


## FCC TEST REPORT FOR CERTIFICATION



The device bearing the brand name and model specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. The client should not use it to claim product endorsement by TAF or any government agencies.

The test results in the report only apply to the tested sample.

I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. It is not allowed to copy this report even partly without the allowance of the test laboratory.



## TABLE OF CONTENTS

| TABLE OF CONTENTS                                        | 2  |
|----------------------------------------------------------|----|
| 1. CERTIFICATE OF INFORMATION                            | 3  |
| 2. SUMMARY OF TEST RESULTS                               | 4  |
| 3. GENERAL INFORMATION                                   | 5  |
| 4. UNCERTAINTY                                           | 6  |
| 5. TEST CONDITIONS AND EUT INFORMATION                   | 7  |
| 6. SUPPORT EQUIPMENT DEVICE                              | 9  |
| 7. EUT INFORMATION                                       | 10 |
| 8. RECOMMENDATION/CONCLUSION                             | 11 |
| 9. ANTENNA REQUIREMENTS                                  | 11 |
| 10. DESCRIPTION OF TEST                                  |    |
| 10.1 Conducted Emissions                                 | 12 |
| 10.2 Radiated Emissions                                  | 14 |
| 11. 6 DB BANDWIDTH                                       | 17 |
| 12. PEAK OUTPUT POWER AND E.I.R.P                        | 18 |
| 13. PEAK POWER SPECTRAL DENSITY                          | 19 |
| 14. TEST RESULTS                                         | 20 |
| 14.1 Conducted Emission(Line)                            | 20 |
| 14.2 Conducted Emission(Neutral)                         | 21 |
| 14.3 Radiated Emissions                                  | 22 |
| 14.4 6 dB Modulated Bandwidth                            | 26 |
| 14.5 Peak Output Power and E.I.R.P                       | 28 |
| 14.6 Peak power Spectral Density                         | 31 |
| 14.7 Radiated Spurious Emissions (above 1 GHz to 25 GHz) | 34 |
| 14.8 Conducted Band Edge Emission                        | 38 |
| 15. TEST EQUIPMENT                                       | 41 |



## **1. Certificate of Information**

#### Applicant / Manufacture

| Company name            |           |                                                                                          |  |
|-------------------------|-----------|------------------------------------------------------------------------------------------|--|
| Address                 |           | , 7F, 11-41, Simin-daero 327beon-gil, Dongan-gu, Anyang-si, Gyeonggi-<br>public of Korea |  |
| Telephone               | . +82-7   | 0-7808-4268                                                                              |  |
| /Facsimile              | ·         |                                                                                          |  |
| Equipment Under         | Test (EU1 | D                                                                                        |  |
| FCC ID                  |           | : 2ASXI-SRC10-BLE                                                                        |  |
| Classification of insta | allation  | : Digital Transmission System (DTS)                                                      |  |
| Test item particulars   |           | : FCC 47 CFR Part 15 subpart C                                                           |  |
| Trademark               |           | : N/A                                                                                    |  |
| Model and/or type re    | eference  | : SRC10-BLE / Bluetooth Response Device                                                  |  |

November 23, 2018

Test Voltage : 3.0 Vdc

: 2402 MHz ~ 2480 MHz

January 01, 2019 to January 24, 2019

Operating Voltage : 3.0 Vdc(Coin Battery)

Pre-production, not damaged

: N/A

N/A

DC IN

N/A

N/A

:

:

Additional model name Serial number

Date (s) of performance of tests:

Date of receipt of test item

EUT condition

Interface Ports

EUT Power Source

Internal clock frequency

Firmware version

Note

#### **Model Description**

- NONE

#### Model Specification

- NONE

### Test Performed

Test started & : January 01, 2019 to January 24, 2019 completed Location : NTREE Co., Ltd.

: NTREE Co., Ltd. \*\*\* To be continued next page \*\*\*



## 2. Summary of Test Results

### **Test Specification**

| Purpose of the test | Compliance test to the | following standard    |
|---------------------|------------------------|-----------------------|
| Applied standard    | FCC 47 CFR Part 15C    |                       |
| Classification      | N/A                    |                       |
| Deviations from     |                        |                       |
| Standard            | FCC KDB 558074 D01     | DTS Meas Guidance v05 |
| Test Method         |                        |                       |

| FCC Part15(15.247), Subpart C |                            |         |        |  |  |
|-------------------------------|----------------------------|---------|--------|--|--|
| Standard Section              | Test Item                  | Verdict | Remark |  |  |
| 15.207                        | Conducted Emission         | N/A     | 1)     |  |  |
| 15.209                        | Radiated Emission          | PASS    | -      |  |  |
| 15.247(a)(2)                  | 6dB Bandwidth              | PASS    | -      |  |  |
| 15.247(b)                     | Peak Output Power          | PASS    | -      |  |  |
| 15.247(c)                     | Radiated Spurious Emission | PASS    | -      |  |  |
| 15.247(e)                     | Power Spectral Density     | PASS    | -      |  |  |
| 15.205                        | Band Edge Emission         | PASS    | H , -  |  |  |
| 15.203                        | Antenna Requirement        | PASS    |        |  |  |

Remark

\* N/A: denote test is not applicable in this test report.

\* All test items were verified and recorded according to the standards and without any deviation during the test.

1) Used to only Coin battery.

## 3. General Information

### **Purpose**

This document is based on the Electromagnetic Interference (EMI) tests performed on the "Bluetooth Response Device". The measurements were performed according to the measurement procedure described in ANSI C 63.4:2014. The tests were carried out in order to confirm whether the electromagnetic emissions from the EUT( Equipment Under Test), are within the class B limits defined in FCC Part 15, Subpart C- "Section 15.207- Conducted limits" and "Section 15.209-Radiated emission limits".

#### **Test Performed**

The Electromagnetic compatibility measurement facilities are located on at 30,Pajangcheon-ro 44beon-gil,Jangan-gu, Suwon-si, Gyeonggi-do Korea. Description details of test facilities were submitted to the RRA(National Radio Research Agency) according to the requirement of ISO/IEC 17025 and KOLAS(Korea Laboratory Accreditation Scheme) and FCC(Federal Communications Commission) and Vietnam MRA and TuV SUD CARAT and TuV NORD, UL WTDP.

RRA Designation No.: KR0175

KOLAS Accreditation No. : KT511

FCC(DoC) Test Firm Registration No. : KR0175

Vietnam MRA Designation No.: KR0175

(QCVN 18:2014/BTTTT, QCVN 54:2011/BTTTT,TCVN 7317:2003(CISPR 24:1997),TCVN 7189:2009(CISPR 22:2006)

TuV SUD CARAT : ROK1211C

TuV NORD : KL-3879/11

#### UL WTDP .: 1107-S-131

- Laboratory : NTREE Co., Ltd.
- Address : 30, Pajangcheon-ro 44beon-gil, Jangan-gu, Suwon-si, Gyeonggi-do Korea
- Telephone : +82-31-893-1000
- Facsimile : +82-31-893-0111

#### SITE MAP





## 4. Uncertainty

#### Measurement uncertainty

| Radiated disturbance  | 30 MHz to 1 GHz    | 3.6 dB |
|-----------------------|--------------------|--------|
|                       | 1 GHz to 18 GHz    | 7.8 dB |
| Conducted disturbance | 0.15 MHz to 30 MHz | 1.8 dB |

The coverage factor k=2 yields approx. a 95% level of confidence for near-normal distribution typical of most measurement results.





## **5. Test Conditions and EUT Information**

### **Operation During Test**

The EUT is the transceiver which is the Bluetooth LE mode.

The Laptop was used to control the EUT to transmit the wanted TX channel by the testing program (QBlue ISP Studio) which manufacturer supported. The Laptop was removed after controlling the EUT to transmit the wanted signal. The EUT was tested at the lowest channel, middle channel and the highest channel with the maximum output power in accordance with the manufacturer's specifications. The worst data were recorded in the report.

#### Table of test power setting

| Frequency band | Mode | Power setting Level |
|----------------|------|---------------------|
| 2402~2480 MHz  |      | Default             |

Table of test channels

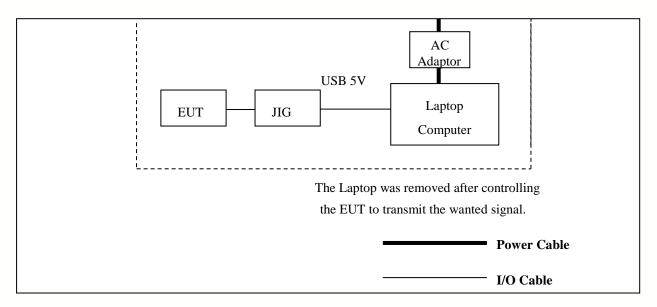
| Frequency band | Mode | Test Channel (CH) | Frequency (MHz) |
|----------------|------|-------------------|-----------------|
| 2.4 GHz        | LE   | 0                 | 2402            |
|                |      | 19                | 2440            |
|                |      | 39                | 2480            |



#### Table of test modes

| Test Items                                        | Mode | Modulation | Test Channel<br>(CH) |  |
|---------------------------------------------------|------|------------|----------------------|--|
| Radiated Emissions                                | LE   | GFSK       | 0/19/39              |  |
| Conducted Emissions                               | LE   | GFSK       | 0/19/39              |  |
| 6 dB Bandwidth                                    |      |            | 0/19/39              |  |
| Peak Output Power                                 |      |            | 0/19/39              |  |
| Peak Power Spectral Density                       | LE   | GFSK       | 0/19/39              |  |
| Radiated Spurious Emission,<br>Band edge Emission |      |            | 0/19/39              |  |
|                                                   |      |            |                      |  |

#### Antenna TX mode information:


| Frequency<br>band | Mode | Antenna TX mode | Support MIMO |
|-------------------|------|-----------------|--------------|
| 2.4 GHz           | LE   | ■ 1TX, 🗌 2TX    | 🗌 Yes, 🔳 No  |



## 6. Support Equipment Device

| EUT             | Bluetooth Response Device<br>Model : SRC10-BLE             | S/N: N/A              |
|-----------------|------------------------------------------------------------|-----------------------|
| Laptop Computer | ASUS<br>Model : X550Z                                      | FCC DoC<br>S/N : 6298 |
| AC/DC Adapter   | ASUS<br>Model : ADP-65GD B<br>1.5 m unshielded power cable | FCC DoC<br>S/N : N/A  |

### Setup Drawing





## 7. EUT Information

The EUT is the Bluetooth Response DeviceTransceiver FCC ID: 2ASXI-SRC10-BLE.

This unit supports full qualified Bluetooth 4.0 with LE standard system.

| Specifications:                   |                             |
|-----------------------------------|-----------------------------|
| Category                          | Bluetooth Response Device   |
| Model Name                        | SRC10-BLE                   |
| Brand Name                        | SOUL2ON Inc.                |
| RF Frequency                      | 2402 MHz ~ 2480 MHz         |
| Maximum Conducted<br>Output Power | -22.68 dBm                  |
| Channels                          | 40ch                        |
| Antenna Gain (peak)               | -12.51 dBi                  |
| Antenna Setup                     | 1TX / 1RX                   |
| Modulations                       | GFSK(BLE)                   |
| Temperature Range                 | -10℃ ~ 55 ℃                 |
| Voltage                           | 3.0 Vdc (Coin Battery)      |
| Dimensions (H x W x D)            | About 58 mm x 31 mm X 10 mm |
| Weight                            | About 30 g                  |
| H/W Status                        | -                           |
| S/W Status                        | -                           |
| Remarks                           | -                           |



## 8. Recommendation/Conclusion

The data collected shows that the **SOUL2ON Inc. Bluetooth Response Device FCC ID: 2ASXI-SRC10-BLE** is in compliance with Part 15.247 of the FCC Rule specification.

## 9. Antenna Requirements

#### §15.203 of the FCC Rules part 15 Subpart C

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The antenna of the SOUL2ON Inc. Bluetooth Response Device FCC ID: 2ASXI-SRC10-BLE is permanently attached and there are no provisions for connection to an internal

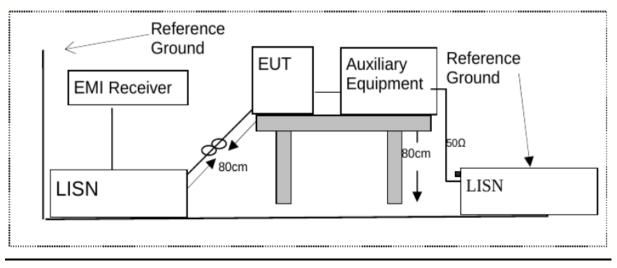
antenna. It complies with the requirement of §15.203.





## **10. Description of Test**

### **10.1 Conducted Emissions**


The Line conducted emission test facility is located inside a 8.0 x 5.0 x 3.0 meter shielded enclosure.

It is manufactured by DAMS Tec's. The shielding effectiveness of the shielded room is in accordance with IEEE 299, MIL-STD-285 or NSA CISPR 16-1-4 1 m x 1.5 m wooden table 0.8 m height is placed 0.4 m away from the vertical wall and 1.5 m away from the side of wall of the shielded room Rohde & Schwarz (ENV216) and (ENV216) of the 50 ohm/50  $\mu$ H Line Impedance Stabilization Network (LISN) are bonded to the shielded room. The EUT is powered from the Rohde & Schwarz LISN (ENV216) and the support equipment is powered from the Rohde & Schwarz LISN (ENV216). Power to the LISNs are filtered by high-current high insertion loss Power line filters. The purpose of filter is to attenuate ambient signal interference and this filter is also bonded to shielded enclosure. All electrical cables are shielded by tinned copper zipper tubing with inner diameter of 1 / 2 ".

If DC power device, power will be derived from the source power supply it normally will be powered

from and this supply lines will be connected to the LISNs, All interconnecting cables more than 1 meter were shortened by non inductive bundling (serpentinefashion) to a 1 meter length.

Sufficient time for EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME from the EUT.



The spectrum was scanned from 150 kHz to 30 MHz with 200 msec sweep time. The frequency producing the maximum level was re-examined using the EMI test receiver. (Rohde & Schwarz ESR3 and ESR7). The detector functions were set to CISPR quasi-peak



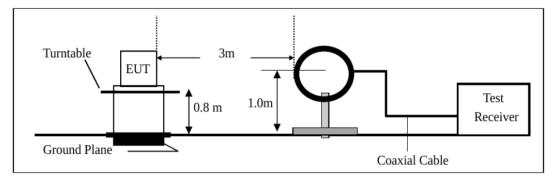
mode & average mode. The bandwidth of receiver was set to 9 kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each EME emission.

Each emission was maximized by; switching power lines; varying the mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and of support equipment, and powering the monitor from the floor mounted outlet box and computer aux AC outlet, if applicable; whichever determined the worst case emission.

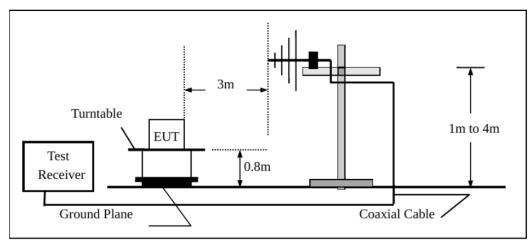
Each EME reported was calibrated using the R&S signal generator.






### **10.2 Radiated Emissions**

The measurement was performed at the test site that is specified in accordance with ANSI C63.10-2013.


The spurious emission was scanned from 9 kHz to 30 MHz using Loop Antenna(Schwarzbeck, FMZB1519) and 30 to 1000 MHz using Trilog broadband test antenna(Schwarzbeck, VULB 9168). Above 1 GHz, Horn antenna (Schwarzbeck BBHA 9120D: up to 18 GHz, Schwarzbeck BBHA9170 : 18 to 40 GHz) was used.

For emissions testing at below 1GHz, The test equipment was placed on turntable with 0.8 m above ground. For emission measurements above 1 GHz, The test equipment was placed on turntable with 1.5 m above ground. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The EUT, cable, wire arrangement and mode of operation that has the highest amplitude relative to the limit was selected. Then, the turn table was rotated from 0° to 360° and an antenna mast was moved from 1 m to 4 m height to maximize the suspected highest amplitude signal. The final maximized level was recorded.

(a) For radiated emissions below 30MHz



(b) For radiated emissions from 30MHz to 1000MHz



At frequencies below 1000 MHz, measurements performed using the CISPR quasi-peak detection. At frequencies above 1000 MHz, measurements performed using the peak and average measurement procedures described in KDB "558074 D01 15.247 Meas Guidance v05"



in section 12.2.4 and 12.2.5.3. Peak emission levels were measured by setting the analyzer RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Trace mode = max hold. Average emission levels were measured by setting the analyzer RBW = 1 MHz, VBW = 3kHz, Detector = Peak, Trace mode = max hold. Allow max hold to run for at least 50 times (1/duty cycle) traces.

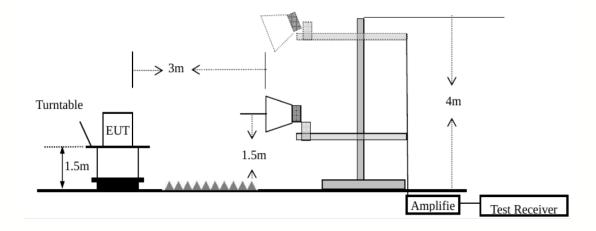
According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to FCC Part15.205, Restricted bands

.....

| -                 |                     |               |             |
|-------------------|---------------------|---------------|-------------|
| MHz               | MHz                 | MHz           | GHz         |
| 0.090-0.110       | 16.42-16.423        | 399.9-410     | 4.5-5.15    |
| 10.495-0.505      | 16.69475-16.69525   | 608-614       | 5.35-5.46   |
| 2.1735-2.1905     | 16.80425-16.80475   | 960-1240      | 7.25-7.75   |
| 4.125-4.128       | 25.5-25.67          | 1300-1427     | 8.025-8.5   |
| 4.17725-4.17775   | 37.5-38.25          | 1435-1626.5   | 9.0-9.2     |
| 4.20725-4.20775   | 73-74.6             | 1645.5-1646.5 | 9.3-9.5     |
| 6.215-6.218       | 74.8-75.2           | 1660-1710     | 10.6-12.7   |
| 6.26775-6.26825   | 123-138             | 2200-2300     | 14.47-14.5  |
| 8.291-8.294       | 149.9-150.05        | 2310-2390     | 15.35-16.2  |
| 8.362-8.366       | 156.52475-156.52525 | 2483.5-2500   | 17.7-21.4   |
| 8.37625-8.38675   | 156.7-156.9         | 2690-2900     | 22.01-23.12 |
| 8.41425-8.41475   | 162.0125-167.17     | 3260-3267     | 23.6-24.0   |
| 12.29-12.293      | 167.72-173.2        | 3332-3339     | 31.2-31.8   |
| 12.51975-12.52025 | 240-285             | 3345.8-3358   | 36.43-36.5  |
| 12.57675-12.57725 | 322-335.4           | 3600-4400     | (2)         |
| 13.36-13.41       |                     |               |             |
|                   |                     |               |             |

| Frequency (MHz) | Field strength<br>(microvolts/meter) | Measurement distance (meters) |
|-----------------|--------------------------------------|-------------------------------|
| 0.009–0.490     | 2400/F(kHz)                          | 300                           |
| 0.490–1.705     | 24000/F(kHz)                         | 30                            |
| 1.705–30.0      | 30                                   | 30                            |
| 30–88           | 100                                  | 3                             |
| 88–216          | 150                                  | 3                             |
| 216–960         | 200                                  | 3                             |
| Above 960       | 500                                  | 3                             |

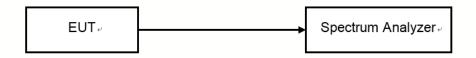

Radiated Emissions Limits per 47 CFR 15.209(a)

Limits of Radiated Emission Measurement(Above 1000MHz)

| Frequency(MHz) | Class B (dBuV/m) (at 3M) |         |  |  |  |
|----------------|--------------------------|---------|--|--|--|
|                | PEAK                     | AVERAGE |  |  |  |
| Above 1000     | 74                       | 54      |  |  |  |



(c) For radiated emissions above 1000MHz








## 11.6 dB Bandwidth

### **Test Setup**



### **Test Procedure**

EUTs 6 dB bandwidth is measured at low, middle, high channels with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level.

The spectrum analyzer setting is as follows.

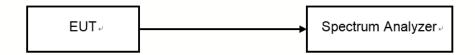
RBW = 100 kHz

VBW  $\geq$  3 x RBW

Detector = Peak

Trace mode = max hold

Sweep = auto couple


Allow the trace to stabilize.

The bandwidth measurement function on the spectrum analyzer is used to measure the 6 dB bandwidth.



## 12. Peak Output Power and E.I.R.P

### **Test Setup**



### **Test Procedure**

EUTs Maximum Peak Conducted Output Power is measured at low, middle, high channels with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level.

The spectrum analyzer setting is as follows.

RBW = 1 MHz

VBW = 3 MHz

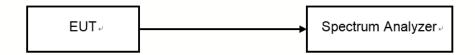
Span = fully encompass the DTS bandwidth

Detector = peak

Sweep time = auto couple

Trace mode = max hold

Allow the trace to stabilize.


Use peak marker function to determine the peak amplitude level.

E.I.R.P is calculated according to KDB412172 D01 Determining ERP and EIRP v01



## 13. Peak Power Spectral Density

### **Test Setup**



### **Test Procedure**

EUTs Peak Power Spectral Density is measured at low, middle, high channels with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level.

The spectrum analyzer setting is as follows.

Center frequency = DTS channel center frequency

Span = 1.5 times the DTS channel bandwidth

 $\mathsf{RBW} \ \geq \ 3 \ \mathsf{kHz}$ 

VBW  $\geq$  3 x RBW

Detector = peak

Sweep time = auto couple

Trace mode = max hold

Allow the trace to stabilize.

The peak search function on the spectrum analyzer is used to determine the maximum amplitude level within the RBW.



## 14. Test Results

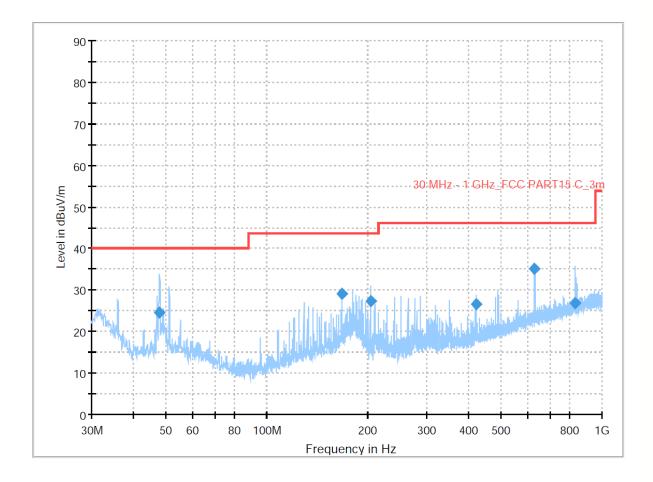
### 14.1 Conducted Emission(Line)





### 14.2 Conducted Emission(Neutral)






### **14.3 Radiated Emissions**

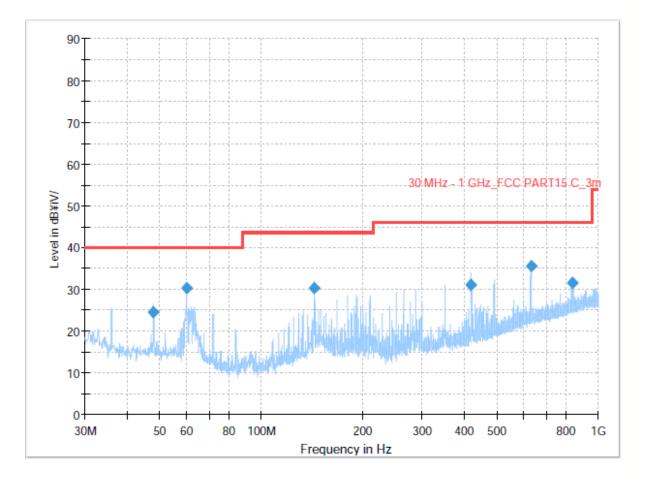
## **Test Report**

### **Common Information**

Test Description: Test Mode: Test Standard: Environment Conditions: Operator Name: Comment: SRC10-BLE 2 402 MHz FCC PART 15 C DC 3 V / Temp 22 Humi 51 KIM SOOYEON TX



### Final\_Result


| Frequency  | QuasiPeak | Limit    | Margin | Meas.  | Bandwidt | Height | Pol | Azimuth | Corr. |
|------------|-----------|----------|--------|--------|----------|--------|-----|---------|-------|
| (MHz)      | (dBuV/m)  | (dBuV/m) | (dB)   | Time   | h        | (cm)   |     | (deg)   | (dB)  |
|            |           |          |        | (ms)   | (kHz)    |        |     |         |       |
| 47.751000  | 24.60     | 40.00    | 15.40  | 2000.0 | 120.000  | 100.0  | V   | 117.0   | -27.9 |
| 167.934000 | 29.17     | 43.52    | 14.35  | 2000.0 | 120.000  | 300.0  | Н   | 136.0   | -27.1 |
| 203.921000 | 27.24     | 43.52    | 16.28  | 2000.0 | 120.000  | 100.0  | Н   | 0.0     | -29.2 |
| 420.231000 | 26.48     | 46.02    | 19.54  | 2000.0 | 120.000  | 200.0  | Η   | 300.0   | -21.8 |
| 629.848000 | 35.06     | 46.02    | 10.96  | 2000.0 | 120.000  | 100.0  | Н   | 20.0    | -16.6 |
| 832.675000 | 26.92     | 46.02    | 19.10  | 2000.0 | 120.000  | 100.0  | V   | 50.0    | -12.4 |



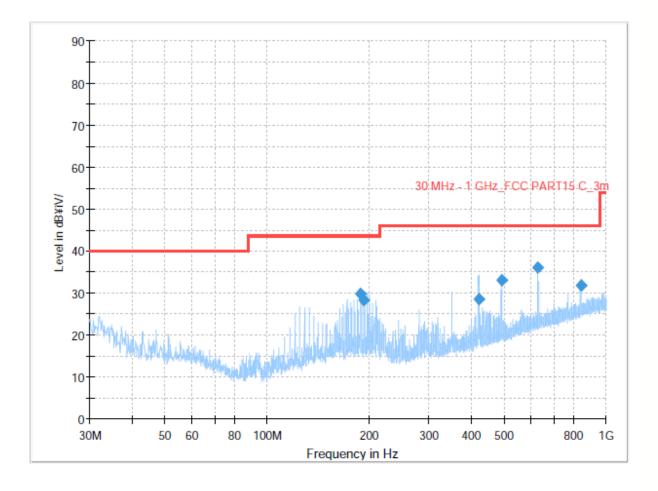
## Test Report

### **Common Information**

Test Description: Test Mode: Test Standard: Environment Conditions: Operator Name: Comment: SRC10-BLE 2 440 MHz FCC PART 15 C DC 3 V / Temp 22 Humi 51 KIM SOOYEON TX



### Final Result


| Frequency  | QuasiPeak | Limit    | Margin | Meas.  | Bandwidt | Height | Pol | Azimuth | Corr. |
|------------|-----------|----------|--------|--------|----------|--------|-----|---------|-------|
| (MHz)      | (dBuV/m)  | (dBuV/m) | (dB)   | Time   | h        | (cm)   |     | (deg)   | (dB)  |
|            |           |          |        | (ms)   | (kHz)    |        |     |         |       |
| 47.848000  | 24.59     | 40.00    | 15.41  | 2000.0 | 120.000  | 100.0  | V   | 0.0     | -27.9 |
| 59.973000  | 30.41     | 40.00    | 9.59   | 2000.0 | 120.000  | 100.0  | V   | 274.0   | -28.4 |
| 143.587000 | 30.29     | 43.52    | 13.23  | 2000.0 | 120.000  | 200.0  | Н   | 355.0   | -27.1 |
| 419.843000 | 31.18     | 46.02    | 14.84  | 2000.0 | 120.000  | 200.0  | Η   | 339.0   | -21.8 |
| 632.467000 | 35.60     | 46.02    | 10.43  | 2000.0 | 120.000  | 100.0  | Η   | 10.0    | -16.6 |
| 839.853000 | 31.69     | 46.02    | 14.33  | 2000.0 | 120.000  | 100.0  | Η   | 330.0   | -12.2 |



## Test Report

### **Common Information**

Test Description: Test Mode: Test Standard: Environment Conditions: Operator Name: Comment: SRC10-BLE 2 480 MHz FCC PART 15 C DC 3 V / Temp 22 Humi 51 KIM SOOYEON TX



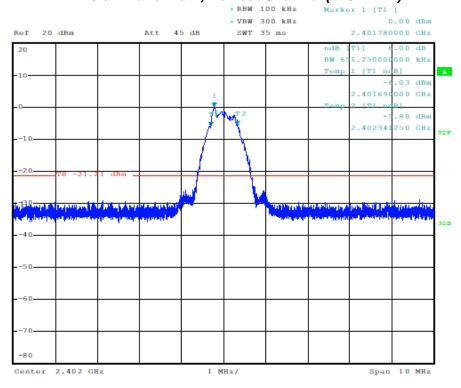
### Final Result

| Frequency  | QuasiPeak | Limit    | Margin | Meas.  | Bandwidt | Height | Pol | Azimuth | Corr. |
|------------|-----------|----------|--------|--------|----------|--------|-----|---------|-------|
| (MHz)      | (dBuV/m)  | (dBuV/m) | (dB)   | Time   | h        | (cm)   |     | (deg)   | (dB)  |
|            |           |          |        | (ms)   | (kHz)    |        |     |         |       |
| 188.401000 | 29.73     | 43.52    | 13.79  | 2000.0 | 120.000  | 100.0  | Н   | 38.0    | -28.6 |
| 192.475000 | 28.21     | 43.52    | 15.32  | 2000.0 | 120.000  | 100.0  | Н   | 3.0     | -28.9 |
| 420.231000 | 28.65     | 46.02    | 17.37  | 2000.0 | 120.000  | 200.0  | Н   | 11.0    | -21.8 |
| 491.914000 | 33.21     | 46.02    | 12.81  | 2000.0 | 120.000  | 200.0  | Н   | 279.0   | -20.0 |
| 629.848000 | 36.21     | 46.02    | 9.81   | 2000.0 | 120.000  | 100.0  | Η   | 340.0   | -16.6 |
| 843.248000 | 31.79     | 46.02    | 14.23  | 2000.0 | 120.000  | 200.0  | H   | 40.0    | -12.1 |

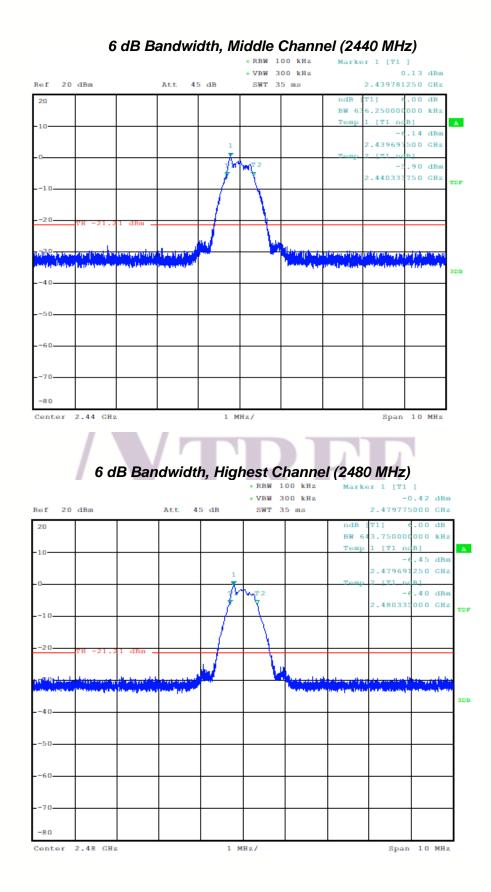
#### Notes:

1. All modes were measured and the worst-case emission was reported.




- 2. Pol. H = Horizontal, V = Vertical
- 3. Corr. = Antenna Factor + Cable Loss + Amplifier.
- 4. Measurements using CISPR quasi-peak mode below 1 GHz.
- 5. The radiated emissions testing were made by rotating the receive antenna with horizontal, Vertical polarization.
- 6. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).
- 7. The limit is on the FCC §15.209






### 14.4 6 dB Modulated Bandwidth

| Channel | Frequency<br>(MHz) | 6 dB modulated<br>bandwidth<br>(MHz) | Limit<br>(MHz) | Result |
|---------|--------------------|--------------------------------------|----------------|--------|
| Lowest  | 2402               | 0.651                                | 0.500          | Pass   |
| Middle  | 2440               | 0.636                                | 0.500          | Pass   |
| Highest | 2480               | 0.644                                | 0.500          | Pass   |



#### 6 dB Bandwidth, Lowest Channel (2402 MHz)



RF-FCC-011 ver.2



### 14.5 Peak Output Power and E.I.R.P

| Frequency<br>(MHz) | Peak Power<br>(dBm) |       |        | Result |
|--------------------|---------------------|-------|--------|--------|
| 2402               | 0.64                | 30.00 | -11.87 | Pass   |
| 2440               | 0.44                | 30.00 | -12.07 | Pass   |
| 2480               | 0.06                | 30.00 | -12.45 | Pass   |

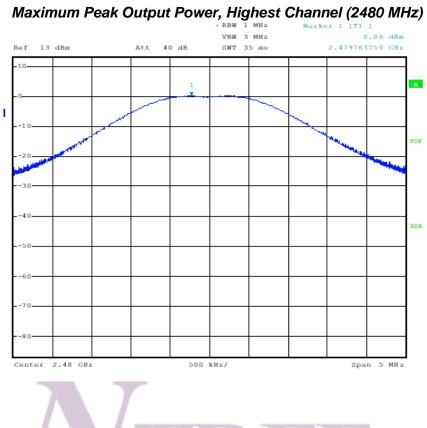
#### Note:

The following formular was used for spectrum offset:

Spectrum offset (dB) = Attenuator (dB) + Cable Loss (dB) + SMA Type Connector Loss (dB)


\*) E.I.R.P was calculated by following equation according to KDB412172 D01 Determining ERP and EIRP v01

 $E.I.R.P = P_T + G_T - Lc$ 


P<sub>T</sub> = Peak outputpower (dBm)

- $G_T$  = Gain of the transmitting antenna in dBi, Peak antenna gain is -12.51 dBi.
- $L_c$  = Signal attenuation in the connecting cable between the transmitter and antenna in dB. This factor of an integral antenna is negligible.





#### Maximum Peak Output Power, Lowest Channel (2402 MHz)





### 14.6 Peak power Spectral Density

| Channel | Frequency<br>(MHz) | Reading<br>(dBm) | Ant. Gain<br>(dB) | Result<br>(dBm) | Limit<br>(dBm) | Verdict |
|---------|--------------------|------------------|-------------------|-----------------|----------------|---------|
| Lowest  | 2402               | -10.17           | -12.51            | -22.68          | 8.00           | Pass    |
| Middle  | 2440               | -10.24           | -12.51            | -22.75          | 8.00           | Pass    |
| Highest | 2480               | -10.89           | -12.51            | -23.04          | 8.00           | Pass    |

#### Note:

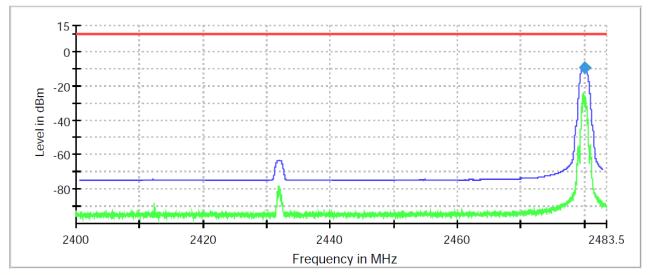

The following equation was used for spectrum offset:

Spectrum offset (dB) = Attenuator (dB) + Cable Loss (dB) + SMA Type Connector Loss (dB) Result(dBm) = Reading + Ant. Gain





#### Peak Power Spectral Density, Lowest Channel (2402 MHz)




Power Spectral Density



### Peak Power Spectral Density, Highest Channel (2480 MHz)









### 14.7 Radiated Spurious Emissions (above 1 础 to 25 础)

#### 2402 Mt Channel

| Frequency | MaxPeak  | Average  | Limit    | Result   | Margin | Meas.Time | Bandwidth | Height | Pol   | Azimuth | Corr. |
|-----------|----------|----------|----------|----------|--------|-----------|-----------|--------|-------|---------|-------|
| (MHz)     | (dBuV/m) | (dBuV/m) | (dBuV/m) | (dBuV/m) | (dB)   | (ms)      | (kHz)     | (cm)   | (H/V) | (deg)   | (dB)  |
| 1260.1    | 36.53    | -        | 74.00    | 44.74    | 29.26  | 1000      | 1000      | 150    | V     | 0       | 8.21  |
| 1260.1    | -        | 22.90    | 54.00    | 31.11    | 22.89  | 1000      | 1000      | 150    | V     | 0       | 8.21  |
| 7077.5    | 44.82    | -        | 74.00    | 65.02    | 8.98   | 1000      | 1000      | 150    | V     | 0       | 20.20 |
| 7077.5    | -        | 31.94    | 54.00    | 52.14    | 1.86   | 1000      | 1000      | 150    | V     | 0       | 20.20 |
| 19924.0   | 26.80    | 0.00     | 74.00    | 62.03    | 11.97  | 1000      | 1000      | 150    | V     | 135     | 35.23 |
| 21830.4   | 27.17    | 0.00     | 74.00    | 63.45    | 10.55  | 1000      | 1000      | 150    | V     | 151     | 36.28 |

#### 2440 Mt Channel

| _         |          |          |          |          |        |           |           |        |       |         |       |
|-----------|----------|----------|----------|----------|--------|-----------|-----------|--------|-------|---------|-------|
| Frequency | MaxPeak  | Average  | Limit    | Result   | Margin | Meas.Time | Bandwidth | Height | Pol   | Azimuth | Corr. |
| (MHz)     | (dBuV/m) | (dBuV/m) | (dBuV/m) | (dBuV/m) | (dB)   | (ms)      | (kHz)     | (cm)   | (H/V) | (deg)   | (dB)  |
| 1504.9    | 35.45    | -        | 74.00    | 44.45    | 29.55  | 1000      | 1000      | 150    | V     | 0       | 9.00  |
| 1504.9    | -        | 22.11    | 54.00    | 31.11    | 22.89  | 1000      | 1000      | 150    | V     | 0       | 9.00  |
| 7035.0    | 44.81    | -        | 74.00    | 64.91    | 9.09   | 1000      | 1000      | 150    | V     | 0       | 20.10 |
| 7035.0    | -        | 32.26    | 54.00    | 52.36    | 1.64   | 1000      | 1000      | 150    | V     | 0       | 20.10 |
| 19830.4   | 27.39    | 0.00     | 74.00    | 62.49    | 11.51  | 1000      | 1000      | 150    | V     | 239     | 35.10 |
| 21497.6   | 27.11    | 0.00     | 74.00    | 63.26    | 10.74  | 1000      | 1000      | 150    | V     | 268     | 36.15 |

#### 2480 Mt Channel

| Frequency | MaxPeak  | Average  | Limit    | Result   | Margin | Meas.Time | Bandwidth | Height | Pol   | Azimuth | Corr. |
|-----------|----------|----------|----------|----------|--------|-----------|-----------|--------|-------|---------|-------|
| (MHz)     | (dBuV/m) | (dBuV/m) | (dBuV/m) | (dBuV/m) | (dB)   | (ms)      | (kHz)     | (cm)   | (H/V) | (deg)   | (dB)  |
| 1258.4    | 34.84    | -        | 74.00    | _43.05   | 30.95  | 1000      | 1000      | 150    | V     | 0       | 8.21  |
| 1258.4    | -        | 22.15    | 54.00    | 30.36    | 23.64  | 1000      | 1000      | 150    | V     | 0       | 8.21  |
| 7031.6    | 45.24    | A        | 74.00    | 65.34    | 8.66   | 1000      | 1000      | 150    | V     | 0       | 20.10 |
| 7031.6    | -        | 32.31    | 54.00    | 52.41    | 1.59   | 1000      | 1000      | 150    | V     | 0       | 20.10 |
| 19378.4   | 27.91    | 0.00     | 74.00    | 62.91    | 11.09  | 1000      | 1000      | 150    | V     | 252     | 35.00 |
| 21420.0   | 26.80    | 0.00     | 74.00    | 62.95    | 11.05  | 1000      | 1000      | 150    | V     | 357     | 36.15 |
|           |          |          |          |          |        |           |           |        |       |         |       |

#### Note:

1. \*Pol. H = Horizontal V = Vertical

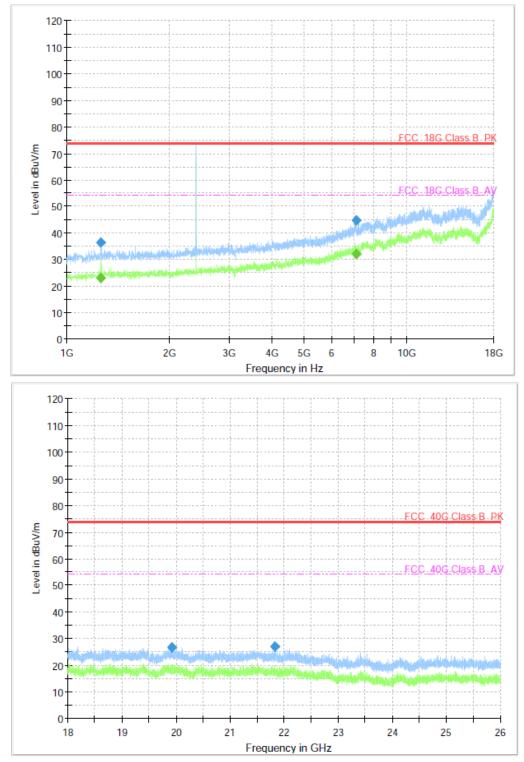
2. \*\*AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.

3. Other spurious was under 20 dB below Fundamental.

4. GFSK modulation on the highest channel (2402MHz) was the worst condition.

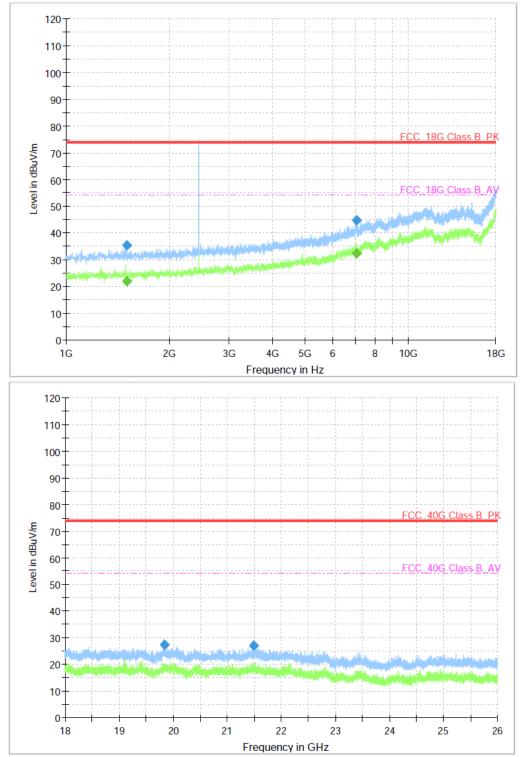
5. The radiated emissions testing were made by rotating EUT through three orthogonal axes and

rotating the receive antenna with horizontal, Vertical polarization. The worst data was recorded.


6. Peak emissions were measured using RBW = 1 MHz, VBW = 3 MHz, Detector = Peak.

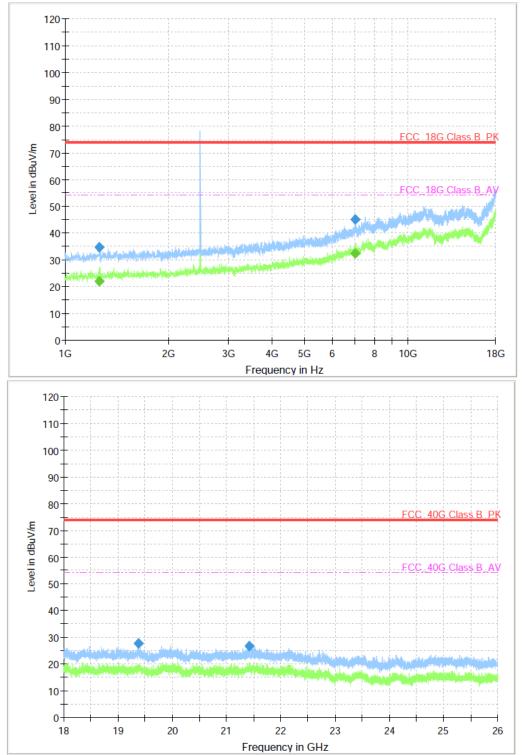
7. Average emissions were measured using RBW = 1 MHz, VBW = 3kHz, Detector = Peak

8. The spectrum was measured from 9 kHz to 10<sup>th</sup> harmonic and the worst-case emissions were reported. No significant emissions were found beyond the 5nd harmonic for this device.




















### 14.8 Conducted Band Edge Emission

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05 Section 8.7. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated

intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall

be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the

desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05 Section 8.7.

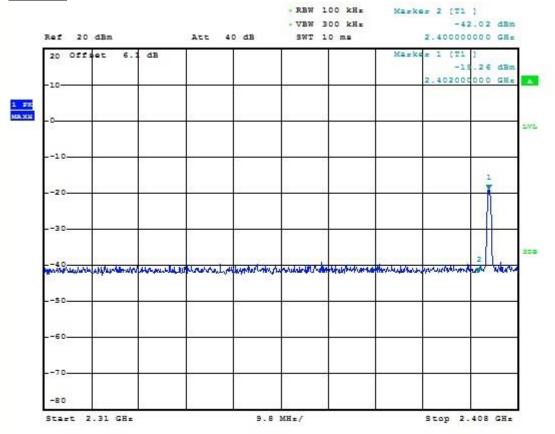
The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

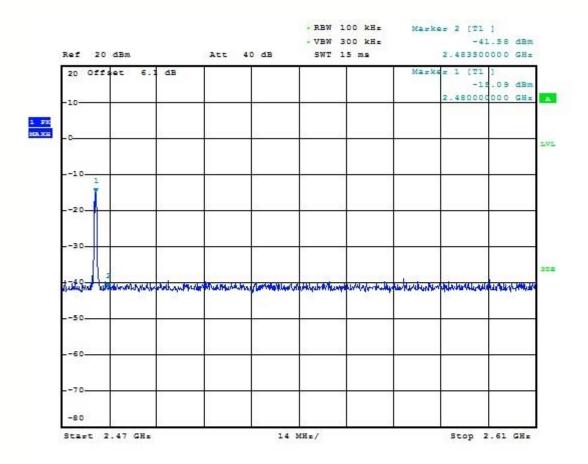
Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including

100 kHz bandwidth from band edge.


Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph

with marking the highest point and edge frequency. Repeat above procedures until all measured frequencies were complete.

**NTREE** 




<u>2 402 Mtz</u>





2 480 Mtz





# **15. Test Equipment**

| No | Type of Equipment                          | Manufacturer                    | Model            | Serial No.        | Cal. Date  | Cal.Interval |
|----|--------------------------------------------|---------------------------------|------------------|-------------------|------------|--------------|
| 1  | EMITest Receiver                           | ROHDE &                         | ESR7             | 101542            | 2020.03.14 | 1 Year       |
| 2  |                                            | SCHWARZ<br>Schwarzbeck          | VULB9168         |                   |            | 2 Year       |
|    | Tri-Log Antenna                            |                                 |                  | 9168-721          | 2020.04.03 |              |
| 3  | Amplifier                                  | TESTEK<br>SRTechnology          | TK-PA6S          | 120018            | 2020.03.14 | 1 Year       |
| 4  | Attenuator                                 | Corporate                       | N-ATTEN          | 101785#2          | 2020.03.14 | 1 Year       |
| 5  | EMI Test Receiver                          | ROHDE &<br>SCHWARZ              | FSV40            | 100994            | 2020.03.14 | 1 Year       |
| 6  | EMI Test Receiver                          | ROHDE &<br>SCHWARZ              | ESR7             | 101302            | 2020.03.14 | 1 Year       |
| 7  | Double Ridged<br>Broadband Horn<br>Antenna | Schwarzbeck                     | BBHA 9120D       | 9120D-1245        | 2020.04.02 | 2 Year       |
| 8  | BROADBAND HORN<br>ANTENNA                  | Schwarzbeck                     | BBHA9170         | BBHA9170<br>573   | 2020.04.20 | 2 Year       |
| 9  | Amplifier                                  | TESTEK                          | TK-PA1840H       | 140003            | 2019.03.15 | 1 Year       |
| 10 | Amplifier                                  | TESTEK                          | TK-PA1840H       | 140002            | 2019.03.14 | 1 Year       |
| 11 | ATTENUATOR                                 | AEROFLEX                        | 40AH2W-3         | 226942            | 2019-03-14 | 1 Year       |
| 12 | ATTENUATOR                                 | AEROFLEX                        | 40AH2W-3         | 228735            | 2019-03-14 | 1 Year       |
| 13 | ATTENUATOR                                 | AEROFLEX                        | 40AH2W-6         | 201378            | 2019-03-15 | 1 Year       |
| 14 | ATTENUATOR                                 | AEROFLEX                        | 40AH2W-6         | 201379            | 2019-03-14 | 1 Year       |
| 15 | ATTENUATOR                                 | AEROFLEX                        | 40AH2W-10        | 203129            | 2019-03-15 | 1 Year       |
| 16 | ATTENUATOR                                 | AEROFLEX                        | 40AH2W-10        | 203130            | 2019-03-15 | 1 Year       |
| 17 | ATTENUATOR                                 | AEROFLEX                        | 40AH2W-20        | 851572            | 2019-03-14 | 1 Year       |
| 18 | ATTENUATOR                                 | AEROFLEX                        | 40AH2W-20        | 851573            | 2019-03-14 | 1 Year       |
| 19 | ATTENUATOR                                 | WEINSCHEL                       | 89-30-12         | 715               | 2019-03-15 | 1 Year       |
| 20 | ATTENUATOR                                 | WEINSCHEL                       | 67-30-33         | CH0132            | 2018-03-14 | 1 Year       |
| 21 |                                            | Hewlett-<br>Packard<br>Hewlett- | 8493C            | 05572             | 2019-03-15 | 1 Year       |
| 22 | ATTENUATOR                                 | Hewlett-<br>Packard             | 8496B            | 3308A19907        | 2019-03-15 | 1 Year       |
| 23 | RF FILTER                                  | CHENGDU<br>MICROWAVE            | WT-A1205-<br>R12 | WT16010500<br>1   | 2019-03-15 | 1 Year       |
| 24 | RF FILTER                                  | CHENGDU<br>MICROWAVE            | WT-A1696-<br>HS  | WT16010500<br>2   | 2019-03-15 | 1 Year       |
| 25 | RF FILTER                                  | CHENGDU<br>MICROWAVE            | WT-A1706-<br>HS  | WT16010500<br>3   | 2019-03-15 | 1 Year       |
| 26 | RF FILTER                                  | CHENGDU<br>MICROWAVE            | WT-A1698-<br>HS  | WT16010500<br>4   | 2019-03-15 | 1 Year       |
| 27 | RF FILTER                                  | CHENGDU<br>MICROWAVE            | WT-A1699-<br>HS  | WT16010500<br>5   | 2019-03-15 | 1 Year       |
| 28 | RF FILTER                                  | CHENGDU<br>MICROWAVE            | WT-A1700-<br>LS  | WT16010500<br>6   | 2019-03-15 | 1 Year       |
| 29 | RF FILTER                                  | Telestek                        | 800 Hz BPF       | 160222FLT-<br>002 | 2019-03-14 | 1 Year       |
| 30 | RF FILTER                                  | WT-<br>MICROWAVE                | WT-A4930-<br>Q06 | WT181107-<br>X1-1 | 2018-12-01 | 1 Year       |
| 31 | BAND REJECT<br>FILTER(150W)                | нвт                             | BAND7            | 20190103-05       | 2019-01-07 | 1 Year       |
| 32 | BAND REJECT<br>FILTER(150W)                | нвт                             | BAND8            | 20190103-04       | 2019-01-07 | 1 Year       |
| 33 | BAND REJECT<br>FILTER(150W)                | нвт                             | BAND26           | 20190103-03       | 2019-01-07 | 1 Year       |
| 34 | BAND REJECT<br>FILTER(150W)                | НВТ                             | BAND28(A)        | 20190103-02       | 2019-01-07 | 1 Year       |
| 35 | BAND REJECT<br>FILTER(150W)                | нвт                             | BAND28           | 20190103-01       | 2019-01-07 | 1 Year       |
| 36 | TERMINATION                                | WEINSCHEL                       | M1465            | 68599             | 2019-03-15 | 1 Year       |
| 37 | TERMINATION                                | WEINSCHEL                       | M1465            | 68600             | 2019-03-15 | 1 Year       |



|    | The second s |                         |            | 0               | 0.1 5 /                  | 0-11-1       |
|----|----------------------------------------------------------------------------------------------------------------|-------------------------|------------|-----------------|--------------------------|--------------|
| No | Type of Equipment                                                                                              | Manufacturer            | Model      | Serial No.      | Cal. Date                | Cal.Interval |
| 38 | Amplifier                                                                                                      | MITEQ                   | TTA2650-HG | 1989447         | 2019-01-07               | 1 Year       |
| 39 | TEMP&HUMIDITY<br>CHAMBER                                                                                       | JFM<br>ENGINEERING      | JFM D-001  | 20160119-1      | 2019-07-19               | 1 Year       |
| 40 | TEMP&HUMIDITY<br>CHAMBER                                                                                       | JFM<br>Engineering      | JFMA-001   | 16112901        | 2019-07-19               | 1 Year       |
| 41 | TEMP&HUMIDITY<br>CHAMBER                                                                                       | Daeyang<br>ETS          | TH-408GL   | DY3114C01       | 2019-12-26               | 1 Year       |
| 42 | VECTOR SIGNAL<br>GENERATOR                                                                                     | ROHDE &<br>SCHWARZ      | SMBV100A   | 260354          | 2019-03-14               | 1 Year       |
| 43 | SIGNAL GENERATOR                                                                                               | ROHDE &<br>SCHWARZ      | SMB100A    | 177568          | 2019-03-14               | 1 Year       |
| 44 | SIGNAL ANALYZER                                                                                                | ROHDE &<br>SCHWARZ      | FSV40      | 100994          | 2019-03-14               | 1 Year       |
| 45 | SIGNAL ANALYZER                                                                                                | ROHDE &<br>SCHWARZ      | FSQ26      | 200939          | 2018-11-06               | 1 Year       |
| 46 | SIGNAL ANALYZER                                                                                                | ROHDE &<br>SCHWARZ      | FSVA40     | 101501          | 2018-12-03               | 1 Year       |
| 47 | POWER MODULE                                                                                                   | ROHDE &<br>SCHWARZ      | OSP120     | 101213          | 2018-03-15               | 1 Year       |
| 48 | POWER SENSOR                                                                                                   | ROHDE &<br>SCHWARZ      | NRP-Z85    | 101554          | 2019-01-09               | 1 Year       |
| 49 | POWER SENSOR                                                                                                   | ROHDE &<br>SCHWARZ      | NRP-Z91    | 103336          | 2019-01-09               | 1 Year       |
| 50 | POWER SENSOR                                                                                                   | Agilent<br>technologies | 8481A      | 3318A98910      | 2019-03-14               | 1 Year       |
| 51 | POWER SENSOR HUB                                                                                               | ROHDE &<br>SCHWARZ      | NRP-Z5     | 1146.7740.02    | -                        | 1 Year       |
| 52 | EPM POWER METER                                                                                                | Agilent<br>technologies | E4416A     | GB41291281      | 2019-03-14               | 1 Year       |
| 53 | MODULRATION ANALYZER                                                                                           | Hewlett-<br>Packard     | 8901B      | 2914A02004      | 2019-03-14               | 1 Year       |
| 54 | AUDIO ANALYZER                                                                                                 | ROHDE &<br>SCHWARZ      | UPL        | 100249          | 2019-03-14               | 1 Year       |
| 55 | FREQUENCY COUNTER                                                                                              | Agilent<br>technologies | 53181A     | KR91200591      | 2019-03-14               | 1 Year       |
| 56 | DIGITAL MULTI METER                                                                                            | Hewlett-<br>Packard     | 34401A     | US36017450      | 2019-03-14               | 1 Year       |
| 57 | TRUE RMS MULTIMETER                                                                                            | FLUKE                   | 179        | 12220398        | 2018-11-06               | 1 Year       |
| 58 | SYSTEM DC POWER<br>SUPPLY                                                                                      | Hewlett-<br>Packard     | 6622A      | 3307A02512      | 2019-03-14               | 1 Year       |
| 59 | SYSTEM DC POWER<br>SUPPLY                                                                                      | Hewlett-<br>Packard     | 6674A      | 3501A00827      | 2018-11-06               | 1 Year       |
| 60 | SLIDAC                                                                                                         | Dae Kaung<br>S.L.I      | DS-5023    | N/A             | -                        | 1 Year       |
| 61 | HUMIDITY.TEMP.BARO<br>DATA RECORDER                                                                            | LUTRON                  | MHB-382SD  | AI.50545        | 2019-01-14<br>2019-01-16 | 1 Year       |
| 62 | BLUETOOTH TESTER                                                                                               | TESCOM                  | ТС-3000В   | 3000B000265     | 2019-01-09               | 1 Year       |
| 63 | DROP TESTER                                                                                                    | Kim' Tec Co.,<br>Ltd.   | SMB013     | 20160127-1      | -                        | 1 Year       |
| 64 | WIDEBAND RADIO<br>COMMUNICATION TESTER                                                                         | ROHDE &<br>SCHWARZ      | CMW500     | 116163          | 2019-01-09               | 1 Year       |
| 65 | BROADBAND HORN<br>ANTENNA                                                                                      | Schwarzbeck             | BBHA 9170  | BBHA9170<br>573 | 2019.03.21               | 1 Year       |
| 66 | BROADBAND HORN<br>ANTENNA                                                                                      | Schwarzbeck             | BBHA 9170  | BBHA9170<br>574 | 2019.03.21               | 1 Year       |
| 67 | LOOP ANTENNA                                                                                                   | Schwarzbeck             | FMZB1519   | 1519-046        | 2018.04.16               | 1 Year       |
| 68 | LOOP ANTENNA                                                                                                   | Schwarzbeck             | FMZB1519   | 1519-051        | 2018.03.29               | 1 Year       |