	-/-
4	n. a.	Magnetfeldantenne	MS 100	EM-Test		300002659	ev	24.04.2000	-/-
5	n. a.	AC- Spannungsquelle variabel	MV2616-V	EM-Test	0397-12	300003259	viKi!	26.05.2020	25.05.2021
6	n. a.	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	viKi!	17.01.2020	16.01.2022
7	n. a.	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	08.04.2008	-/-
8	n. a.	Power Supply	NGSM 32/10	R&S	3939	400000192	vIKI!	11.12.2019	10.12.2022
9	n. a.	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	09.12.2020	08.12.2021

CTC I advanced

8 **Measurement uncertainty**

Measurement uncertainty					
Occupied channel bandwidth	±5 %				
RF power, conducted	±1.5 dB				
Conducted spurious emission of transmitter, valid up to 6 GHz	±3 dB				
Conducted emission of receivers	±3 dB				
Radiated emission of transmitter, valid up to 6 GHz	±6 dB				
Radiated emission of receiver, valid up to 6 GHz	±6 dB				
RF level uncertainty for a given BER	±1.5 dB				
Occupied channel bandwidth	±5 %				
Temperature	±2.5 °C				
Humidity	±10 %				

9 Sequence of testing

9.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

9.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

9.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

9.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

9.5 Sequence of testing radiated spurious above 50/85 GHz with external mixers

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate for far field (e.g. 0.25 m).
- The EUT is set into operation.

Premeasurement

- The test antenna with external mixer is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.
- Caution is taken to reduce the possible overloading of the external mixer.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- As external mixers may generate false images care is taken to ensure that any emission measured by the spectrum analyzer does indeed originate in the EUT. Signal identification feature of spectrum analyzer is used to eliminate false mixer images (i.e., it is not the fundamental emission or a harmonic falling precisely at the measured frequency).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

10 Summary of measurement results

No deviations from the technical specifications were ascertained
There were deviations from the technical specifications ascertained
This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	FCC 47 CFR Part 15	Passed	2020-12-18	-/-
	RSS-210 Issue 10	Fassed 2020-12-10		7-

Test specification clause	Test case	Temperature conditions	Power source voltages	с	NC	NA	NP	Results (max.)
§15.249(a) / RSS-210, B.10(a)	Field strength of fundamental emission	Nominal	Nominal	\boxtimes				
§2.1049	Occupied bandwidth (99% bandwidth)	Nominal	Nominal	\boxtimes				
§15.209(a) / §15.249(d) / RSS-210, B.10	Field strength of emissions (radiated spurious)	Nominal	Nominal					
§15.207(a) RSS-Gen 8.8	Conducted emissions < 30 MHz	Nominal	Nominal					
§15.215(c) RSS-Gen 8.11	Frequency Stability	Nominal Extreme	Nominal Extreme	\boxtimes				

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

11 Measurement results

11.1 Field strength of fundamental emission

Description:

Measurement of the maximum radiated field strength of the wanted signal.

Measurement:

Measurement parameter				
Detector:	Pos-Peak / Average			
Sweep time:	10 s			
Resolution bandwidth:	1 MHz			
Video bandwidth:	3 MHz			
Span:	350 MHz			
Trace-Mode:	Max Hold			
Measurement uncertainty	± 3 dB			

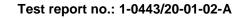
This test was performed on a shorter test distance. A correction factor of $20*\log(x m/3 m)$ is already considered in the plots.

Limits:

FCC		IC		
CFR Part 15.249(a))	RSS-210, B.10		
Field strength of emissions				
The field strength of emissions from	intentional radiato with the f	•	n these frequency bands shall comply	
Frequency	Field S	trength	Measurement distance	
24.0 GHz – 24.25 GHz 108 dBµV/m 128 dBµV/r			3 m	

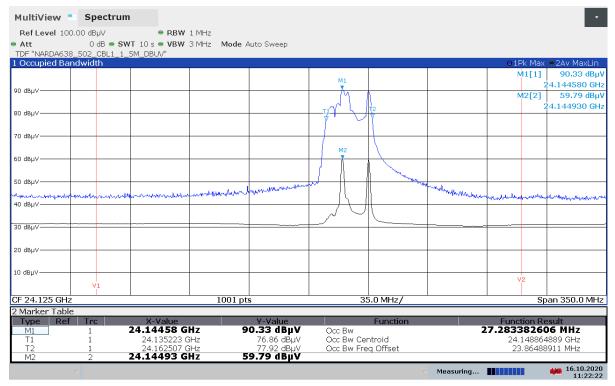
§15.249 (e) As shown in § 15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

§15.31 (c) Except as otherwise indicated in §15.256, for swept frequency equipment, measurements shall be made with the frequency sweep stopped at those frequencies chosen for the measurements to be reported.



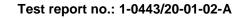
Measurement results:

Test condition	Maximum field strength (Peak) (dBµV/m @3m)	Maximum field strength (Average) (dBµV/m @3m)
flow	90.33	59.79
f _{mid}	89.62	59.40
fnigh	88.59	58.08


Note:

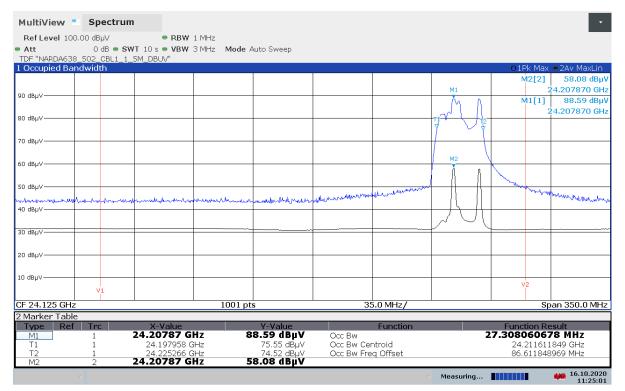
For the measurements presented in this section, the maximum power setting (as requested by customer) has been used.

Plot No. 1: Field strength, flow



11:22:22 16.10.2020

Plot No. 2: Field strength, fmid


MultiView	Spectr	um					
	•						
Ref Level 1		 RBW 1 MHz 					
Att		SWT 10 s . VBW 3 MHz	Mode Auto Sweep				
1 Occupied B	38_502_CBL1	_1_5M_DBUV"				O 1 Dk Max	 € 2Av MaxLin
1 Occupied B	anuwiuur					M1[1]	89.62 dBµV
					M1		24.190730 GHz
90 dBµV					Do 0		59.40 dBµV
						M2[2]	
80 dBµV				TIN	* <u> </u>		24.175350 GHz
				1			
70 dBµV							
					M2		
60 dBµV							
50 dBµV				mond	<u> </u>	See.	
a march and back and		unproper man and an and	announ molenty agains	man fut		man when when when	and the second and
40 dBµV							
, i				~	\sim		
30 dBµV							
20 dBµV							
10 dBµV							
10 00010						V2	
	V1						
CF 24.125 GF	-lz	- F	1001 pts	35.0 MI	Hz/	S	pan 350.0 MHz
2 Marker Tal	ole						
Type Re	ef Trc	X-Value	Y-Value		ction	Function R	
M1	1	24.19073 GHz	89.62 dBµV	Occ Bw		27.3488795	
T1	1	24.165568 GHz	75.92 dBµV	Occ Bw Centroid			2277 GHz
T2 M2	2	24.192917 GHz 24.17535 GHz	77.14 dBµV 59.40 dBµV	Occ Bw Freq Offs	set	54.24227	7192 MHz
I¥I∠	۷.	2411/000 0112	39.40 ubµv				46 40 0000
					💎 Measurin	ig	16.10.2020 11:24:01

11:24:01 16.10.2020

Plot No. 3: Field strength, fhigh

11:25:02 16.10.2020

11.2 Occupied bandwidth (99% bandwidth)

Description:

Measurement of the 99% bandwidth of the wanted signal.

Measurement:

Parameter				
Detector:	Pos-Peak			
Sweep time:	10 s			
Resolution bandwidth:	1 MHz			
Video bandwidth:	3 MHz			
Span:	350 MHz			
Trace-Mode:	Max Hold			
Measurement uncertainty	± Span/1000			

Limits:

FCC		IC		
CFR Part 15.249(a)	RSS-210, B.10		
The field strength of emissions fror	n intentional radiate comply with		the specified frequency band shall	
Frequency range	f	L	fн	
250 MHz > 24.0) GHz	< 24.25 GHz	

Measurement results:

Test condition	f∟ (GHz)	f _н (GHz)	Occupied bandwidth (MHz)
f _{low}	24.1352	24.1625	27.3
fmid	24.1656	24.1930	27.3
f _{high}	24.1980	24.2253	27.3

The corresponding plots are shown in section 10.1.

11.3 Field strength of emissions (radiated spurious)

Description:

Measurement of the radiated spurious emissions in transmit mode.

Measurement:

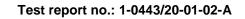
Parameter				
Detector: Quasi-Peak / Pos-Peak / Average				
Sweep time:	Auto			
Resolution bandwidth:	100 kHz / 1 MHz			
Video bandwidth:	300 kHz / 3 MHz			
Trace-Mode:	Max Hold			
Measurement uncertainty	± 3 dB			

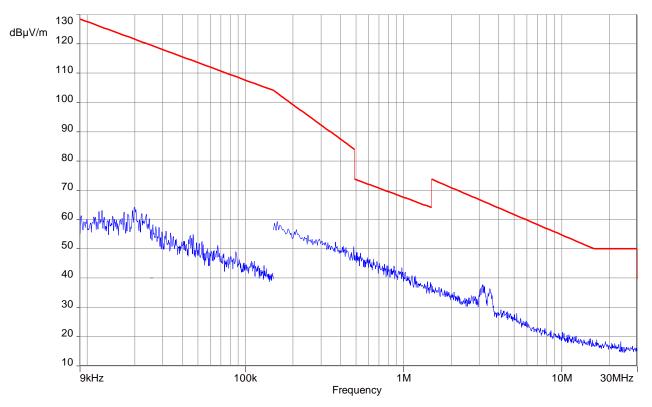
Limits:

FCC			IC				
CFR Part 15.209(a) / CFR Par	rt 15.249(d)		RSS - GEN				
Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.							
Frequency (MHz)	Field Stren	gth (µV/m)	Measurement distance (m)				
0.009 – 0.490	2400/I	F(kHz)	300				
0.490 – 1.705	24000/	F(kHz)	30				
1.705 – 30.0	3	0	30				
30 88	100		3				
88 – 216	150		150		3		
216 – 960	20	00	3				
Above 960	50	00	3				

§15.249 (e) As shown in § 15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

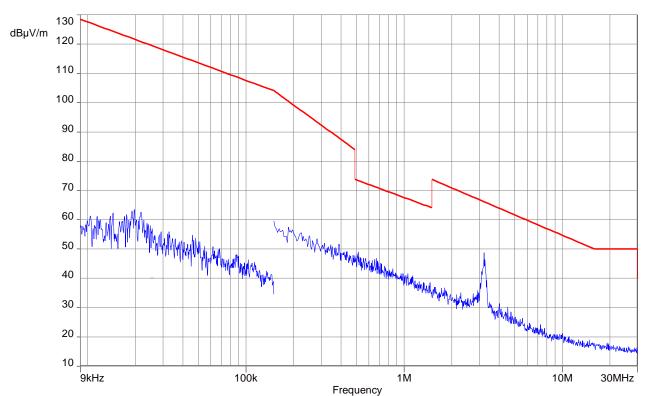
§15.31 (c) Except as otherwise indicated in §15.256, for swept frequency equipment, measurements shall be made with the frequency sweep stopped at those frequencies chosen for the measurements to be reported.

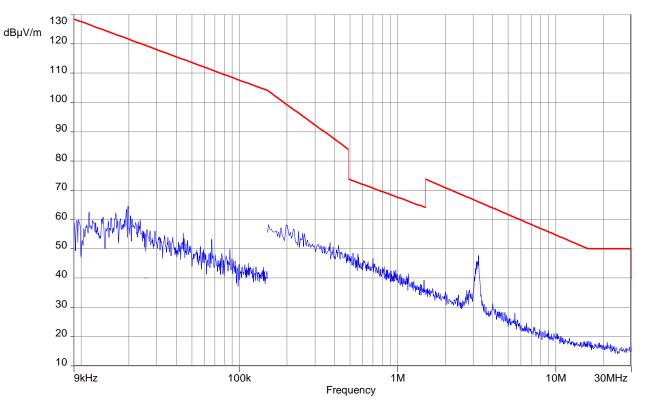

Measurement results:

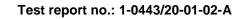

Low / Mid / High frequency							
f [GHz]	Detector	Measured level [dBµV/m]	Margin				
0.033454	Quasi Peak	9.78	20.2				
0.051957	Quasi Peak	8.87	21.1				
0.066539	Quasi Peak	5.92	24.1				
0.107624	Quasi Peak	6.91	26.6				
0.757599	Quasi Peak	18.30	17.7				
0.938952	Quasi Peak	20.00	16.0				
24.0288	RMS	42.03	11.97				
25.3345	RMS	29.88	24.12				
29.7370	RMS	34.16	19.84				
49.1760	RMS	39.98	14.02				
100.4020	RMS	49.69	4.31				

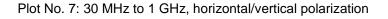
Note:

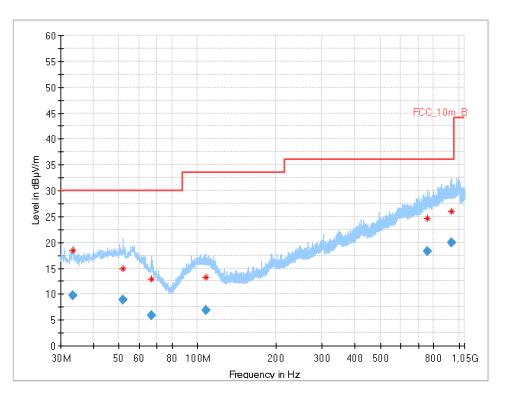
If not stated otherwise, the plots presented below show the maximum detected signals for all frequency modes (flow, fmid, fhigh).


Measurements above 50 GHz were performed on a short measurement distance (≤1m) to improve the minimum sensitivity of the test system. A correction factor of 20*log(d/3m) is already considered in the plots.

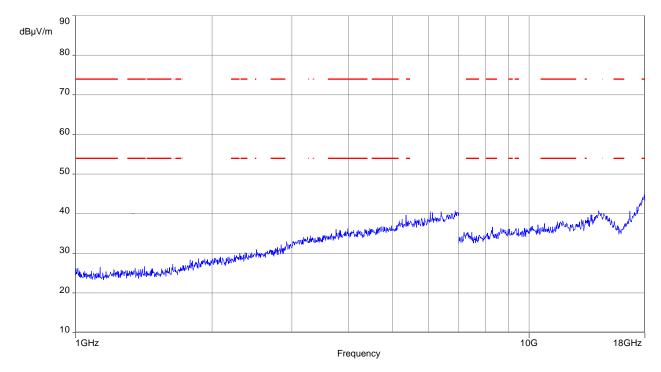

Plot No. 4: 9 kHz to 30 MHz, horizontal/vertical polarization, flow


CTC I advanced

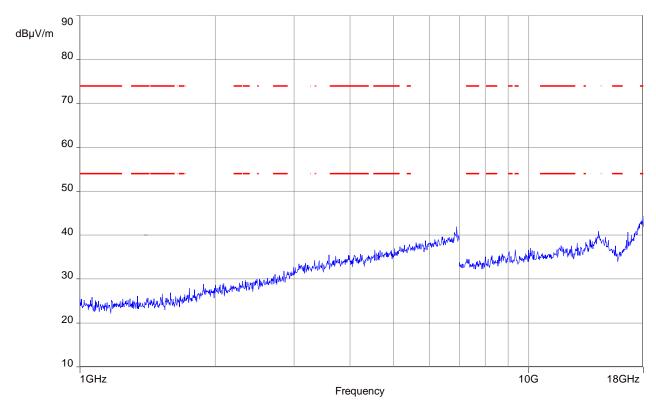


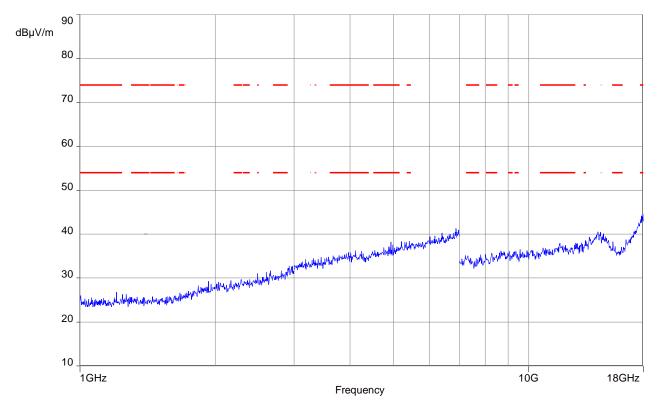

Plot No. 6: 9 kHz to 30 MHz, horizontal/vertical polarization, fhigh

CTC I advanced



Final_Result


Frequency (MHz)	QuasiPea k (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
33.454	9.78	30.0	20.2	1000	120.0	126.0	V	198	12
51.957	8.87	30.0	21.1	1000	120.0	400.0	V	135	14
66.539	5.92	30.0	24.1	1000	120.0	124.0	V	225	11
107.624	6.91	33.5	26.6	1000	120.0	378.0	Н	0	13
757.599	18.30	36.0	17.7	1000	120.0	209.0	Н	-27	22
938.952	20.00	36.0	16.0	1000	120.0	400.0	Н	180	24


Plot No. 8: 1 GHz to 18 GHz, horizontal/vertical polarization, flow

Plot No. 9: 1 GHz to 18 GHz, horizontal/vertical polarization, fmid

CTC I advanced

Plot No. 10: 1 GHz to 18 GHz, horizontal/vertical polarization, fhigh

Plot No. 11: 18 GHz to 24.05 GHz, horizontal/vertical polarization

MultiView	Spectrum	× Sp	ectrum 2	× Spectr	um 3 🛛	×			-
Ref Level 90.0	0 dBµV	• RBW 1	MHz	_	_				_
Att		10 s 🗢 VBW 3		uto Sweep					
TDF "NARDA638_ Frequency Sw	_CABLE502_CBL	_1_18-26_5G_1I	M_DBUV"					o 1 Dk M	ax 🛛 2Rm Max
Effequency 5W	ЛССР							M2[2]	
									23.84750 GH
								M1[1]	42.03 dBµ
зо dвµv									24.02880 GH
	—H1 74.000 dBu								
	нт 74.000 авр	×							
70 dBµ∨									
50 dBµV									
оо авру-									
		H2 54.000) dBµV ———						
50 dBµV									
								. Andrew	ده بر اس د
the all the second second	monther and the hast	www.hoto.Mumana	Man Hall marker when the	a rell prover we want	ray Manter United to and the test	a have a have been a have a have been a	and the many of the second	A way way and a way a way	a far a f
30 dBµV									M2
minunt			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\sim\sim\sim\sim$	└			μ	$\sim \sim \sim \sim$
18.0 GHz			1001 pt	s	60	5.0 MHz/	I	1	24.05 GH
· · · · · · · · · · · · · · · · · · ·	v					~	Measuring		26.10.202 16:35:4

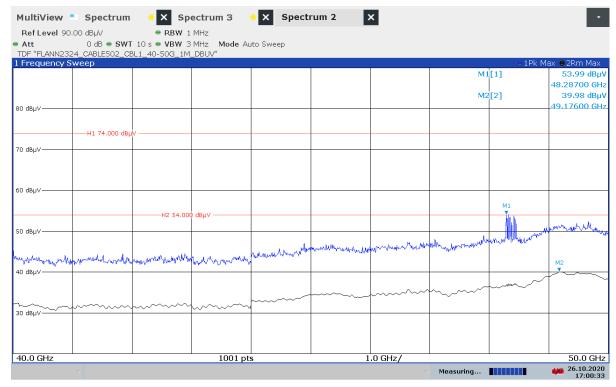
16:35:41 26.10.2020

CTC I advanced

Plot No. 12: 24.25 GHz to 26.5 GHz, horizontal/vertical polarization

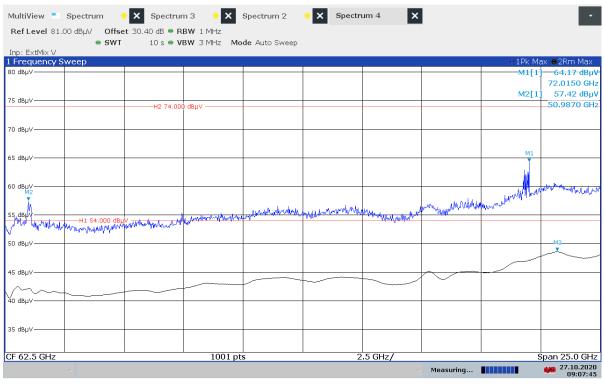
MultiView = Spec	trum X Spectrum 3	× Spectrum 2	×	•
Ref Level 90.00 dBµV	RBW 1 MHz			
● Att 0 dB (● SWT 10 s ● VBW 3 MHz Mode Au	uto Sweep		
	02_CBL1_18-26_5G_1M_DBUV"			
1 Frequency Sweep		1		o 1Pk Max ⊜2Rm Max
				M2[2] 29.88 dBµV
				25.33450 GHz
				M1[1] 48.51 dBµV
80 dBµV				24.25110 GHz.
H1 74.	000 dBµV			
70 dBuV				
70 авµv				
60 dBµV				
	H2 54.000 UBPV			
30 dвµV				
N I				
M				
40 dely many hand much mention	Later and along a Maril on the	in addrawally where we	where a part warran Marshalmersh we	and the property and the property and the property of the prop
40 dBpv	www.werken.werken.werken.	1 mar 1 m	We have a start of the second s	Mart A Orth Martin He Contraction
30 dBµV		M2		
				+
24.25 GHz	1001 pt	<u> </u>	225.0 MHz/	26.5 GHz
	1001 pt			06.40.0000
~			 Measuring. 	16:37:36

Plot No. 13: 26.5 GHz to 40 GHz, horizontal/vertical polarization


Ref Level 90.0									
Att			MHz Mode AL	ito Sweep					
Frequency Sv	_CABLE502_CBL veep	.1_26_5-40G_1	M_DBOA.					o 1Pk Ma	ax 🛛 2Rm Max
								M1[1]	-
									37.1880 GH
								M2[2]	
ю dвµV									_39.7370 G
	— H1 74.000 dBµV	/							
о dвµV									
о uвµv —									
i0 dBµV									
		H2 54.000) dBµV ————						
50 dBµV									
o app v							M1		
6						I day in more	an second	mater or w	month
some many all and and	with and the second	mannowand	an armine have	anner have	mannen	a survey was weeken	and Manufactors a	when what	www.men
ю dвµ∨									
									Ma
			· · · · · · · · · · · · · · · · · · ·			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	In min		hamment
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							~.
26.5 GHz			1001 pt:	۱ ۶	1	.35 GHz/	1	<u> </u>	40.0 GF

16:46:28 26.10.2020

^{16:37:37 26.10.2020} 

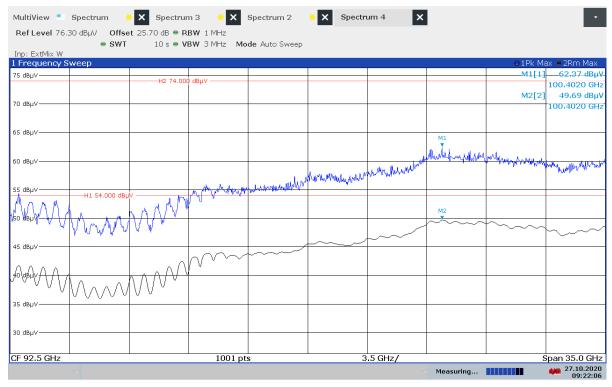



Plot No. 14: 40 GHz to 50 GHz, horizontal/vertical polarization



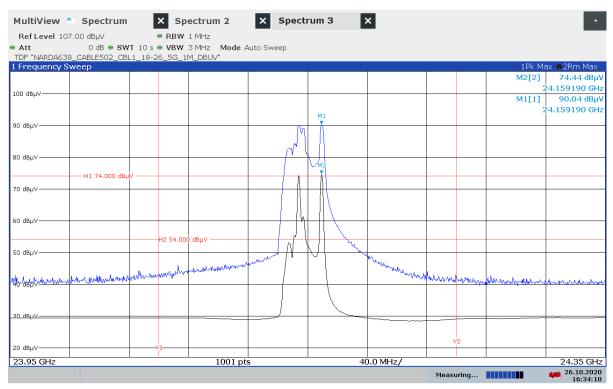
^{17:00:33 26.10.2020} 

#### Plot No. 15: 50 GHz to 75 GHz, horizontal/vertical polarization




09:07:45 27.10.2020

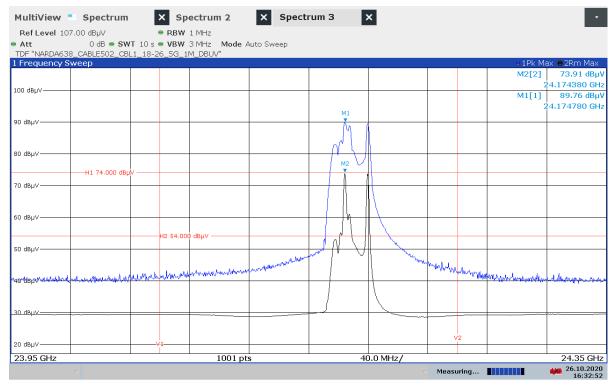





Plot No. 16: 75 GHz to 110 GHz, horizontal/vertical polarization

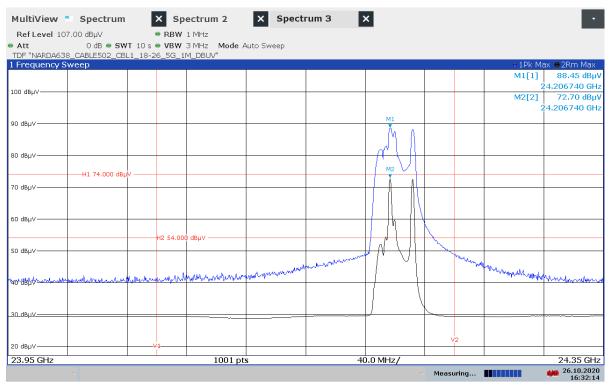


09:22:06 27.10.2020


Plot No. 17: Band-Edge-Compliance, low frequency mode



16:34:11 26.10.2020




Plot No. 18: Band-Edge-Compliance, middle frequency mode



16:32:53 26.10.2020





16:32:14 26.10.2020



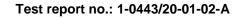
# 11.4 Conducted emissions < 30 MHz

# **Description:**

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

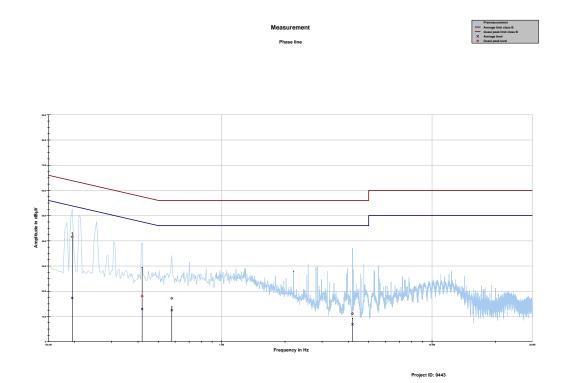
### Measurement:

Parameter		
Detector:	Peak - Quasi Peak / Average	
Sweep time:	Auto	
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz	
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz	
Span:	9 kHz to 30 MHz	
Trace-Mode:	Max Hold	

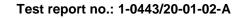

### Limits:

FCC			IC
CFR Part 15.207(a)		RSS-Gen 8.8	
Conducted Spurious Emissions < 30 MHz			
Frequency (MHz)	Quasi-Peak (dBµV/m)		Average (dBµV/m)
0.15 – 0.5	66 to 56*		56 to 46*
0.5 – 5	56		46
5 - 30.0	60		50

*Decreases with the logarithm of the frequency

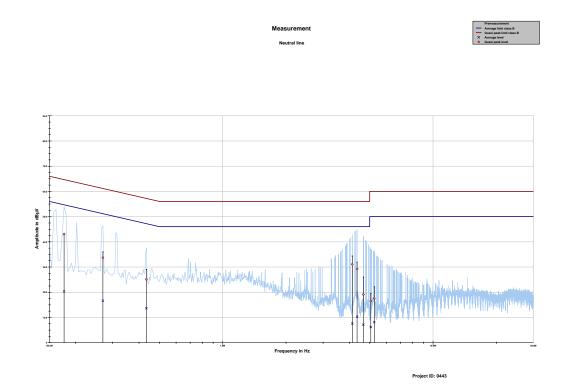

### Measurement results:

See plots below.






# Plot 20: Phase line




Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
0.194775	41.61	22.22	63.830	17.29	37.43	54.721
0.418650	18.05	39.42	57.475	12.89	35.44	48.324
0.579094	17.18	38.82	56.000	12.45	33.55	46.000
4.187213	11.10	44.90	56.000	6.88	39.12	46.000





# Plot 21: Neutral line



Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin Average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
0.176119	43.02	21.65	64.667	20.30	34.96	55.254
0.269400	33.67	27.46	61.136	16.62	35.97	52.589
0.433575	25.14	32.04	57.184	13.66	34.24	47.898
4.131244	31.05	24.95	56.000	7.58	38.42	46.000
4.355119	29.20	26.80	56.000	10.29	35.71	46.000
4.664813	19.12	36.88	56.000	7.13	38.87	46.000
5.060325	16.50	43.50	60.000	6.17	43.83	50.000
5.254350	17.52	42.48	60.000	8.10	41.90	50.000



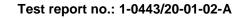
# **11.5 Frequency Stability**

### **Description:**

§15.215(c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

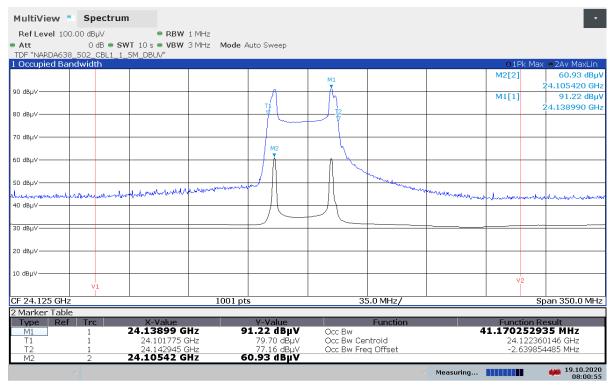
### Measurement:

Parameter		
Detector:	Pos-Peak	
Sweep time:	10 s	
Resolution bandwidth:	1 MHz	
Video bandwidth:	3 MHz	
Trace-Mode:	Max Hold	
Measurement uncertainty	Span/1000	


### Limits:

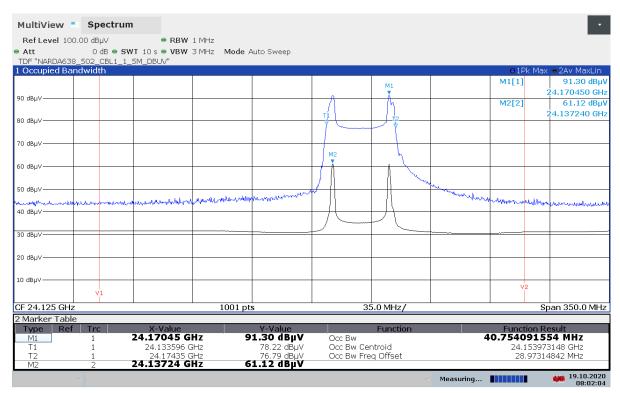
FCC	IC	
CFR Part 15.215(c)	RSS-Gen 8.11	
Frequency Stability		
As specified in Section 15.215(c), the bandwidth of the fundamental emission must be contained within the frequency band over the temperature range -20 to +50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage.		



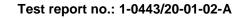

# Measurement results:

Test Conditions	Frequency (GHz)	Bandwidth (MHz)
-40 °C / V _{nom} / f _{low}	24.101 (f _L ), 24.143 (f _H )	41
-40 °C / V _{nom} / f _{mid}	24.133 (f _L ), 24.174 (f _H )	40
-40 °C / V _{nom} / f _{high}	24.167 (f _L ), 24.208 (f _H )	40
-20 °C / V _{nom} / f _{low}	24.120 (f _L ), 24.158 (f _H )	38
-20 °C / V _{nom} / f _{mid}	24.152 (f _L ), 24.189 (f _H )	37
-20 °C / V _{nom} / f _{high}	24.186 (f _L ), 24.223 (f _H )	37
20 °C / V _{min/nom/max} / flow	24.136 (f _L ), 24.171 (f _H )	35
20 °C / V _{min/nom/max} / f _{mid}	24.166 (f _L ), 24.201 (f _H )	35
20 °C / V _{min/nom/max} / f _{high}	24.198 (f _L ), 24.233 (f _H )	35
50 °C / V _{nom} / f _{low}	24.122 (f _L ), 24.164 (f _H )	42
50 °C / V _{nom} / f _{mid}	24.152 (f _L ), 24.194 (f _H )	42
50 °C / V _{nom} / f _{high}	24.183 (f _L ), 24.225 (f _H )	42
85 °C / V _{nom} / f _{low}	24.090 (f _L ), 24.143 (f _H )	53
85 °C / V _{nom} / f _{mid}	24.119 (f _L ), 24.172 (f _H )	53
85 °C / V _{nom} / f _{high}	24.150 (f _L ), 24.202 (f _H )	53



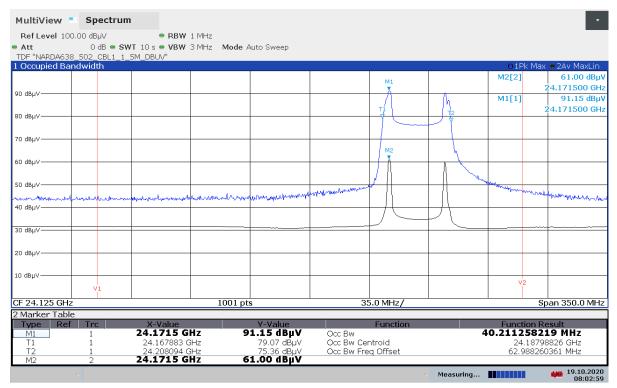



### Plot 22: -40 °C, low frequency mode, Vnom



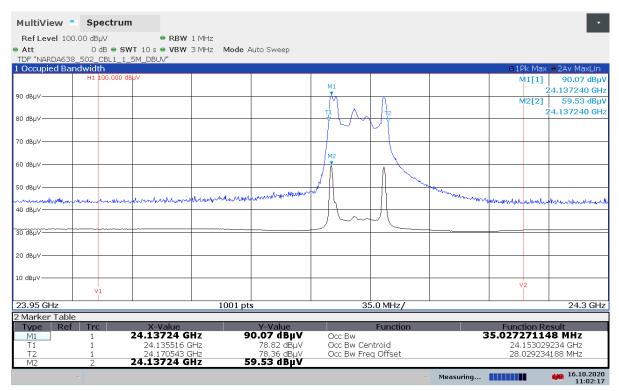

08:00:56 19.10.2020

Plot 23: -40 °C, middle frequency mode, Vnom

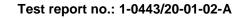



08:02:04 19.10.2020



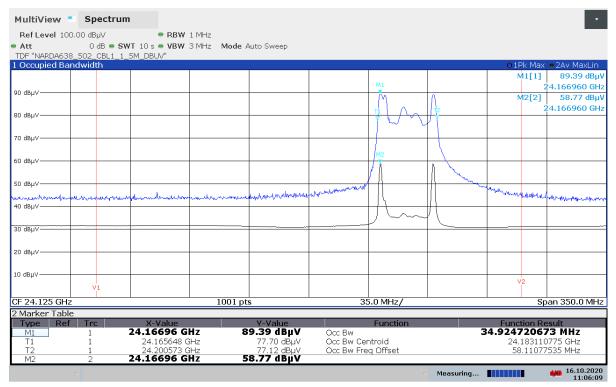



### Plot 24: -40 °C, high frequency mode, Vnom




08:03:00 19.10.2020

Plot 25: 20 °C, low frequency mode, Vnom

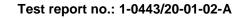



11:02:17 16.10.2020



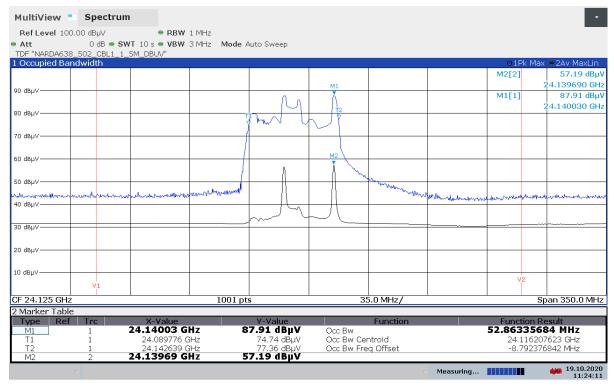


#### Plot 26: 20 °C, middle frequency mode, Vnom



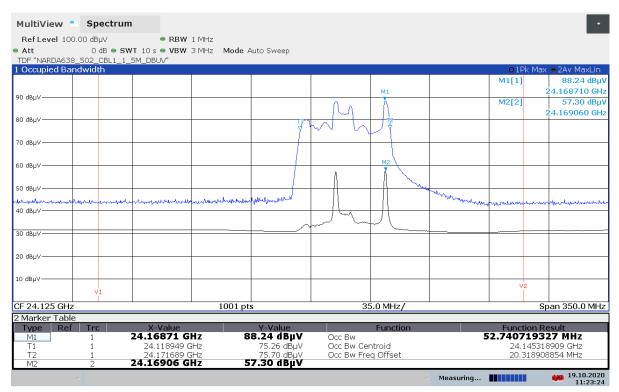

11:06:09 16.10.2020

Plot 27: 20 °C, high frequency mode, Vnom

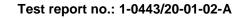



11:07:19 16.10.2020



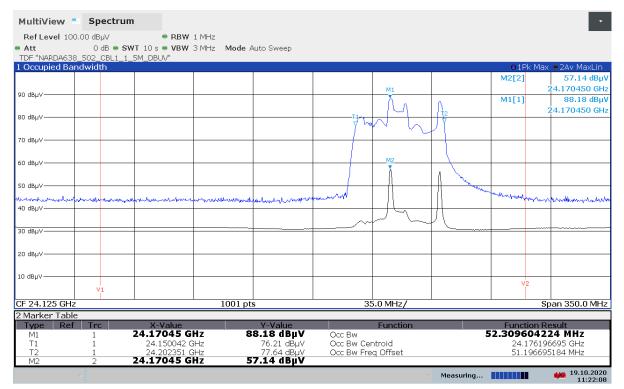



# Plot 28: +85 °C, low frequency mode, Vnom




11:24:12 19.10.2020

Plot 29: +85 °C, middle frequency mode, Vnom




11:23:25 19.10.2020





### Plot 30: +85 °C, high frequency mode, V_{nom}



11:22:08 19.10.2020

# Test report no.: 1-0443/20-01-02-A



#### Annex A Glossary

EUT	Equipment under test
DUT	Device under test
UUT	
	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
C	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
00	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
OOB	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz



# Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2020-11-24
A	AC conducted measurements added, Editorial changes	2020-12-18

# Annex C Accreditation Certificate

first page	last page
<image/> <image/> <image/> <text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text>	Office Berlin Spittelmarkt 10 10117 Berlin       Office Frankfurt am Main Europa-Alles 52 60327 Frankfurt am Main       Office Braunschweig Bundesalles 100 38126 Braunschweig         The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAkks). Deempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overlest.         No impression shall be updAkks.       The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStellaG) of 31 July 2009 (Frederal Law Gastits 1 =, 3223) and the Regulation (EQ) to 755/2026 of the European Arrianment and en to the disconting 1 and end the succentification (EQ) to 755/2026 of the European arrianment and en to the disconting 1 approximation (EQ) and the European Comparison prior the succentification accreditation (EQ) intermentional Laword and the European Comparison (EQ) and the European Comparison priorities to accreditation (EQ) intermentional Laword and the European Comparison (EQ) and the European Comparison priorities to accreditation (EQ) intermentional Laword and the European Comparison (EQ) and the European Comparison for the Comparison (EQ) intermentional Laword and the European Comparison (EQ) and the European Comparison for the Comparison for Comparison (EQ) and the European Comparison for Comparison (EQ) intermentional Laword and the European Comparison for the European Comparison for Comparison (EQ) intermentional Laword and the European Comparison for the European Comparison for Comparison (EQ) intermentional Laword and the European Comparison for Comparison (EQ) intermentional Laword and the European Comparison for Compares for Mutual Recomparison for Comparison for Comparison for Comp
Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020 by order one in the integration of Division	The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org IIAE: www.iaf.nu IAF: www.iaf.nu
The certificate together with its annex reflects the status at the time of the delte of same. The current tatus of the scope of loccontaination are bound in the deltabase of accordinal devices of Dotache Alkreditoryngsistile Gmobi. https://www.dalks.dolta.doltab/eb/content/bccredited-bodies-dalks.	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf