

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE200102505

FCC REPORT

Applicant: XINCHUANGXIN INTERNATIONAL CO., LTD

Address of Applicant: ROOM 605 6/F, FA YUEN COMMERCIAL BUILDING, 75-77 FA

YUEN STREET MONGKOK KL Hongkong China

Equipment Under Test (EUT)

Product Name: MOBILE PHONE

Model No.: R20

Trade mark: CORN

FCC ID: 2ASWW-CORNR20

Applicable standards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 09 Jan., 2020

Date of Test: 10 Jan., to 03 Mar., 2020

Date of report issued: 04 Mar., 2020

Test Result: PASS*

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No: CCISE200102505

2 Version

Version No.	Date	Description
00	04 Mar., 2020	Original

Tested by:	YT Yang	Date:	04 Mar., 2020	
	Test Engineer			

Reviewed by:

| Date: 04 Mar., 2020 | Project Engineer

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

3 Contents

			Page
1	C	OVER PAGE	1
2	VI	ERSION	2
3	C	ONTENTS	3
4	TI	EST SUMMARY	4
5		ENERAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST MODE	5
	5.4	MEASUREMENT UNCERTAINTY	5
	5.5	DESCRIPTION OF SUPPORT UNITS	6
	5.6	RELATED SUBMITTAL(S) / GRANT (S)	
	5.7	DESCRIPTION OF CABLE USED	6
	5.8	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	6
	5.9	LABORATORY FACILITY	6
	5.10	LABORATORY LOCATION	6
	5.11	TEST INSTRUMENTS LIST	7
6	TI	EST RESULTS AND MEASUREMENT DATA	8
	6.1	CONDUCTED EMISSION	8
	6.2	RADIATED EMISSION	11
7	TI	EST SETUP PHOTO	17
8	E	UT CONSTRUCTIONAL DETAILS	18

4 Test Summary

Test Item	Section in CFR 47	Result
Conducted Emission	Part 15.107	Pass
Radiated Emission	Part 15.109	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: The EUT not applicable of the test item.

Test Method: ANSI C63.4:2014

5 General Information

5.1 Client Information

Applicant:	XINCHUANGXIN INTERNATIONAL CO., LTD	
Address:	ROOM 605 6/F, FA YUEN COMMERCIAL BUILDING, 75-77 FA YUEN STREET MONGKOK KL Hongkong China	
Manufacturer:	SHENZHEN CHITENG TECHNOLOGY CO., LTD	
Address:	SECOND FLOOR, AREA A, BUILDING 4, HUIYE TECHNOLOGY WORKSHOP, GUANGUANG ROAD, TANGJIA COMMUNITY STREET, GONGMING STREEST, GUANGMING NEW DISTRICT, SHENZHEN, GUANGDONG	

5.2 General Description of E.U.T.

Product Name:	MOBILE PHONE
Model No.:	R20
Power supply:	Rechargeable Li-ion Battery DC3.8V, 2200mAh
AC adapter:	Model: CS001
	Input: AC100-240V, 50/60Hz, 0.15A
	Output: DC 5V, 1A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

5.3 Test Mode

Operating mode	Detail description
PC mode Keep the EUT in Downloading mode(Worst case)	
Charging+Recording mode Keep the EUT in Charging+Recording mode	
Charging+Playing mode	Keep the EUT in Charging+Playing mode
FM mode	Keep the EUT in FM receiver mode
GPS mode	Keep the EUT in GPS receiver mode

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

Report No: CCISE200102505

5.5 Description of Support Units

Manufacturer	Description	Model Serial Number		FCC ID/DoC
DELL	PC	OPTIPLEX7070	2J8XSZ2	DoC
DELL	MONITOR	SE2018HR	3M7QPY2	DoC
DELL	KEYBOARD	KB216d	N/A	DoC
DELL	MOUSE	MS116t1	N/A	DoC
HP	Printer	HP LaserJet P1007	VNFP409729	DoC

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

Cable Type	Description	Length	From	То
Detached USB Cable	Shielding	1.0m	EUT	PC/Adapter
Detached headset cable	Unshielded	1.2m	EUT	Headset

5.8 Additions to, deviations, or exclusions from the method

No

5.9 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

■ ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.10 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

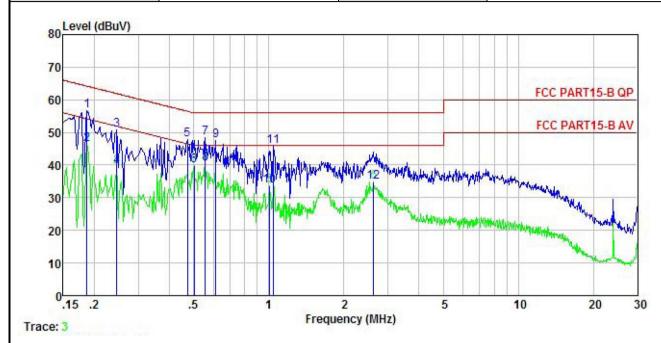
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.11 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020	
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b	
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020	
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020	
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020	

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2020
Cable	HP	10503A	N/A	03-18-2019	03-17-2020
EMI Test Software	AUDIX	E3	,	Version: 6.110919	b

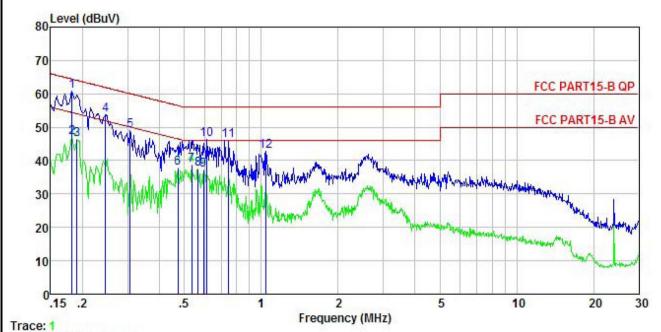
6 Test results and Measurement Data


6.1 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.107							
Test Frequency Range:	150kHz to 30MHz							
Class / Severity:	Class B	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz							
Limit:	Frequency range (MHz)							
	Quasi-peak Average							
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	0.5-30	60	50					
	* Decreases with the logarithm	of the frequency.						
Test setup:	Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	Filter — AC power						
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4(latest version) on conducted measurement. 							
Test Instruments:	Refer to section 5.11 for details	;						
Test mode:	Refer to section 5.3 for details							
Test results:	Pass							

Measurement data:

Product name:	MOBILE PHONE	Product model:	R20
Test by:	YT	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	—dBu∜	<u>ab</u>	<u>ab</u>	<u>d</u> B	dBu∇	dBu₹	<u>d</u> B	
1	0.186 0.186	46.33 36.05	-0.42 -0.42	-0.13 -0.13	10.76 10.76	56.54 46.26	64.20 54.20	-7.66 -7.94	QP Average
3	0.246	40.53	-0.40	-0.21	10.75	50.67	61.91	-11.24	QP
4 5	0.246 0.471	29.49 37.57	-0.40 -0.38		10.75 10.75	39.63 47.79	51.91 56.49	-12.28 -8.70	Average OP
1 2 3 4 5 6 7 8 9	0.502	29.70	-0.39	-0.35	10.76	39.72	46.00	-6.28	Average
8	0.555 0.555	38.54 30.34	-0.39 -0.39		10.76 10.76	48.54 40.34	56.00 46.00	-7.46 -5.66	Average
9 10	0.614 1.010	37.54 22.74	-0.38 -0.38	-0.38 0.45	10.77 10.87	47.55 33.68	56.00	-8.45	QP Average
11	1.043	34.77	-0.38	0.41	10.88	45.68	56.00	-10.32	QP
12	2.636	24.72	-0.43	-0.25	10.93	34.97	46.00	-11.03	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	MOBILE PHONE	Product model:	R20
Test by:	YT	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

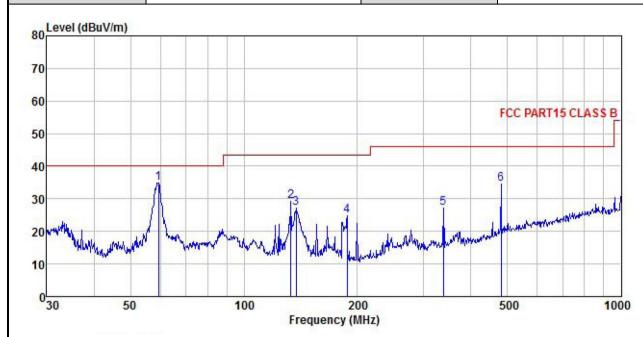
	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
<u>10</u>	MHz	₫₿uѶ	<u>ab</u>	<u>ab</u>	<u>ab</u>	—dBu∀	dBu∜	<u>ab</u>	
1	0.182	50.71	-0.69	0.00	10.77	60.79	64.42	-3.63	QP
2	0.182	36.82	-0.69	0.00	10.77	46.90	54.42	-7.52	Average
3	0.190	36.26	-0.69	0.00	10.76	46.33	54.02	-7.69	Average
1 2 3 4 5 6 7 8	0.246	43.64	-0.66	0.01	10.75	53.74	61.91	-8.17	QP
5	0.307	38.75	-0.63	0.00	10.74	48.86	60.06	-11.20	QP
6	0.471	27.80	-0.65	0.01	10.75	37.91	46.49	-8.58	Average
7	0.535	28.56	-0.65	0.03	10.76	38.70	46.00	-7.30	Average
8	0.567	27.25	-0.65	0.03	10.76	37.39	46.00	-8.61	Average
9	0.595	26.96	-0.64	0.04	10.77	37.13	46.00	-8.87	Average
10	0.614	36.23	-0.64	0.04	10.77	46.40	56.00	-9.60	QP
11	0.747	35.88	-0.64	0.05	10.79	46.08	56.00		
12	1.043	32.58	-0.63	0.09	10.88	42.92	56.00		

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.2 Radiated Emission

Test Requirement:	FCC Part 15 B Se	ection 15.10)9					
Test Frequency Range:	30MHz to 6000M	Hz						
Test site:	Measurement Dis	tance: 3m ((Sem	i-Anechoic (Chamber)			
Receiver setup:	Frequency	Detecto	or	RBW	VBW	Remark		
, 1000, 101 001ap	30MHz-1GHz	Quasi-pe	ak	120kHz 300		Iz Quasi-peak Value		
	Above 1GHz	Peak		1MHz 3		Peak Value		
	Above 1GHz	RMS		1MHz	3MHz	Average Value		
Limit:	Frequenc		Lim	it (dBuV/m	@3m)	Remark		
	30MHz-88MHz 40.0 Quasi-peak Valu							
	88MHz-216I			43.5		Quasi-peak Value		
	216MHz-960			46.0		Quasi-peak Value		
	960MHz-10	ÞΗΖ		54.0 54.0		Quasi-peak Value		
	Above 1GI	Hz		74.0		Average Value Peak Value		
Test setup:	Below 1GHz	4m			Antenna Tower Search Antenna			
	Tum 0.8m A 0.8m A A A A A A A A A A A A A A A A A A A	lm A	7777	RF				
	Above 1GHz Horn Antenna Tower Ground Reference Plane Test Receiver Ground Reference Plane Test Receiver							
Test Procedure:	ground at a 3 nd degrees to detect 2. The EUT was swhich was mou	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the 						


	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.11 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	All of the observed value above 6GHz ware the niose floor , which were no recorded

Measurement Data:

Below 1GHz:

Product Name:	MOBILE PHONE	Product Model:	R20
Test By:	YT	Test mode:	PC mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

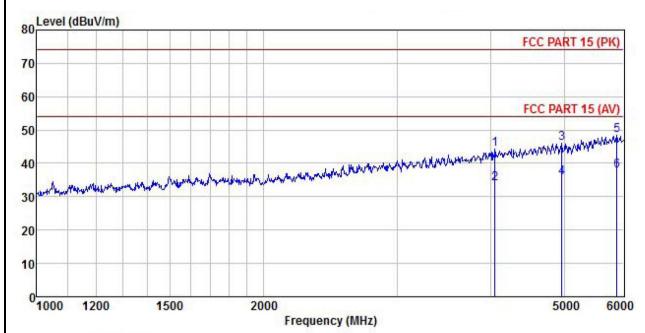
	Freq		Intenna Factor				Limit Line		Remark
	MHz	—dBu∀	<u>dB</u> /m		<u>ab</u>	dBuV/m	$\overline{dBuV/m}$	<u>ab</u>	
1	59.441	51.89	11.42	1.38	29.77	34.92	40.00	-5.08	QP
2	133.151	46.12	9.95	2.32	29.31	29.08	43.50	-14.42	QP
3	137.420	44.35	9.69	2.37	29.29	27.12	43.50	-16.38	QP
2 3 4	187.753	40.84	10.23	2.78	28.92	24.93	43.50	-18.57	QP
5	338.400	38.28	14.38	3.06	28.53	27.19	46.00	-18.81	QP
6	480.528					34.63			

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

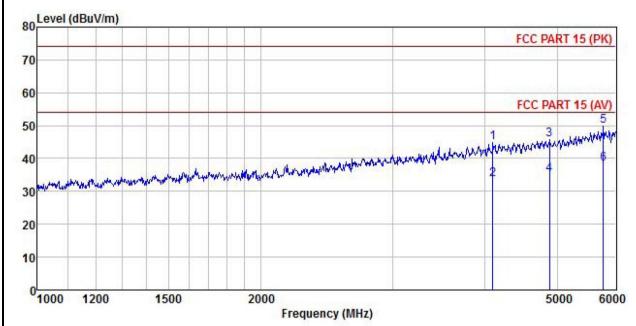
oduct N	lame:	MOBILE PHONE			F	Product Mo	odel:	R20		
est By:		YT			Т	Γest mode:		PC mod	de	
est Frequ	uency:	30 MHz ~ 1 GHz Polarization: Horizontal				tal				
est Volta	age:	AC 120/6	0Hz		Е	Environme	Temp: 24°C Huni: 57			
Love	el (dBuV/m)									
80 Leve	ei (abuviiii)									
70										
2.02										
60								FCC P	ART15	CLASSB
50										
40								5		
										6
30		1		2	3 4			1	L. Land	VIVAR CELIAN
20		1		2	3 4	الماليال	المراجعة المراجعة	And the state of t	appropriate halford	April 10 mary 1949
20	han in being and being being	Ann	was a state of the state of the	2	3 4 1 24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the state of	hirmly war on	Mary many Trabable	appropriate helphol	hand the later of the
20 10	h negretar between the sed of the sed of	Anne	wan political and the	2 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3 4	ad week to be designed	hkrosyllyw ^a re, on	And the second	opposite kulpini	Leader Laborat V
20	the state of the s	Anne	100	,,marken Veg	3 4	0	blewyllywan yn	500	april and half and	1000
20 10		Am		,,marken Veg	20 quency (M	0	blenes legales en	of any formation of the second	agranda kalend	
20 10	50	Read	100 Antenna	Fre	quency(M Preamp	O IHz)	Limit	500 Over		1000
20 10	50	Read	100	Fre	quency (M Preamp Factor	0 IHz) Level	Limit Line	500 Over		1000
20 10	50	Read	100 Antenna Factor	Fre	quency (M Preamp Factor	O IHz)	Limit Line	500 Over		1000
10 30	50 Freq MHz 59.441	Read/ Level dBuV 41.36	Antenna Factor dB/m	Fre Cable Loss dB	Preamp Factor dB	0 Hz) Level dBuV/m 24.39	Limit Line dBuV/m	500 Over Limit ———————————————————————————————————	Remar 	1000
10 30	50 Freq MHz 59.441 132.685	Read/ Level dBuV 41.36 39.47	4ntenna Factor — dB/m 11.42 9.99	Free Cable Loss	Preamp Factor dB 29.77 29.31	Devel dBuV/m 24.39 22.47	Limit Line dBuV/m 40.00 43.50	500 Over Limit 	Remar QP QP	1000
10 30	50 Freq MHz 59.441	Read/ Level dBuV 41.36	Antenna Factor dB/m	Fre Cable Loss dB	Preamp Factor dB 29.77 29.31 29.08 28.96	Level dBuV/m 24.39 22.47 22.59 24.25	Limit Line dBuV/m 40.00 43.50 43.50 43.50	500 Over Limit ———————————————————————————————————	Remar QP QP QP QP	1000


Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz:

Product Name:	MOBILE PHONE	Product Model:	R20
Test By:	YT	Test mode:	PC mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


	Freq		Intenna Factor				Limit Line	Over Limit	Remark
•	MHz	dBu∜	— <u>dB</u> /m		<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	4045.367	47.24	30.31	6.18	41.81	44.13	74.00	-29.87	Peak
2	4045.367	36.93	30.31	6.18	41.81	33.82	54.00	-20.18	Average
3	4962.120	47.15	31.32	6.91	41.87	46.00	74.00	-28.00	Peak
2 3 4 5 6	4962.120	36.91	31.32	6.91	41.87	35.76	54.00	-18.24	Average
5	5872.370	47.04	32.67	7.90	42.03	48.34	74.00	-25.66	Peak
6	5872.370	36.50	32.67	7.90	42.03	37.80	54.00	-16.20	Average

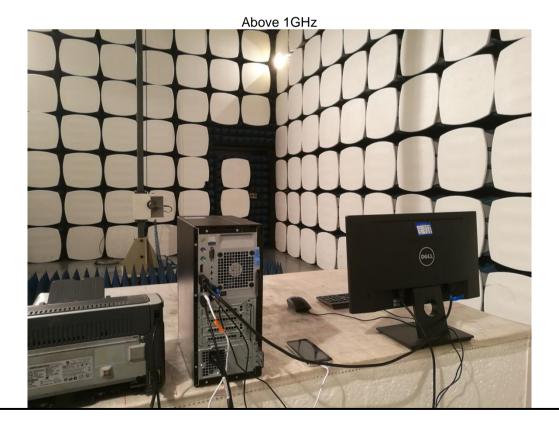
Remark:

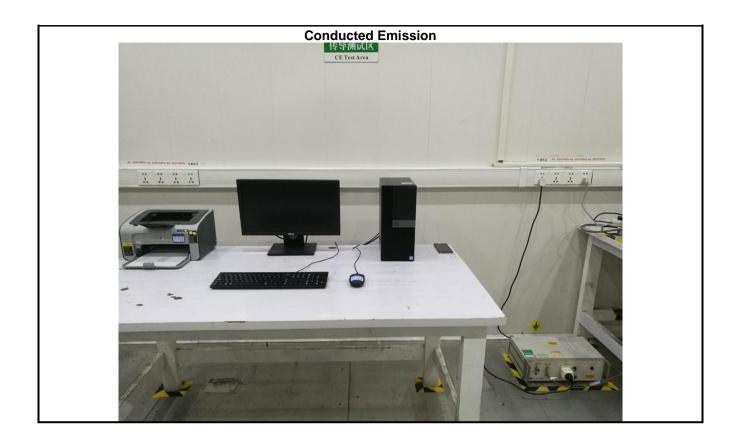
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	MOBILE PHONE	Product Model:	R20		
Test By:	YT	Test mode:	PC mode		
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		
	<u> </u>				

	Freq	ReadAntenna Level Factor		Cable Preamp Loss Factor					
	MHz	—dBu∜	<u>dB</u> /π		<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	4096.425	47.85	30.32	6.25	41.81	44.84	74.00	-29.16	Peak
2	4096.425	36.67	30.32	6.25	41.81	33.66	54.00	-20.34	Average
3	4882.743	47.01	31.17	6.86	41.84	45.67	74.00	-28.33	Peak
4	4882.743	36.58	31.17	6.86	41.84	35. 24	54.00	-18.76	Average
5	5768.088	48.67	32.65	7.79	41.98	49.86	74.00	-24.14	Peak
6	5768.088	37.27	32.65	7.79	41.98				Average


Remark:


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



7 Test Setup Photo

8 EUT Constructional Details

Reference to the test report No.: CCISE200102501

-----End of report-----