

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60021

Page 2 of 6

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

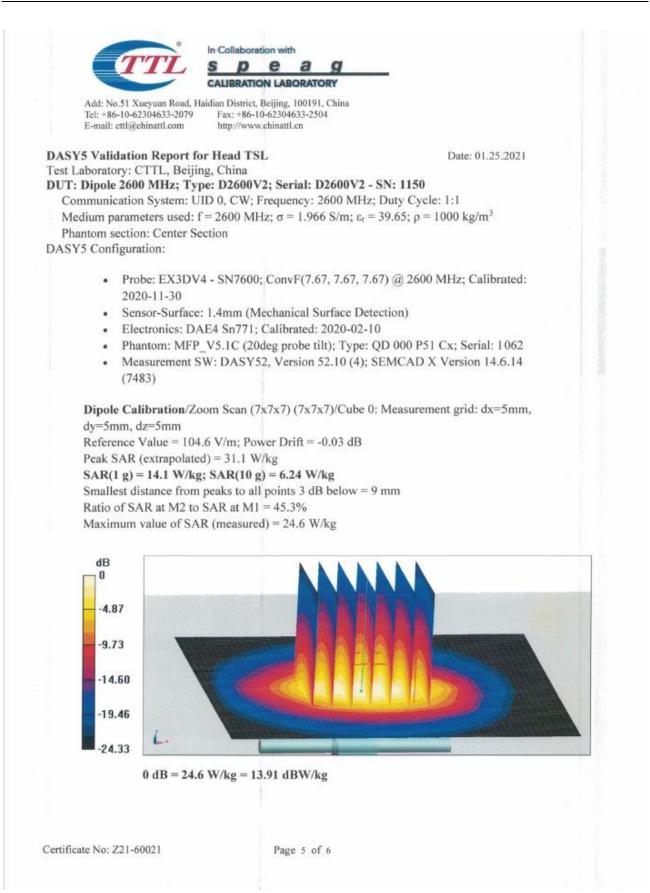
DASY52	V52.10.4
Advanced Extrapolation	
Triple Flat Phantom 5.1C	
10 mm	with Spacer
dx, dy, dz = 5 mm	
2600 MHz ± 1 MHz	
	Triple Flat Phantom 5.1C 10 mm dx, dy, dz = 5 mm

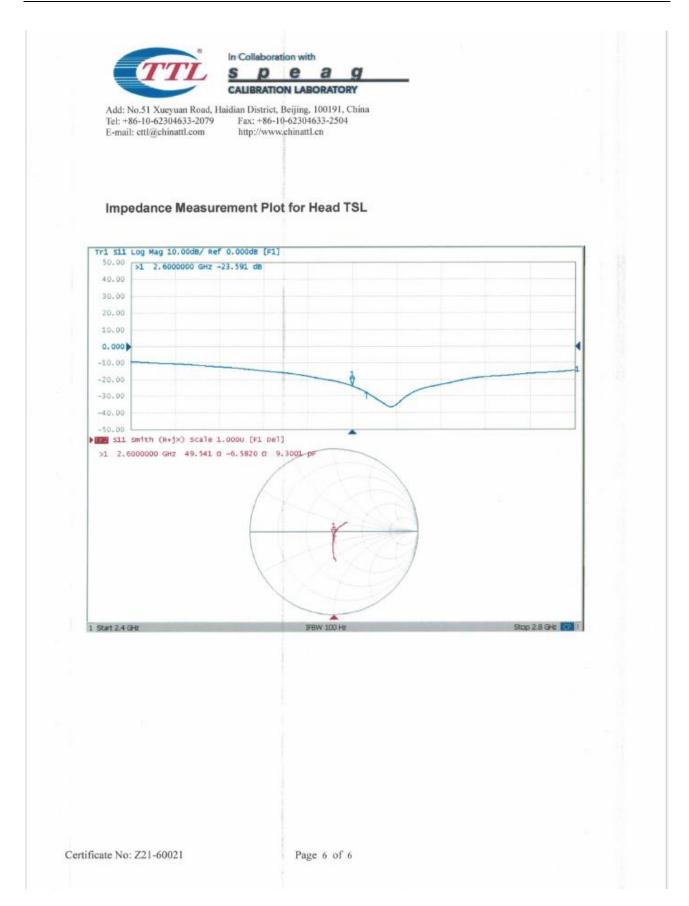
Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.7 ± 6 %	1.97 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL


SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.5 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.24 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.0 W/kg ± 18.7 % (k=2)


Certificate No: Z21-60021

Page 3 of 6

CALIBRA	TION LABORATORY	
	iet, Beijing, 100191, Chi 6-10-62304633-2504 ww.chinattl.en	na
Appendix(Additional assessmen		cope of CNAS L0570)
Impedance, transformed to feed point		49.5Ω- 6.58jΩ
Return Loss		- 23.6dB
General Antenna Parameters and Electrical Delay (one direction)	a Design	1.047 ns
Electrical Delay (one direction)		1.047 115
be measured. The dipole is made of standard semirigion connected to the second arm of the dipole of the dipoles, small end caps are added according to the position as explained in affected by this change. The overall dipo No excessive force must be applied to the	d coaxial cable. The ble, The antenna is d to the dipole arms n the "Measuremen ole length is still act he dipole arms, bed	
be measured. The dipole is made of standard semirigion connected to the second arm of the dipole of the dipoles, small end caps are added according to the position as explained in affected by this change. The overall dipo No excessive force must be applied to the connections near the feedpoint may be o	d coaxial cable. The ble, The antenna is d to the dipole arms n the "Measuremen ole length is still act he dipole arms, bed	e center conductor of the feeding line is dire therefore short-circuited for DC-signals. On in order to improve matching when loaded t Conditions" paragraph. The SAR data are cording to the Standard.
be measured. The dipole is made of standard semirigic connected to the second arm of the dipo of the dipoles, small end caps are added	d coaxial cable. The ble, The antenna is d to the dipole arms n the "Measuremen ole length is still act he dipole arms, bed	e center conductor of the feeding line is dire therefore short-circuited for DC-signals. On in order to improve matching when loaded t Conditions" paragraph. The SAR data are cording to the Standard.
be measured. The dipole is made of standard semirigic connected to the second arm of the dipole of the dipoles, small end caps are added according to the position as explained in affected by this change. The overall dipole No excessive force must be applied to the connections near the feedpoint may be of Additional EUT Data	d coaxial cable. The ble, The antenna is d to the dipole arms n the "Measuremen ole length is still act he dipole arms, bed	e center conductor of the feeding line is dire therefore short-circuited for DC-signals. On a in order to improve matching when loaded t Conditions" paragraph. The SAR data are cording to the Standard. cause they might bend or the soldered
be measured. The dipole is made of standard semirigic connected to the second arm of the dipole of the dipoles, small end caps are added according to the position as explained in affected by this change. The overall dipole No excessive force must be applied to the connections near the feedpoint may be of Additional EUT Data	d coaxial cable. The ble, The antenna is d to the dipole arms n the "Measuremen ole length is still act he dipole arms, bed	e center conductor of the feeding line is dire therefore short-circuited for DC-signals. On a in order to improve matching when loaded t Conditions" paragraph. The SAR data are cording to the Standard. cause they might bend or the soldered
be measured. The dipole is made of standard semirigic connected to the second arm of the dipole of the dipoles, small end caps are added according to the position as explained in affected by this change. The overall dipole No excessive force must be applied to the connections near the feedpoint may be of Additional EUT Data	d coaxial cable. The ble, The antenna is d to the dipole arms n the "Measuremen ole length is still act he dipole arms, bed	e center conductor of the feeding line is dire therefore short-circuited for DC-signals. On a in order to improve matching when loaded t Conditions" paragraph. The SAR data are cording to the Standard. cause they might bend or the soldered
be measured. The dipole is made of standard semirigic connected to the second arm of the dipole of the dipoles, small end caps are added according to the position as explained in affected by this change. The overall dipole No excessive force must be applied to the connections near the feedpoint may be of Additional EUT Data	d coaxial cable. The ble, The antenna is d to the dipole arms n the "Measuremen ole length is still act he dipole arms, bed	e center conductor of the feeding line is dire therefore short-circuited for DC-signals. On a in order to improve matching when loaded t Conditions" paragraph. The SAR data are cording to the Standard. cause they might bend or the soldered
be measured. The dipole is made of standard semirigic connected to the second arm of the dipole of the dipoles, small end caps are added according to the position as explained in affected by this change. The overall dipole No excessive force must be applied to the connections near the feedpoint may be of Additional EUT Data	d coaxial cable. The ble, The antenna is d to the dipole arms n the "Measuremen ole length is still act he dipole arms, bed	e center conductor of the feeding line is dire therefore short-circuited for DC-signals. On a in order to improve matching when loaded t Conditions" paragraph. The SAR data are cording to the Standard. cause they might bend or the soldered

Page 4 of 6

Extended Dipole Calibrations

Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Head-2600						
Date of	Poturn loop (dP)	Dolto (9/)	Real Impedance	Delta	Imaginary	Delta
measurement	Return-loss (dB)	Delta (%)	(ohm)	(ohm)	impedance (ohm)	(ohm)
2022-01-25	-23.6		49.5		-6.58	
2022-01-17	-24.0	1.69	49.1	0.4	-6.03	0.55
2023-01-15	-23.8	0.85	49.3	0.2	-6.33	0.25

The return loss is <-20dB, within 20% of prior calibration; the impedance is within 50hm of prior calibration. Therefore the verification result should support extended calibration.