

	ST REPORT or WiFi-2.4GHz Band	
Report No	CHTEW22110134 Repo	ort Verification:
Project No	SHT2210112901EW	
FCC ID:	2ASWWSTARK8	
Applicant's name:	XINCHUANGXIN INTERNATION	AL CO.,LTD
Address	ROOM 605 6/F, FA YUEN COMM YUEN STREET MONGKOK KL	IERCIAL BUILDING, 75-77 FA
Product Name:	Smart phone	
Trade Mark	CORN	
Model No	Stark 8	
Listed Model(s)		
Standard: :	FCC CFR Title 47 Part 15 Subpa	rt C Section 15.247
Date of receipt of test sample	Nov. 08, 2022	
Date of testing	Nov. 09, 2022- Nov. 23, 2022	
Date of issue	Nov. 24, 2022	
Result:	PASS	
Compiled by (Position+Printed name+Signature):	File administrator Silvia Li	Silvia Li Weiyang Xiang
Supervised by (Position+Printed name+Signature):	Project Engineer Weiyang Xiang	Weiyang.Xiang
Approved by (Position+Printed name+Signature):	RF Manager Hans Hu	Homsty
Testing Laboratory Name: :	Shenzhen Huatongwei Internation	onal Inspection Co., Ltd.
Address	1/F, Bldg 3, Hongfa Hi-tech Indust Tianliao, Gongming, Shenzhen, C	
Shenzhen Huatongwei International Inspe		
This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. The test report merely correspond to the test sample.		

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1.	Test Standards	3
1.2.	Report version	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Radio Specification Description	5
3.4.	Testing Laboratory Information	6
<u>4.</u>	TEST CONFIGURATION	7
4.1.	Test frequency list	7
4.2.	Descriptions of Test mode	7
4.3.	Test mode	7
4.4.	Test sample information	8
4.5.	Support unit used in test configuration and system	8
4.6.	Testing environmental condition	8
4.7.	Statement of the measurement uncertainty	9
4.8.	Equipment Used during the Test	10
<u>5.</u>	TEST CONDITIONS AND RESULTS	12
5.1.	Antenna Requirement	12
5.2.	AC Conducted Emission	13
5.3.	Peak Output Power	15
5.4.	Power Spectral Density	16
5.5.	6dB bandwidth	17
5.6.	99% Occupied Bandwidth	18
5.7.	Duty Cycle	19
5.8.	Conducted Band edge and Spurious Emission	20
5.9.	Radiated Band edge Emission	22
5.10.	Radiated Spurious Emission	27
<u>6.</u>	TEST SETUP PHOTOS	35
<u>7.</u>	EXTERNAL AND INTERNAL PHOTOS	36
<u>8.</u>	APPENDIX REPORT	36

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

- <u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz
- <u>ANSI C63.10:2013</u>: American National Standard for Testing Unlicensed Wireless Devices
- <u>KDB 558074 D01 15.247 Meas Guidance v05r02:</u> Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of The FCC Rules

1.2. Report version

Revision No.	Date of issue	Description
N/A	2022-11-24	Original

2. TEST DESCRIPTION

Report clause	Test Items	Standard Requirement	Result	Test Engineer
5.1	Antenna Requirement	15.203/15.247(c)	PASS	Xiaoqin Li
5.2	AC Conducted Emission	15.207	PASS	Xiaoqin Li
5.3	Peak Output Power	15.247(b)(3)	PASS	Xiaoqin Li
5.4	Power Spectral Density	15.247(e)	PASS	Xiaoqin Li
5.5	6dB Bandwidth	15.247(a)(2)	PASS	Xiaoqin Li
5.6	99% Occupied Bandwidth	-	PASS ^{*1}	Xiaoqin Li
5.7	Duty cycle	-	PASS ^{*1}	Xiaoqin Li
5.8	Conducted Band Edge and Spurious Emission	15.247(d)/15.205	PASS	Xiaoqin Li
5.9	Radiated Band Edge Emission	15.205/15.209	PASS	Quanhai Deng
5.10	Radiated Spurious Emission	15.247(d)/15.205/15.209	PASS	Quanhai Deng

Note:

- The measurement uncertainty is not included in the test result.

- *1: No requirement on standard, only report these test data.

3. SUMMARY

3.1. Client Information

Applicant:	XINCHUANGXIN INTERNATIONAL CO.,LTD	
Address:	ROOM 605 6/F, FA YUEN COMMERCIAL BUILDING, 75-77 FA YUEN STREET MONGKOK KL	
Manufacturer:	Shenzhen Chiteng Technology Co.,LTD	
Address:	Second Floor, Area A, Building 4, Huiye Technology Workshop, Guanguang Road, Tangjia Community, Gongming Street, Guangming New District, Shenzhen, Guangdong	

3.2. Product Description

Main unit information:		
Product Name:	Smart phone	
Trade Mark:	CORN	
Model No.:	Stark 8	
Listed Model(s):	-	
Power supply:	DC 3.85V from Battery	
Hardware version:	G2062F-MR-V1.0	
Software version:	CORN_Stark_8_S65408_V01	
Accessory unit information:		
Battery information:	3.85Vdc, 3700mAh	
Adapter information:	Model: Input: AC100-240V, 50/60Hz, A Output: 5.0Vdc, mA	

3.3. Radio Specification Description

Support type ^{*2} :	🖾 802.11b	🖾 802.11g 🛛 802.11n	
Support bandwidth:	20MHz	🖾 40MHz	
Modulation:	802.11b:	DBPSK, DQPSK, BPSK, QPSK	
	802.11g/n:	BPSK, QPSK, 16QAM, 64QAM	
Operation frequency:	802.11b/g/n(HT20):	2412MHz~2462MHz	
Operation frequency:	802.11n(HT40)	2422MHz~2452MHz	
Channel number:	802.11b/g/n(HT20):)): 11	
Channer number.	802.11n(HT40)	7	
Channel separation:	5MHz		
Antenna technology:	SISO		
Antenna type:	Interna Antenna	Interna Antenna	
Antenna gain:	-0.5dBi	-0.5dBi	

Note:

*2: only show the RF function associated with this report.

3.4. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.		
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China		
Connect information:	Phone: 86-755-26715499 E-mail: <u>cs@szhtw.com.cn</u> <u>http://www.szhtw.com.cn</u>		
Qualifications	Туре	Accreditation Number	
Qualifications	FCC	762235	

4. TEST CONFIGURATION

4.1. Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channels which were tested. The Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the below blue front.

802.11b/g/n(HT20)		802.11n(HT40)	
Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	03	2422
02	2417	04	2427
· :	• :	· :	· :
06	2437	06	2437
• :	• :	• :	• :
10	2457	08	2447
11	2462	09	2452

4.2. Descriptions of Test mode

Preliminary tests were performed in different data rates, final test modes are considering the modulation and worse data rates as below table.

Modulation	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(HT20)	MCS0
802.11n(HT40)	MCS0

4.3. Test mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated spurious emissions

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data Recorded in the report.

4.4. Test sample information

Test item	HTW sample no.	
RF Conducted test items	Please refer to the description in the appendix report	
RF Radiated test items	YPHT22101129003	
EMI test items	YPHT22101129003	

Note:

RF Conducted test items: Peak Output Power, Power Spectral Density, 6dB Bandwidth, 99% Occupied Bandwidth, Duty cycle, Conducted Band Edge and Spurious Emission

RF Radiated test items: Radiated Band Edge Emission, Radiated Spurious Emission

EMI test items: AC Conducted Emission

4.5. Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Whether support unit is used?			
✓ No			
Item	Equipment	Trade Name	Model No.
1			
2			

4.6. Testing environmental condition

Туре	Requirement	Actual
Temperature:	15~35°C	25°C
Relative Humidity:	25~75%	50%
Air Pressure:	860~1060mbar	1000mbar

No.	Test Items	Measurement Uncertainty
1	AC Conducted Emission	3.21dB
2	Peak Output Power	1.07
3	Power Spectral Density	1.07
4	6dB Bandwidth	0.002%
5	99% Occupied Bandwidth	0.002%
6	Duty cycle	-
7	Conducted Band Edge and Spurious Emission	1.68dB
8	Radiated Band Edge Emission	4.54dB for 30MHz-1GHz
0		5.10dB for above 1GHz
9	Padiated Spurious Emission	4.54dB for 30MHz-1GHz
9	Radiated Spurious Emission	5.10dB for above 1GHz

4.7. Statement of the measurement uncertainty

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4.8. Equipment Used during the Test

•	Conducted Emission											
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)					
•	Shielded Room	Albatross projects	HTWE0114	N/A	N/A	2018/09/28	2023/09/27					
•	EMI Test Receiver	R&S	HTWE0111	ESCI	101247	2022/08/30	2023/08/29					
•	Artificial Mains	SCHWARZBECK	HTWE0113	NNLK 8121	573	2022/08/29	2023/08/28					
•	Pulse Limiter	R&S	HTWE0193	ESH3-Z2	101447	2022/08/29	2023/08/28					
•	RF Connection Cable	HUBER+SUHNER	HTWE0113-02	ENVIROFLE X_142	EF-NM- BNCM-2M	2022/09/17	2023/09/16					
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A					

•	Radiated emi	ssion-6th test sit	te				
Used	Test Equipment Manufacturer		Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0127	SAC-3m-02	C11121	2018/09/30	2023/09/29
•	EMI Test Receiver	R&S	HTWE0099	ESCI	100900	2022/08/30	2023/08/29
•	Loop Antenna	R&S	HTWE0170	HFH2-Z2	100020	2021/04/06	2024/04/05
•	Ultra-Broadband Antenna	SCHWARZBECK	HTWE0123	VULB9163	538	2021/04/06	2024/04/05
•	Pre-Amplifer	SCHWARZBECK	HTWE0295	BBV 9742	N/A	2021/11/05	2022/11/04
•	RF Connection Cable	HUBER+SUHNER	HTWE0062-01	N/A	N/A	2022/02/25	2023/02/24
•	RF Connection Cable	HUBER+SUHNER	HTWE0062-02	SUCOFLEX104	501184/4	2022/02/25	2023/02/24
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A

•	Radiated em	ission-7th test s	ite				
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	C11121	2018/09/27	2023/09/26
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2022/08/25	2023/08/24
•	Horn Antenna	SCHWARZBECK	HTWE0126	9120D	1011	2020/04/01	2023/03/31
•	Broadband Horn Antenna	SCHWARZBECK	HTWE0103	BBHA9170	BBHA9170472	2020/04/27	2023/04/26
•	Pre-amplifier	CD	HTWE0071	PAP-0102	12004	2021/11/05	2022/11/04
•	Broadband Pre- amplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2022/02/28	2023/02/27
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-01	6m 18GHz S Serisa	N/A	2022/02/25	2023/02/24
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-02	6m 3GHz RG Serisa	N/A	2022/02/25	2023/02/24
•	RF Connection Cable	HUBER+SUHNER	HTWE0119-05	6m 3GHz RG Serisa	N/A	2022/02/25	2023/02/24
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-04	6m 3GHz RG Serisa	N/A	2022/02/25	2023/02/24
•	Test Software	Audix	N/A	E3	N/A	N/A	N/A

Page:

2022-11-24

Used	Test Equipment			Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Signal and spectrum R&S Analyzer		HTWE0242	FSV40	100048	2022/08/25	2023/08/24
•	Signal & Spectrum Analyzer	R&S	HTWE0262	FSW26	103440	2022/08/25	2023/08/24
•	Spectrum Analyzer	Agilent	HTWE0286	N9020A	MY50510187	2022/08/25	2023/08/24
•	Radio communication tester	R&S	HTWE0287	CMW500	137688-Lv	2022/08/25	2023/08/24
•	Test software	Tonscend	N/A	JS1120	N/A	N/A	N/A

5. TEST CONDITIONS AND RESULTS

5.1. Antenna Requirement

REQUIREMENT

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responseble party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

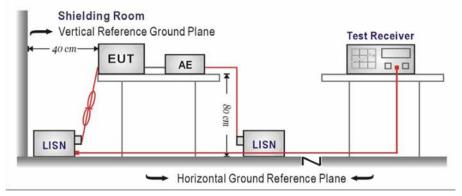
(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

TEST RESULT

☑ Passed □ Not Applicable

The antenna type is an Interna antenna, the directional gain of the antenna less than 6 dBi, please refer to the below antenna photo.

5.2. AC Conducted Emission


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207

	Limit (d	BuV)		
Frequency range (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

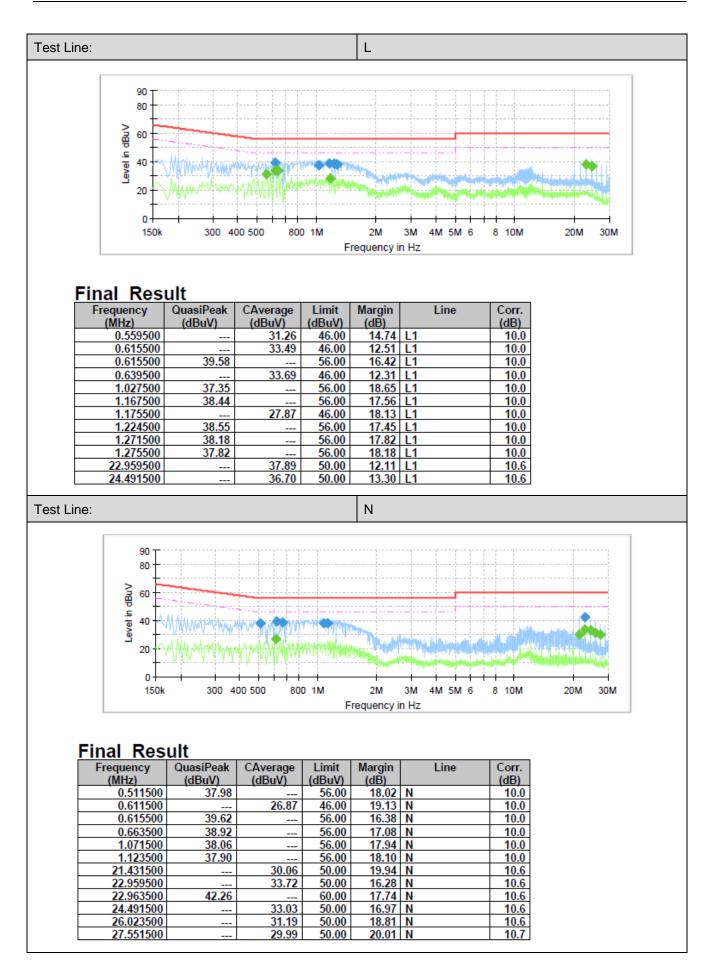
* Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

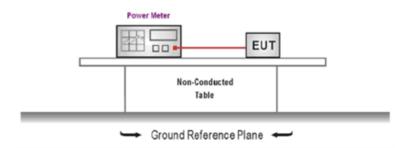
- 1. The EUT was setup according to ANSI C63.10 requirements.
- The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE


Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable


Shenzhen Huatongwei International Inspection Co., Ltd.

14 of 36

LIMIT FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3): 30dBm

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.10 and KDB 558074 D01 requirements.
- 2. The maximum peak conducted output power may be measured using a broadband peak RF power meter.
- 3. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.
- 4. Record the measurement data.

TEST MODE

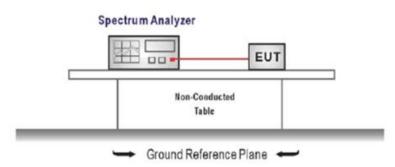
Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

TEST DATA

Please refer to appendix A on the appendix report


5.4. Power Spectral Density

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e):

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input,
- Configure the spectrum analyzer as shown below: Center frequency=DTS channel center frequency Span =1.5 times the DTS bandwidth RBW = 3 kHz ≤ RBW ≤ 100 kHz, VBW ≥ 3 × RBW Sweep time = auto couple Detector = peak Trace mode = max hold
 Place the radio in continuous transmit mode, allow the
- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 4. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 5. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST MODE

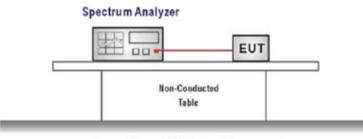
Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

TEST DATA

Please refer to appendix B on the appendix report


5.5. 6dB bandwidth

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2):

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST CONFIGURATION

Ground Reference Plane

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency =DTS channel center frequency

Span=2 x DTS bandwidth

RBW = 100 kHz, VBW \ge 3 × RBW

Sweep time= auto couple

Detector = Peak

Trace mode = max hold

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission, and record the pertinent measurements.

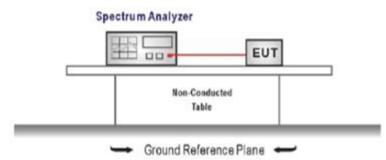
TEST MODE

Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

TEST DATA


Please refer to appendix C on the appendix report

5.6. 99% Occupied Bandwidth

<u>LIMIT</u>

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency =channel center frequency Span≥1.5 x OBW RBW = 1%~5%OBW VBW ≥ 3 × RBW Sweep time= auto couple Detector = Peak Trace mode = max hold

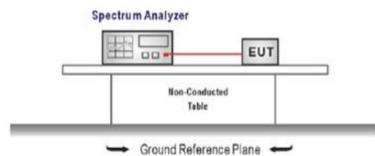
3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.

TEST MODE

Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable


TEST DATA

Please refer to appendix D on the appendix report

19 of 36

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:

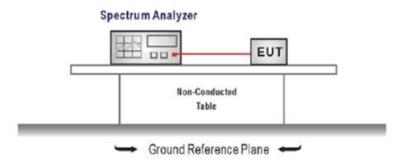
Span=zero span, Frequency=centered channel, RBW= 1 MHz, VBW ≥ RBW Sweep=as necessary to capture the entire dwell time,

Detector function = peak, Trigger mode

4. Measure and record the duty cycle data

TEST MODE

Please refer to the clause 4.2


TEST DATA

Please refer to appendix E on the appendix report

5.8. Conducted Band edge and Spurious Emission LIMIT

FCC CFR Title 47 Part 15 Subpart C Section15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- Establish a reference level by using the following procedure Center frequency=DTS channel center frequency The span = 1.5 times the DTS bandwidth. RBW = 100 kHz, VBW ≥ 3 x RBW Detector = peak, Sweep time = auto couple, Trace mode = max hold Allow trace to fully stabilize

Use the peak marker function to determine the maximum PSD level

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

3. Emission level measurement

Set the center frequency and span to encompass frequency range to be measured RBW = 100 kHz, VBW \ge 3 x RBW

Detector = peak, Sweep time = auto couple, Trace mode = max hold

Allow trace to fully stabilize

Use the peak marker function to determine the maximum amplitude level.

- 4. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- Ensure that the amplitude of all unwanted emission outside of the authorized frequency band excluding restricted frequency bands) are attenuated by at least the minimum requirements specified (at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz). Report the three highest emission relative to the limit.

TEST MODE

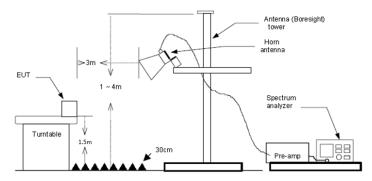
Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

<u>TEST DATA</u>

Please refer to appendix F on the appendix report


5.9. Radiated Band edge Emission

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, Radiated Emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the Radiated Emissions limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10 on radiated measurement.
- 5. Use the following spectrum analyzer settings:
 - a) Span shall wide enough to fully capture the emission being measured
 - b) Set RBW=100kHz for <1GHz, VBW=3*RBW, Sweep time=auto, Detector=peak, Trace=max hold
 - c) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement

For average measurement:

- VBW=10Hz, When duty cycle is no less than 98 percent
- VBW≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation, so refer to this clasue 5.6 duty cycle.

TEST MODE

Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

Note:

- 1) Level= Reading + Factor; Factor = Antenna Factor+ Cable Loss- Preamp Factor
- 2) Over Limit = Level– Limit
- 3) Average measurement was not performed if peak level is lower than average limit(54 dBuV/m).

23 of 36

Туре		802.11	lb	Test ch	annel	CH0	1	F	Polarity		Horizontal
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit n dBuV/m	Over limi	
	1 2	2310.00 2390.01	38.82 38.86	27.96 27.72	3.89 3.99	37.56 37.45	20.00 20.00	53.11 53.12		-20.8 -20.8	9 Peak 8 Peak
	Mark	Frequency MHz	dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	dBuV/m	Over limit	
	1 2	2310.00 2390.01	33.21 33.16	27.96 27.72	3.89 3.99	37.56 37.45	20.00 20.00	47. 47.) Average 3 Average
Туре		802.11	lb	Test ch	annel	CH0	1	F	Polarity		Vertical
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m		Over limi	
	1 2	2310.00 2390.01	38.48 39.91	27.96 27.72	3.89 3.99	37.56 37.45	20.00 20.00	52.77 54.17		-21.2 -19.8	3 Peak 3 Peak
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
	1 2	2310.00 2390.01	33.20 33.04	27.96 27.72	3.89 3.99	37.56 37.45		47.4			Average Average

Туре		802.1	1b	Test ch	nannel	CH1	1	Po	olarity		Horizontal
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
	1 2	2483.49 2500.00	39.98 39.52	27.43 27.40	4.03 4.04	37.26 37.26	20.00 20.00	54.18 53.70	74.00 74.00	-19.82	Peak
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
	1 2	2483.49 2500.00	34.22 32.37	27.43 27.40	4.03 4.04	37.26 37.26	20.00 20.00	48.42		-5.58 -7.45	0
Туре		802.1	1b	Test ch	nannel	CH1	1	P	olarity		Vertical
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
	1 2	2483.49 2500.00	41.74 40.21	27.43 27.40	4.03 4.04	37.26 37.26	20.00	55.94 54.39	74.00 74.00	-18.00 -19.61	5 Peak
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
	1 2	2483.49 2500.00	36.28 32.96	27.43 27.40	4.03 4.04	37.26 37.26	20.00	50.48 47.14	54.00	-3.52 -6.86	Average Average

Туре		802.1	1g	Test ch	annel	CH0	1	Po	olarity		Horizontal
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m	Over limi	
	1 2	2310.00 2390.01	39.08 39.01	27.96 27.72	3.89 3.99	37.56 37.45	20.00 20.00	53.37 53.27	74.00	-20.6	3 Peak 3 Peak
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m		over 1imit	Remark
	1 2	2310.00 2390.01	28.41 28.39	27.96 27.72	3.89 3.99	37.56 37.45		42.70		11.30 11.35	Average Average
Туре		802.1	1g	Test ch	annel	CH0	1	Po	olarity		Vertical
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m	Over lim	
	1 2	2310.00 2390.01	39.77 39.46	27.96 27.72	3.89 3.99	37.56 37.45	20.00 20.00	54.06			94 Peak 28 Peak
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m	Over limi	
	1 2	2310.00 2390.01	28.43 28.42	27.96 27.72	3.89 3.99	37.56 37.45	20.00 20.00			-11.2 -11.3	8 Average 2 Average

Туре		802.11	lg	Test ch	annel	CH1	1	Po	olarity	Horizontal
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m		er Remark mit
	1 2	2483.49 2500.00	39.17 39.14	27.43 27.40	4.03 4.04	37.26 37.26	20.00 20.00	53.37 53.32		0.63 Peak 0.68 Peak
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit Over dBuV/m lim	it
	1 2	2483.49 2500.00	28.40 28.52	27.43 27.40	4.03 4.04	37.26 37.26	20.00 20.00	42.60 42.70		
Туре		802.11	lg	Test ch	annel	CH1 ⁻	1	Po	olarity	Vertical
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m		er Remark mit
	1 2	2483.49 2500.00	39.49 40.69	27.43 27.40	4.03 4.04	37.26 37.26	20.00 20.00	53.69 54.87		.31 Peak .13 Peak
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit Ove dBuV/m lim	
	1 2	2483.49 2500.00	28.37 28.36	27.43 27.40	4.03 4.04	37.26 37.26	20.00 20.00	42.57 42.54		

Туре		80	02.11n(HT20)	Test ch	nannel	CH0	1	Po	larity	Horizontal
	Mark	Freque MHz	ency Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit Ov dBuV/m li	er Remark mit
	1 2	2310.0 2390.0		27.96 27.72	3.89 3.99	37.56 37.45	20.00 20.00	53.60 53.34		.40 Peak .66 Peak
	Mark	Freque MHz	ncy Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit Over dBuV/m limi	
	1 2	2310.0 2390.0		27.96 27.72	3.89 3.99	37.56 37.45		42.50 42.48		0
Туре		80	02.11n(HT20)	Test ch	nannel	CH0	1	Po	larity	Vertical
	Mark 1	Freque MHz 2310.0	dBuV/m	Antenna dB 27.96	Cable dB 3.89	Preamp dB 37.56	Aux dB 20,00	Level dBuV/m 53.94	dBuV/m li	er Remark mit .06 Peak
	2	2390.0		27.72	3.99	37.45	20.00	52.65		.35 Peak
	Mark	Freque MHz	ncy Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit Over dBuV/m limi	
	1 2	2310.0 2390.0		27.96 27.72	3.89 3.99	37.56 37.45	20.00 20.00	42.69 42.77	54.00 -11.3 54.00 -11.2	0

Туре			802.11	n(HT20)	Test ch	annel	CH1	1	F	Polarity		Horizontal
	Mark	Fre	quency	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m	Over limi	
	1 2	248	3.49 0.00	40.42 39.10	27.43 27.40	4.03 4.04	37.26 37.26	20.00	54.62 53.28	74.00	-19.3	
	Mark	Fre MHz	quency	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
	1 2		3.49 0.00	28.39 28.51	27.43 27.40	4.03 4.04	37.26 37.26	20.00 20.00	42.		-11.41 -11.31	Average Average
Туре			802.11	n(HT20)	Test ch	annel	CH1	1	F	Polarity		Vertical
	Mark	Fre MHz	quency	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/			
	1 2		3.49 0.00	42.87 39.00	27.43 27.40	4.03 4.04	37.26 37.26	20.00 20.00		74.0 74.0		93 Peak 82 Peak
	Mark	MHz		Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
	1 2		3.49 0.00	28.48 28.33	27.43 27.40	4.03 4.04	37.26 37.26	20.00 20.00	42.6 42.5		-11.32 -11.49	Average Average

26 of 36

Туре			802.1	1n(HT40)	Test ch	annel	CH0	3	P	olarity		Horizontal
	Mark	MHz	quency 0.00	Reading dBuV/m 38.65	Antenna dB 27.96	Cable dB 3.89	Preamp dB 37.56	Aux dB 20.00	Level dBuV/m 52.94	dBuV/m	Over limi 21.0	it
	2		9.99	38.69	27.72	3.99	37.45	20.00	52.95			95 Peak
	Mark	MHz		Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	dBuV/m 1	ver imit	
	1 2		0.00 9.99	28.96 29.04	27.96 27.72	3.89 3.99	37.56 37.45	20.00 20.00	43.2		0.75 0.70	0
T			000.4		TTTTTTTTTTTTT	1		•				Martinal
Туре			802.1	1n(HT40)	Test ch	annei	CH0	3	P	olarity		Vertical
	Mark	Fre MHz	quency	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m		Over limi	
	1 2		0.00 9.99	39.29 39.42	27.96 27.72	3.89 3.99	37.56 37.45	20.00 20.00	53.58 53.68		20.4	12 Peak 32 Peak
	Mark	Fre MHz	quency	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m		ver imit	Remark
	1 2	231	0.00	29.03 29.07	27.96	3.89 3.99	37.56 37.45	20.00	43.3 43.3	2 54.00 -1	0.68 0.67	Average

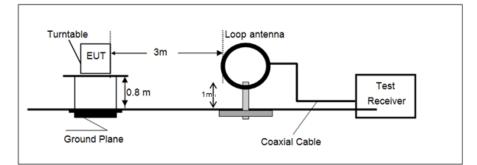
Туре			802.11	In(HT40)	Test ch	annel	CH0	9	Pol	arity		Horizontal
	Mark	Fre MHz	quency	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m	Over limi	
	1 2		3.45 0.00	43.64 39.84	27.43 27.40	4.03 4.04	37.26 37.26	20.00 20.00	57.84 54.02	74.00	-16.1	
	Mark	Free	quency	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
	1 2		3.50 0.00	29.15 29.14	27.43 27.40	4.03 4.04	37.26 37.26	20.00 20.00	43.35 43.32		-10.65 -10.68	0
Туре			802.11	In(HT40)	Test ch	annel	CH0	9	Pol	arity		Vertical
	Mark	Fre MHz	quency	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
	1 2		3.50 0.00	43.14 38.98	27.43 27.40	4.03 4.04	37.26 37.26	20.00 20.00	57.34 53.16	74.00 74.00	-16.66 -20.84	
	Mark	Fre MHz	quency	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
	1 2		3.50 0.00	29.31 28.91	27.43 27.40	4.03 4.04	37.26 37.26	20.00 20.00	43.51 43.09	54.00 54.00	-10.49 -10.91	0

5.10. Radiated Spurious Emission

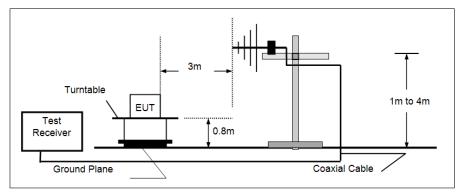
<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209

Frequency	Limit (dBuV/m)	Value
0.009 MHz ~0.49 MHz	2400/F(kHz) @300m	Quasi-peak
0.49 MHz ~ 1.705 MHz	24000/F(kHz) @30m	Quasi-peak
1.705 MHz ~30 MHz	30 @30m	Quasi-peak

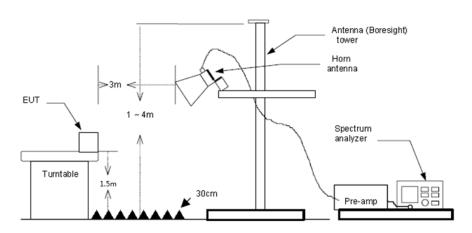

Note: Limit dBuV/m @3m = Limit dBuV/m @300m + 40*log(300/3)= Limit dBuV/m @300m +80,

Limit dBuV/m @3m = Limit dBuV/m @30m +40*log(30/3)= Limit dBuV/m @30m + 40.


Frequency	Limit (dBuV/m @3m)	Value
30MHz~88MHz	40.00	Quasi-peak
88MHz~216MHz	43.50	Quasi-peak
216MHz~960MHz	46.00	Quasi-peak
960MHz~1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
	74.00	Peak

TEST CONFIGURATION

9 kHz ~ 30 MHz



> 30 MHz ~ 1 GHz

Above 1 GHz

Page: 28 of 36

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10 .
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - a) Span shall wide enough to fully capture the emission being measured;
 - b) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

c) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement

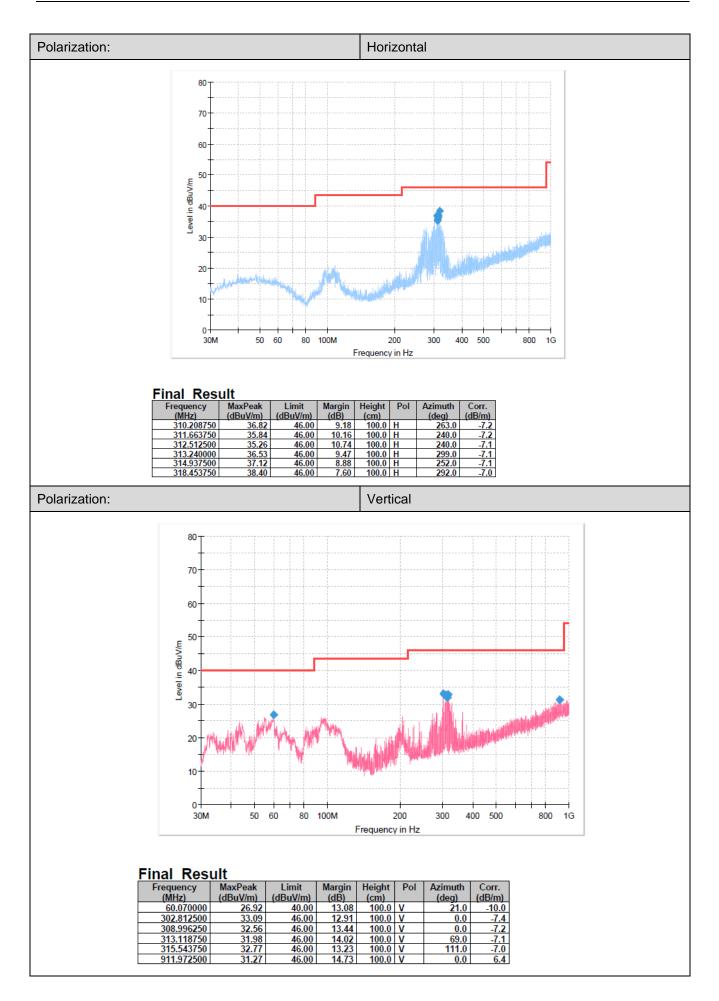
For average measurement:

- VBW=10Hz, When duty cycle is no less than 98 percent
- − VBW≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation, so refer to this clasue 5.6 duty cycle.

TEST MODE

Please refer to the clause 4.2

TEST RESULT


Note:

- 1) Level= Reading + Factor/Transd; Factor/Transd = Antenna Factor+ Cable Loss- Preamp Factor
- 2) Over Limit = Level- Limit
- Average measurement was not performed if peak level is lower than average limit(54 dBuV/m) for above 1GHz.

The EUT was pre-scanned this frequency band, found the radiated level 20dB lower than the limit, so don't show data on this report.

For 30 MHz ~ 1000 MHz

Have pre-scan all test channel, found CH06 of 802.11B which it was worst case, so only show the worst case's data on this report.

Туре		802.11b		Test channel	C	CH01		Polarity		Horizontal
	Mark	Frequency	Readi		Cable				Ove	
		MHz	dBuV		dB	dB	dBuV,			
	1	4821.76	39.36		5.74	35.24	41.26	74.00	-32.7	
	2	7245.81	40.93		7.26	34.06	50.54	74.00	-23.4	
	3	9809.40	36.11		8.46	36.19	47.96	74.00	-26.0	
	4	11312.31	35.25	40.42	9.34	36.48	48.53	74.00	-25.4	7 Peak
Туре		802.11b		Test channel	C	CH01		Polarity		Vertical
	Mark	Frequency	Readi		Cable				0ver	
		MHz	dBuV		dB	dB	dBuV/		limit	
	1	3672.11	41.61		4.95	37.03	38.93	74.00	-35.07	
	2	5164.81	38.04		5.98	35.44	40.49	74.00	-33.51	
	3 4	7245.81	38.02		7.26	34.06	47.63	74.00	-26.37	
	4	9859.47	36.62	39.50	8.55	36.65	48.02	74.00	-25.98	Peak
Туре		802.11b		Test channel	C	CH06		Polarity		Horizontal
-										
	Mark	Frequency	Readi		Cable				Over	
		MHz	dBuV		dB	dB	dBuV/		limit	
	1	4871.10	39.44		5.82	35.16	41.50	74.00	-32.50	
	2	7319.96	40.72		7.30	34.10	50.36	74.00	-23.64	
	3	9710.03	36.24		8.43	36.53	47.74	74.00	-26.26	
	4	11486.41	34.14	40.86	9.45	36.38	48.07	74.00	-25.93	8 Peak
Туре		802.11b		Test channel	C	CH06		Polarity		Vertical
	Mark	Frequency	Readir	-	Cable	Preamp	Leve		Over	
		MHz	dBuV,		dB	dB	dBuV/		limit	
	1	4170.53	39.37	30.04	5.51	36.25	38.67	74.00	-35.33	
	2	5747.59	38.47	31.90	6.59	34.85	42.11	74.00	-31.89	
	3	8063.40	35.16	37.20	7.65	33.32	46.69	74.00	-27.31	
	4	11112.52	35.43	40.30	9.21	36.60	48.34	74.00	-25.66	6 Peak
Туре		802.11b		Test channel	C	CH11		Polarity		Horizontal
	Mark	Frequency	Readi		Cable		Leve!		0ver	
		MHz	dBuV		dB	dB	dBuV/r		limit	
	1	4920.96	39.75		5.85	35.21	41.83	74.00	-32.17	
	2	7394.88	40.55		7.30	34.02	50.42	74.00	-23.58	
	3	9809.40	35.28		8.46	36.19	47.13	74.00	-26.87	
	4	12178.98	33.84	39.82	9.77	36.09	47.34	74.00	-26.66	Peak
Туре		802.11b		Test channel	C	CH11		Polarity		Vertical
	Mark	Frequency	Readin		Cable	Preamp	Leve]		Over	Remark
		MHz	dBuV,		dB	dB	dBuV/n		limit	
	1	4920.96	37.84		5.85	35.21	39.92	74.00	-34.08	
	-			26 60	7 20	34.02	46.55	74.00	-27.45	Peak
	2	7394.88	36.68	36.59	7.30					
	2 3 4	7394.88 9809.40 11515.68	36.68 35.39 33.50	39.58 40.85	8.46 9.47	36.19	47.24	74.00	-26.76	Peak

For 1 GHz ~ 25 GHz

Туре		802.11g		Test channel	C	CH01		Polarity		Horizontal	
-	Mark	Frequency MHz	Readi dBuV	•	Cable dB	Preamp dB	Leve dBuV/		Ove limi		
1	1	4138.80	38.78	30.00	5.37	36.25	37.90	74.00	-36.1		
1	2	5060.69	37.50		5.87	35.41	40.16	74.00	-33.84		
1	3	7860.74	34.82		7.50	33.28	45.68	74.00	-28.3		
1	4	11633.54	33.90		9.51	36.38	47.46	74.00	-26.5		
1	4	11055.54	55.90	40.45	9.51	50.50	47.40	/4.00	-20.5	+ FCak	
Туре		802.11g		Test channel	C	CH01		Polarity		Vertical	
-											
1	Mark	Frequency	Readi		Cable	Preamp	Leve	el Limit	0vei	r Remark	
1		MHz	dBuV,	/m dB	dB	dB	dBuV/	′m dBuV∕m	limit	t	
1	1	4117.79	39.85	30.00	5.27	36.28	38.84	74.00	-35.10	5 Peak	
l.	2	6267.19	37.20	32.93	6.69	34.58	42.24	74.00	-31.70	5 Peak	
1	3	8063.40	35.79	37.20	7.65	33.32	47.32	74.00	-26.6	8 Peak	
1	4	9809.40	35.76	39.58	8.46	36.19	47.61	74.00	-26.39	9 Peak	
Туре		802.11g		Test channel		CH06		Polarity		Horizontal	
71 -								· · ,			
-	Mark	Energyency	Readin	ng Antenna	Cable	Preamp	Leve	l Limit	Over	Remark	
1	ndrk	Frequency	dBuV		dB						
1		MHz				dB	dBuV/		limit		
1	1	3953.44	40.34	29.90	5.25	36.50	38.99	74.00	-35.01		
l.	2	5631.73	37.36	31.90	6.47	35.02	40.71	74.00	-33.29		
l.	3	8063.40	34.89	37.20	7.65	33.32	46.42	74.00	-27.58		
1	4	10888.51	34.77	40.57	9.10	36.76	47.68	74.00	-26.32	2 Peak	
Туре		802.11g		Test channel	C	CH06		Polarity		Vertical	
l.	Mark	Frequency	Readir		Cable	Preamp	Leve	l Limit	0ve	r Remark	
l.		MHz	dBuV/	/m dB	dB	dB	dBuV/	m dBuV∕m	limi	t	
l.	1	4004.08	39.17	29.91	5.30	36.34	38.04	74.00	-35.9	6 Peak	
l.	2	5047.83	37.44	32.19	5.85	35.37	40.11	74.00	-33.89	9 Peak	
l.	3	8083.96	34.64	37.20	7.66	33.32	46.18	74.00	-27.8	2 Peak	
l.	4	10888.51	34.23	40.57	9.10	36.76	47.14	74.00	-26.8		
	· ·		5.125						2010		
Туре		802.11g		Test channel		CH11		Polarity		Horizontal	
		002.119									
-											
-	Mark	Frequency	Readin	ng Antenna	Cable	Preamp		l Limit	0ver	Remark	
	Mark		Readin dBuV/	ng Antenna		Preamp dB	dBuV/ı	l Limit	Over limit		
	1	Frequency		ng Antenna /m dB	Cable	Preamp dB 36.31	dBuV/1 38.84	l Limit n dBuV/m 74.00	limit -35.16	Peak	
-		Frequency MHz	dBuV,	ng Antenna /m dB 29.93	Cable dB	Preamp dB	dBuV/ı	l Limit n dBuV/m	limit	Peak	
	1	Frequency MHz 4014.29	dBuV, 39.94 37.14 35.34	ng Antenna /m dB 29.93 31.90 37.14	Cable dB 5.28 6.45 7.62	Preamp dB 36.31 34.95 33.31	dBuV/r 38.84 40.54 46.79	l Limit n dBuV/m 74.00 74.00 74.00	limit -35.16 -33.46 -27.21	Peak Peak Peak	
	1 2	Frequency MHz 4014.29 5674.90	dBuV) 39.94 37.14	ng Antenna /m dB 29.93 31.90	Cable dB 5.28 6.45	Preamp dB 36.31 34.95	dBuV/r 38.84 40.54	l Limit n dBuV/m 74.00 74.00	limit -35.16 -33.46	Peak Peak Peak	
Туре	1 2	Frequency MHz 4014.29 5674.90 8022.46	dBuV, 39.94 37.14 35.34	ng Antenna /m dB 29.93 31.90 37.14	Cable dB 5.28 6.45 7.62 9.10	Preamp dB 36.31 34.95 33.31	dBuV/r 38.84 40.54 46.79	l Limit n dBuV/m 74.00 74.00 74.00	limit -35.16 -33.46 -27.21	Peak Peak Peak	
Туре	1 2	Frequency MHz 4014.29 5674.90 8022.46 10888.51	dBuV, 39.94 37.14 35.34	ng Antenna /m dB 29.93 31.90 37.14 40.57	Cable dB 5.28 6.45 7.62 9.10	Preamp dB 36.31 34.95 33.31 36.76	dBuV/r 38.84 40.54 46.79	L Limit n dBuV/m 74.00 74.00 74.00 74.00 74.00	limit -35.16 -33.46 -27.21	Peak Peak Peak Peak	
Туре	1 2 3 4	Frequency MHz 4014.29 5674.90 8022.46 10888.51 802.11g	dBuV, 39.94 37.14 35.34 33.99	ng Antenna /m dB 29.93 31.90 37.14 40.57 Test channel	Cable dB 5.28 6.45 7.62 9.10	Preamp dB 36.31 34.95 33.31 36.76	dBuV/r 38.84 40.54 46.79 46.90	Limit dBuV/m 74.00 74.00 74.00 74.00 74.00 Polarity	limit -35.16 -33.46 -27.21 -27.10	Peak Peak Peak Peak Vertical	
Туре	1 2	Frequency MHz 4014.29 5674.90 8022.46 10888.51 802.11g Frequency	dBuV, 39.94 37.14 35.34 33.99 Readin	ng Antenna /m dB 29.93 31.90 37.14 40.57 Test channel	Cable dB 5.28 6.45 7.62 9.10 Cable	Preamp dB 36.31 34.95 33.31 36.76 CH11 Preamp	dBuV/r 38.84 40.54 46.79 46.90 Leve	l Limit n dBuV/m 74.00 74.00 74.00 74.00 74.00 Polarity	limit -35.16 -33.46 -27.21 -27.10	Peak Peak Peak Peak Vertical	
Туре	1 2 3 4 Mark	Frequency MHz 4014.29 5674.90 8022.46 10888.51 802.11g Frequency MHz	dBuV, 39.94 37.14 35.34 33.99 Readin dBuV/	ng Antenna /m dB 29.93 31.90 37.14 40.57 Test channel ng Antenna /m dB	Cable dB 5.28 6.45 7.62 9.10 Cable dB	Preamp dB 36.31 34.95 33.31 36.76 CH11 Preamp dB	dBuV/r 38.84 40.54 46.79 46.90 Leve dBuV/r	l Limit n dBuV/m 74.00 74.00 74.00 74.00 Polarity l Limit m dBuV/m	limit -35.16 -33.46 -27.21 -27.10 Over limit	Peak Peak Peak Peak Vertical	
Туре	1 2 3 4 Mark	Frequency MHz 4014.29 5674.90 8022.46 10888.51 802.11g Frequency MHz 3534.54	dBuV, 39.94 37.14 35.34 33.99 Readin dBuV/ 39.90	ng Antenna /m dB 29.93 31.90 37.14 40.57 Test channel ng Antenna m dB 29.24	Cable dB 5.28 6.45 7.62 9.10 Cable dB 4.84	Preamp dB 36.31 34.95 33.31 36.76 CH11 Preamp dB 36.75	dBuV/r 38.84 40.54 46.79 46.90 Leve dBuV/r 37.23	l Limit n dBuV/m 74.00 74.00 74.00 74.00 Polarity l Limit m dBuV/m 74.00	limit -35.16 -33.46 -27.21 -27.10 Over limit -36.77	Peak Peak Peak Peak Vertical Remark	
Туре	1 2 3 4 Mark 1 2	Frequency MHz 4014.29 5674.90 8022.46 10888.51 802.11g Frequency MHz 3534.54 4772.91	dBuV, 39.94 37.14 35.34 33.99 Readin dBuV/ 39.90 37.77	ng Antenna /m dB 29.93 31.90 37.14 40.57 Test channel ng Antenna /m dB 29.24 31.40	Cable dB 5.28 6.45 7.62 9.10 Cable dB 4.84 5.70	Preamp dB 36.31 34.95 33.31 36.76 CH11 Preamp dB 36.75 35.41	dBuV/r 38.84 40.54 46.79 46.90 Leve dBuV/r 37.23 39.46	l Limit n dBuV/m 74.00 74.00 74.00 74.00 Polarity l Limit m dBuV/m 74.00 74.00	limit -35.16 -33.46 -27.21 -27.10 Over limit -36.77 -34.54	Peak Peak Peak Vertical Remark Peak Peak	_
Туре	1 2 3 4 Mark	Frequency MHz 4014.29 5674.90 8022.46 10888.51 802.11g Frequency MHz 3534.54	dBuV, 39.94 37.14 35.34 33.99 Readin dBuV/ 39.90	ng Antenna /m dB 29.93 31.90 37.14 40.57 Test channel ng Antenna m dB 29.24	Cable dB 5.28 6.45 7.62 9.10 Cable dB 4.84	Preamp dB 36.31 34.95 33.31 36.76 CH11 Preamp dB 36.75	dBuV/r 38.84 40.54 46.79 46.90 Leve dBuV/r 37.23	l Limit n dBuV/m 74.00 74.00 74.00 74.00 Polarity l Limit m dBuV/m 74.00	limit -35.16 -33.46 -27.21 -27.10 Over limit -36.77	Peak Peak Peak Vertical Remark Peak Peak Peak	

Туре		802.11n(H	T20)	Test channel	C	H01		Polarity		Horizontal	
-	Mark	Frequency MHz	Readi dBuV		Cable dB	Preamp dB	Leve dBuV/		Over limit		
1	1	4045.06	39.17	29.99	5.25	36.31	38.10	74.00	-35.90) Peak	
1	2	5047.83	37.87	32.19	5.85	35.37	40.54	74.00	-33.46	Peak	
1	3	8022.46	34.60		7.62	33.31	46.05	74.00	-27.95		
I	4	10778.21	34.84	40.26	9.07	36.85	47.32	74.00	-26.68	Peak	
Туре		802.11n(H	Т20)	Test channel	С	H01		Polarity		Vertical	
I	Mark	Frequency	Readi	•	Cable				0ve		
		MHz	dBuV		dB	dB	dBuV,				
1	1	4024.52	39.39		5.27	36.29	38.32	74.00	-35.6		
1	2	5073.59	38.09		5.88	35.43	40.74	74.00	-33.2		
1	3	8063.40	34.43		7.65	33.32	45.96	74.00	-28.0		
L	4	10805.68	34.73	40.32	9.08	36.83	47.30	74.00	-26.7	0 Peak	
Туре		802.11n(H	Т20)	Test channel	C	H06		Polarity		Horizontal	
1	Mark	Frequency MHz	Readi dBuV		Cable dB	Preamp dB	Leve dBuV/r		Over limit	Remark	
1	1	4170.53	39.50		5.51	36.25	38.80	74.00	-35.20	Peak	
1	2	5718.40	36.77		6.50	34.88	40.29	74.00	-33.71	Peak	
1	3	8063.40	34.44		7.65	33.32	45.97	74.00	-28.03	Peak	
I	4	10888.51	34.18	40.57	9.10	36.76	47.09	74.00	-26.91	Peak	
Туре		802.11n(H	Т20)	Test channel	С	H06		Polarity		Vertical	
-											
l	Mark	Frequency MHz	Readi dBuV		Cable dB	Preamp dB	Leve dBuV/		Over limit		
I	1	4004.08	39.17	29.91	5.30	36.34	38.04	74.00	-35.96	Peak	
1	2	5151.68	38.24	31.99	5.97	35.44	40.76	74.00	-33.24	Peak	
I	3	7682.70	35.36	36.37	7.42	33.16	45.99	74.00	-28.01	Peak	
I	4	9834.41	35.74	39.53	8.50	36.42	47.35	74.00	-26.65	Peak	
Туре		802.11n(H	Т20)	Test channel	C	H11		Polarity		Horizontal	
l	Mark	Frequency	Read	ing Antenna	Cable	Pream	p Lev	el Limit	Ove	r Remark	
l		MHz	dBu\		dB	dB	dBuV				
l	1	4433.26	38.19	5 30.73	5.54	36.16	38.26	74.00	-35.7	'4 Peak	
l	2	5747.59	36.47		6.59	34.85	40.11	74.00	-33.8		
l	3	7357.33	35.81	L 36.51	7.30	34.06	45.56	74.00	-28.4	4 Peak	
l	4	9809.40	34.84		8.46	36.19	46.69	74.00	-27.3	1 Peak	
-		802.11n(H	Т20)	Test channel	С	H11		Polarity		Vertical	
Туре		•									
Type -		``````````````````````````````````````									
Type -	Mark	Frequency	Readir	ng Antenna	Cable	Preamp	Level	Limit	Over	Remark	
Type -	Mark	Frequency MHz	Readir dBuV/	•	Cable dB	Preamp dB	Level dBuV/m		Over limit	Remark	
Type -	Mark 1			•				dBuV/m		Remark Peak	
I ype -		MHz	dBuV/	/m dB	dB	dB 36.32	dBuV/m	dBuV/m	limit		
Гуре -	1	MHz 4055.37	dBuV/ 40.17	/m dB 30.00	dB 5.24	dB 36.32	dBuV/m 39.09	dBuV/m 74.00	limit -34.91	Peak	

34 of 36

Mark Frequency MHz Reading dBuV/m Antenna dB 1 4117.79 39.58 30.00 2 4996.69 37.58 31.87 3 8063.40 34.45 37.20 4 10860.83 34.41 40.48 Type 802.11n(HT40) Test chann Mark Frequency MHz Reading dBuV/m Antenna dBuV/m 1 4045.06 39.57 29.99 2 6203.70 35.80 32.81 3 9346.26 34.91 39.29 4 11370.05 34.17 40.54 Type 802.11n(HT40) Test chann MHz dBuV/m dB 1 4202.50 38.83 30.11 2 6063.19 36.35 32.53 3 7941.19 34.93 36.88 4 9859.47 35.28 39.50 Type 802.11n(HT40) Test chann Mark Frequency 9859.47 Read	dB 5.27 5.80 7.65 9.09 nel Cable 6.68 8.25 9.38 nel Cable dB 5.63 6.59 7.57 8.55	dB 36.28 35.24 33.32 36.78 CH03 CH03 cH03 cH03 cH03 cH06 cH06 cH06 cH06 cH06 cH06 cH03	dBuV// 38.57 40.01 45.98 47.20 0 Leve dBuV/1 38.50 40.66 45.96 47.64	m dBuV/m 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00	Over limit -35.43 -33.99 -28.02 -26.80 -26.80 -33.34 -28.04 -26.36 -33.34 -28.04 -26.36 -27.94 -27.32	Peak Peak Peak Peak Vertical Remark Peak Peak Peak Peak Horizontal Remark	
1 4117.79 39.58 30.00 2 4996.69 37.58 31.87 3 8063.40 34.45 37.20 4 10860.83 34.41 40.48 Type 802.11n(HT40) Test chann Mark Frequency Reading Antenna MHz dBuV/m dB 1 4045.06 39.57 29.99 2 6203.70 35.80 32.81 3 9346.26 34.91 39.29 4 11370.05 34.17 40.54 40.54 Type 802.11n(HT40) Test chann Mark Frequency Reading Antenna MHz dBuV/m dB 1 4202.50 38.83 30.11 2 6063.19 36.35 32.53 3 7941.19 34.93 36.88 4 9859.47 35.28 39.50 39.50 50 50 Mark Frequency Reading Antenna MHz dBuV/m dB 39.50 <	5.27 5.80 7.65 9.09 nel 68 5.25 6.68 8.25 9.38 nel 68 5.63 6.59 7.57 8.55	36.28 35.24 33.32 36.78 CH03 e Preamp dB 36.31 34.63 36.49 36.45 CH06 e Pream dB 36.14 35.03 33.32 36.65	38.57 40.01 45.98 47.20 0 Leve dBuV/r 38.50 40.66 45.96 47.64 0 Leve dBuV/ 38.43 40.44 46.06	74.00 74.00 74.00 74.00 Polarity 1 Limit m dBuV/m 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00	-35.43 -33.99 -28.02 -26.80 Over limit -35.50 -33.34 -28.04 -26.36 Over limit -35.55 -33.56 -27.94	Peak Peak Peak Peak Vertical Remark Peak Peak Peak Peak Peak Peak Peak Pea	
2 4996.69 37.58 31.87 3 8063.40 34.45 37.20 4 10860.83 34.41 40.48 Type 802.11n(HT40) Test chann Mark Frequency Reading Antenna MHz dBuV/m dB 1 4045.06 39.57 29.99 2 6203.70 35.80 32.81 3 9346.26 34.91 39.29 4 11370.05 34.17 40.54 Type 802.11n(HT40) Test chann Mark Frequency Mark Frequency Reading Antenna MHz dBuV/m dB 1 1 4202.50 38.83 30.11 2 6063.19 36.35 32.53 3 7941.19 34.93 36.88 4 9859.47 35.28 39.50 Type 802.11n(HT40) Test chann	5.80 7.65 9.09 nel Cable 6.68 8.25 9.38 nel Cable dB 5.63 6.59 7.57 8.55	35.24 33.32 36.78 CH03 e Preamp dB 36.31 34.63 36.49 36.45 CH06 e Pream dB 36.14 35.03 33.32 36.65	40.01 45.98 47.20 0 Leve: dBuV/r 38.50 40.66 45.96 47.64 0 Leve: dBuV/ 38.43 40.44 46.06	74.00 74.00 74.00 Polarity 1 Limit m dBuV/m 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00	-33.99 -28.02 -26.80 -26.80 -33.34 -28.04 -26.36 -26.36 -27.94	Peak Peak Peak Vertical Remark Peak Peak Peak Peak Peak Peak Peak Pea	
3 8063.40 34.45 37.20 4 10860.83 34.41 40.48 Type 802.11n(HT40) Test chann Mark Frequency Reading Antenna MHz dBuV/m dB 1 4045.06 39.57 29.99 2 2 6203.70 35.80 32.81 3 9346.26 34.91 39.29 4 11370.05 34.17 40.54 Type 802.11n(HT40) Test chann Mark Frequency Reading Antenna MHz dBuV/m dB 1 4202.50 38.83 30.11 36.35 2 6063.19 36.35 32.53 3 7941.19 34.93 36.88 4 9859.47 35.28 39.50 Type 802.11n(HT40) Test chann Mark Frequency Reading Antenna MHz dBuV/m dB 40	7.65 9.09 nel Cablo 5.25 6.68 8.25 9.38 nel Cablo dB 5.63 6.59 7.57 8.55	33.32 36.78 CH03 e Preamp dB 36.31 34.63 36.49 36.45 CH06 e Pream dB 36.14 35.03 33.32 36.65	45.98 47.20 b Leve dBuV/r 38.50 40.66 45.96 47.64 c dBuV/ 38.43 40.44 46.06	74.00 74.00 Polarity 1 Limit m dBuV/m 74.00 74.00 74.00 74.00 74.00 Polarity el Limit 'm dBuV/m 74.00 74.00 74.00 74.00 74.00	-28.02 -26.80 Over limit -35.50 -33.34 -28.04 -26.36 Over limit -35.55 -33.56 -27.94	Peak Peak Vertical Remark Peak Peak Peak Peak Horizontal Horizontal	
4 10860.83 34.41 40.48 Type 802.11n(HT40) Test chann Mark Frequency Reading Antenna MHz dBuV/m dB 1 4045.06 39.57 29.99 2 6203.70 35.80 32.81 3 9346.26 34.91 39.29 4 11370.05 34.17 40.54 Type 802.11n(HT40) Test chann Mark Frequency Reading Antenna Mark Frequency Reading Antenna MHz dBuV/m dB dB 1 4202.50 38.83 30.11 2 6063.19 36.35 32.53 3 7941.19 34.93 36.88 4 9859.47 35.28 39.50 Type 802.11n(HT40) Test chann Mark Frequency Reading Antenna MHz dBu//m dB 40.80 39.50 1 3983.75 39.71 29.90 <td>9.09 nel Cabla 5.25 6.68 8.25 9.38 nel Cabla dB 5.63 6.59 7.57 8.55 nel</td> <td>36.78 CH03 e Preamp dB 36.31 34.63 36.49 36.45 CH06 e Pream dB 36.14 35.03 33.32 36.65</td> <td>47.20 D Leve: dBuV/r 38.50 40.66 45.96 47.64 D Leve: dBuV/r 38.43 40.44 46.06</td> <td>74.00 Polarity 1 Limit m dBuV/m 74.00 74.00 74.00 74.00 Polarity el Limit /m dBuV/m 74.00 74.00 74.00 74.00 74.00</td> <td>-26.80 Over limit -35.50 -33.34 -28.04 -26.36 Over limit -35.55 -33.56 -27.94</td> <td>Peak Vertical Remark Peak Peak Peak Peak Peak Horizontal</td> <td></td>	9.09 nel Cabla 5.25 6.68 8.25 9.38 nel Cabla dB 5.63 6.59 7.57 8.55 nel	36.78 CH03 e Preamp dB 36.31 34.63 36.49 36.45 CH06 e Pream dB 36.14 35.03 33.32 36.65	47.20 D Leve: dBuV/r 38.50 40.66 45.96 47.64 D Leve: dBuV/r 38.43 40.44 46.06	74.00 Polarity 1 Limit m dBuV/m 74.00 74.00 74.00 74.00 Polarity el Limit /m dBuV/m 74.00 74.00 74.00 74.00 74.00	-26.80 Over limit -35.50 -33.34 -28.04 -26.36 Over limit -35.55 -33.56 -27.94	Peak Vertical Remark Peak Peak Peak Peak Peak Horizontal	
Mark Frequency MHz Reading dBuV/m Antenna dB 1 4045.06 39.57 29.99 2 6203.70 35.80 32.81 3 9346.26 34.91 39.29 4 11370.05 34.17 40.54 Type 802.11n(HT40) Test chann Mark Frequency MHz Reading dBuV/m Antenna MHz 1 4202.50 38.83 30.11 2 6063.19 36.35 32.53 3 7941.19 34.93 36.88 4 9859.47 35.28 39.50 Type 802.11n(HT40) Test chann Mark Frequency 9859.47 Reading 35.28 Antenna MHz Mark Frequency 9859.47 Reading 35.28 Antenna MHz Mark Frequency MHz Reading dBuV/m Antenna MHz 1 3983.75 39.71 29.90	a Cabla dB 5.25 6.68 8.25 9.38 nel dB 5.63 6.59 7.57 8.55	 Preamp dB 36.31 34.63 36.49 36.45 CH06 Preamp dB 36.14 35.03 33.32 36.65 	dBuV/r 38.50 40.66 45.96 47.64 p Leve dBuV/ 38.43 40.44 46.06	l Limit m dBuV/m 74.00 74.00 74.00 74.00 Polarity el Limit 'm dBuV/m 74.00 74.00 74.00 74.00	limit -35.50 -33.34 -28.04 -26.36 Over limit -35.55 -33.56 -27.94	Remark Peak Peak Peak Horizontal Remark F Peak Peak Peak Peak Peak Peak	
MHz dBuV/m dB 1 4045.06 39.57 29.99 2 6203.70 35.80 32.81 3 9346.26 34.91 39.29 4 11370.05 34.17 40.54 Type 802.11n(HT40) Test chann Mark Frequency Reading Antenna MHz Antenna MHz 1 4202.50 38.83 30.11 2 6063.19 36.35 32.53 3 7941.19 34.93 36.88 4 9859.47 35.28 39.50 Type 802.11n(HT40) Test chann Mark Frequency Reading Antenna MHz 36.88 4 9859.47 35.28 39.50 Type 802.11n(HT40) Test chann Mark Frequency Reading Antenna MHz Mature MBuV/m 1 3983.75 39.71 29.90	dB 5.25 6.68 8.25 9.38 nel Cabl. dB 5.63 6.59 7.57 8.55	dB 36.31 34.63 36.49 36.45 CH06 e Pream dB 36.14 35.03 33.32 36.65	dBuV/r 38.50 40.66 45.96 47.64 p Leve dBuV/ 38.43 40.44 46.06	m dBuV/m 74.00 74.00 74.00 Polarity 21 Limit 'm dBuV/m 74.00 74.00 74.00 74.00 74.00	limit -35.50 -33.34 -28.04 -26.36 Over limit -35.55 -33.56 -27.94	Peak Peak Peak Horizontal Remark Peak Peak Peak Peak Peak	_
MHz dBuV/m dB 1 4045.06 39.57 29.99 2 6203.70 35.80 32.81 3 9346.26 34.91 39.29 4 11370.05 34.17 40.54 Type 802.11n(HT40) Test chann Mark Frequency Reading Antenna MHz dBuV/m dB 1 1 4202.50 38.83 30.11 2 6063.19 36.35 32.53 3 7941.19 34.93 36.88 4 9859.47 35.28 39.50 Type 802.11n(HT40) Test chann Mark Frequency Reading Antenna MHz dBuV/m dB 39.50 Type 802.11n(HT40) Test chann Mark Frequency Reading Antenna MHz dBuV/m dB 39.83.75 39.71 29.90	dB 5.25 6.68 8.25 9.38 nel Cabl. dB 5.63 6.59 7.57 8.55	dB 36.31 34.63 36.49 36.45 CH06 e Pream dB 36.14 35.03 33.32 36.65	dBuV/r 38.50 40.66 45.96 47.64 p Leve dBuV/ 38.43 40.44 46.06	m dBuV/m 74.00 74.00 74.00 Polarity 21 Limit 'm dBuV/m 74.00 74.00 74.00 74.00 74.00	limit -35.50 -33.34 -28.04 -26.36 Over limit -35.55 -33.56 -27.94	Peak Peak Peak Horizontal Remark Peak Peak Peak Peak Peak	
1 4045.06 39.57 29.99 2 6203.70 35.80 32.81 3 9346.26 34.91 39.29 4 11370.05 34.17 40.54 Type 802.11n(HT40) Test chann Mark Frequency Reading Antenna MHz dBuV/m dB 1 4202.50 38.83 30.11 36.88 3 7941.19 34.93 36.88 4 9859.47 35.28 39.50 Type 802.11n(HT40) Test chann Mark Frequency Reading Antenna MHz dBuV/m dB 36.88 1 325.37 39.50 39.50	5.25 6.68 8.25 9.38 nel Cabl. dB 5.63 6.59 7.57 8.55	36.31 34.63 36.49 36.45 CH06 e Pream dB 36.14 35.03 33.32 36.65	38.50 40.66 45.96 47.64 p Leve dBuV/ 38.43 40.44 46.06	74.00 74.00 74.00 74.00 Polarity 1 Limit /m dBuV/m 74.00 74.00 74.00 74.00	-35.50 -33.34 -28.04 -26.36 Over limi1 -35.55 -33.56 -27.94	Peak Peak Peak Horizontal Remark Peak Peak Peak Peak Peak	
2 6203.70 35.80 32.81 3 9346.26 34.91 39.29 4 11370.05 34.17 40.54 Type 802.11n(HT40) Test chann Mark Frequency Reading Antenna MHz dBuV/m dB dB 1 4202.50 38.83 30.11 2 6063.19 36.35 32.53 3 7941.19 34.93 36.88 4 9859.47 35.28 39.50 Type 802.11n(HT40) Test chann Mark Frequency Reading Antenna MHz Antenna MHz Mature dBu/m Mature dBu 1 3983.75 39.71 29.90 29.90	6.68 8.25 9.38 nel Cabl. dB 5.63 6.59 7.57 8.55	34.63 36.49 36.45 CH06 e Pream dB 36.14 35.03 33.32 36.65	40.66 45.96 47.64 p Leve dBuV/ 38.43 40.44 46.06	74.00 74.00 74.00 Polarity 21 Limit /m dBuV/m 74.00 74.00 74.00 74.00	-33.34 -28.04 -26.36 Over limit -35.55 -33.56 -27.94	Peak Peak Peak Horizontal Remark Peak Peak Peak Peak Peak	
3 9346.26 34.91 39.29 4 11370.05 34.17 40.54 Type 802.11n(HT40) Test chann Mark Frequency Reading Antenna MHz dBuV/m dB dB 1 4202.50 38.83 30.11 2 6063.19 36.35 32.53 3 7941.19 34.93 36.88 4 9859.47 35.28 39.50 Type 802.11n(HT40) Test chann Mark Frequency Reading Antenna Antenna Mark Frequency Reading Antenna Antenna MHz dBuV/m dB 1 3983.75 39.71 29.90	8.25 9.38 nel Cabl. dB 5.63 6.59 7.57 8.55	36.49 36.45 CH06 e Pream dB 36.14 35.03 33.32 36.65	45.96 47.64 p Leve dBuV/ 38.43 40.44 46.06	74.00 74.00 Polarity 1 Limit 74.00 74.00 74.00 74.00	-28.04 -26.36 Over limit -35.57 -33.56 -27.94	Peak Peak Horizontal Remark Peak Peak Peak Peak Peak	
4 11370.05 34.17 40.54 Type 802.11n(HT40) Test chann Mark Frequency Reading Antenna Mark Frequency Reading Antenna Mark Frequency 802.11n(HT40) 30.11 1 4202.50 38.83 30.11 2 6063.19 36.35 32.53 3 7941.19 34.93 36.88 4 9859.47 35.28 39.50 Type 802.11n(HT40) Test chann Mark Frequency Reading Antenna MHz dBuV/m dB dB 1 3983.75 39.71 29.90	9.38 nel Cabl. dB 5.63 6.59 7.57 8.55	36.45 CH06 e Pream dB 36.14 35.03 33.32 36.65	47.64 p Leve dBuV/ 38.43 40.44 46.06	74.00 Polarity 21 Limit 74.00 74.00 74.00 74.00	-26.36 Over limit -35.57 -33.56 -27.94	Peak Horizontal Remark Peak Peak Peak Peak Peak	
Type 802.11n(HT40) Test chann Mark Frequency Reading Antenna MHz dBuV/m dB 1 4202.50 38.83 30.11 2 6063.19 36.35 32.53 3 7941.19 34.93 36.88 4 9859.47 35.28 39.50 Type 802.11n(HT40) Test chann Mark Frequency Reading Antenna MHz dBuV/m dB dB 1 3983.75 39.71 29.90	nel Cabl. dB 5.63 6.59 7.57 8.55	CH06 e Pream dB 36.14 35.03 33.32 36.65	p Leve dBuV/ 38.43 40.44 46.06	Polarity el Limit 'm dBuV/m 74.00 74.00 74.00 74.00	Over limit -35.57 -33.56 -27.94	Horizontal Remark Peak Peak Peak Peak Peak	
Mark Frequency MHz Reading dBuV/m Antenna dB dBuV/m 1 4202.50 38.83 30.11 2 6063.19 36.35 32.53 3 7941.19 34.93 36.88 4 9859.47 35.28 39.50 Type 802.11n(HT40) Test chann Mark Frequency Reading Antenna MHz 1 3983.75 39.71 29.90	a Cabl. dB 5.63 6.59 7.57 8.55	e Pream dB 36.14 35.03 33.32 36.65	dBuV/ 38.43 40.44 46.06	el Limit /m dBuV/m 74.00 74.00 74.00 74.00	limit -35.57 -33.50 -27.94	r Remark t 7 Peak 5 Peak 4 Peak 2 Peak	
MHz dBuV/m dB 1 4202.50 38.83 30.11 2 6063.19 36.35 32.53 3 7941.19 34.93 36.88 4 9859.47 35.28 39.50 Type 802.11n(HT40) Test chann Mark Frequency Reading Antenna MHz dBuV/m dB 4 3983.75 39.71 29.90	dB 5.63 6.59 7.57 8.55	dB 36.14 35.03 33.32 36.65	dBuV/ 38.43 40.44 46.06	/m dBuV/m 74.00 74.00 74.00 74.00	limit -35.57 -33.50 -27.94	t 7 Peak 5 Peak 4 Peak 2 Peak	
MHz dBuV/m dB 1 4202.50 38.83 30.11 2 6063.19 36.35 32.53 3 7941.19 34.93 36.88 4 9859.47 35.28 39.50 Type 802.11n(HT40) Test chann Mark Frequency Reading Antenna MHz dBuV/m dB 4 3983.75 39.71 29.90	dB 5.63 6.59 7.57 8.55	dB 36.14 35.03 33.32 36.65	dBuV/ 38.43 40.44 46.06	/m dBuV/m 74.00 74.00 74.00 74.00	limit -35.57 -33.50 -27.94	t 7 Peak 5 Peak 4 Peak 2 Peak	_
1 4202.50 38.83 30.11 2 6063.19 36.35 32.53 3 7941.19 34.93 36.88 4 9859.47 35.28 39.50 Type 802.11n(HT40) Test chann Mark Frequency Mark Frequency Reading Antenna MHz dBuV/m dB 39.83.75 39.71 29.90	5.63 6.59 7.57 8.55	36.14 35.03 33.32 36.65	38.43 40.44 46.06	74.00 74.00 74.00 74.00	-35.57 -33.50 -27.94	7 Peak 5 Peak 4 Peak 2 Peak	_
2 6063.19 36.35 32.53 3 7941.19 34.93 36.88 4 9859.47 35.28 39.50 Type 802.11n(HT40) Test chann Mark Frequency Reading Antenna MHz dBuV/m dB dB 29.90	6.59 7.57 8.55 nel	35.03 33.32 36.65	40.44 46.06	74.00 74.00 74.00	-33.50 -27.94	5 Peak 4 Peak 2 Peak	_
3 7941.19 34.93 36.88 4 9859.47 35.28 39.50 Type 802.11n(HT40) Test chann Mark Frequency Reading MHz Antenna dBuV/m 1 3983.75 39.71 29.90	7.57 8.55 nel	33.32 36.65	46.06	74.00 74.00	-27.94	4 Peak 2 Peak	_
4 9859.47 35.28 39.50 Type 802.11n(HT40) Test chann Mark Frequency Reading MHz Antenna dBuV/m 1 3983.75 39.71	8.55 nel	36.65		74.00		2 Peak	
Type 802.11n(HT40) Test chann Mark Frequency Reading Antenna MHz dBuV/m dB 1 3983.75 39.71 29.90	nel		46.68		-27.32		
Mark Frequency Reading Antenna MHz dBuV/m dB 1 3983.75 39.71 29.90		CH06		Polarity		Vertical	
MHz dBuV/m dB 1 3983.75 39.71 29.90							
MHz dBuV/m dB 1 3983.75 39.71 29.90							
1 3983.75 39.71 29.90					0ver	Remark	
	dB	dB	dBuV/		limit		
a 5740 40 36 46 34 66	5.28		38.49	74.00	-35.51		
2 5718.40 36.16 31.90	6.50		39.68	74.00	-34.32		
3 7921.00 35.11 36.84	7.55		46.17	74.00	-27.83	Peak	
4 10888.51 33.65 40.57	9.10	36.76	46.56	74.00	-27.44	Peak	
Type 802.11n(HT40) Test chann	nel	CH09		Polarity		Horizontal	
Mark Francisco Das Visa da i				1			
Mark Frequency Reading Antenna					Over		
MHz dBuV/m dB	dB	dB	dBuV/	-			
1 5073.59 37.73 32.20	5.88		40.38	74.00	-33.62		
2 6696.01 35.89 34.30	7.02		42.74	74.00	-31.20		
3 9228.06 35.47 38.91	8.38		46.72	74.00	-27.28		
4 11341.14 33.40 40.48	9.36	36.46	46.78	74.00	-27.22	2 Peak	
Type 802.11n(HT40) Test chann	nel	CH09		Polarity		Vertical	
Mark Frequency Reading Antenna					0ver		
MHz dBuV/m dB	dB	dB	dBuV/	m dBuV/m	limit		
1 4086.46 39.25 30.00	5.20	36.31	38.14	74.00	-35.86	Peak	
2 5125.52 37.19 32.10	5.94		39.77	74.00	-34.23		
3 8002.06 34.68 37.10	7.61		46.08	74.00	-27.92		
4 10888.51 33.98 40.57		33.31					

Page:

6. TEST SETUP PHOTOS

Radiated Emission

Refer to the test report No.: CHTEW22110129

8. APPENDIX REPORT