

Report No: CCISE190406702V01

FCC REPORT

Applicant: Shenzhen LINGDU Auto Electronics Co.,		
Address of Applicant:	1801-1808 Haiyun Building, No. 468 Minzhi Avenue, Longhua,Shenzhen, Guangdong, China	
Equipment Under Test (E	UT)	
Product Name:	S04	
Model No.:	S04	
FCC ID:	2ASWV-S04-S03	
Applicable standards:	FCC CFR Title 47 Part 15 Subpart B	
Date of sample receipt:	11 Apr., 2019	
Date of Test:	11 Apr., to 31 May, 2019	
Date of report issued:	22 Jul., 2019	
Test Result:	PASS *	

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version 2

Version No.	Date	Description
00	26 Jun., 2019	Original
01	22 Jun., 2019	Update test photos

Tested by:

Carry Chen Test Engineer

Date:

22 Jul., 2019

Reviewed by:

"han" Wimer

Date:

22 Jul., 2019

Project Engineer

3 Contents

		Pa	age
1	С	OVER PAGE	1
2	V	ERSION	2
3	С	ONTENTS	3
4	T	EST SUMMARY	4
5	G	ENERAL INFORMATION	5
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	CLIENT INFORMATION	5 5 6 6 6 6 6
6	T	EST RESULTS AND MEASUREMENT DATA	8
	6.1 6.2	Conducted Emission Radiated Emission	8 9
7	T	EST SETUP PHOTO	. 19
8	E	UT CONSTRUCTIONAL DETAILS	.21

4 Test Summary

Test Item	Section in CFR 47	Result		
Conducted Emission	Part 15.107	N/A		
Radiated Emission	Part 15.109	Pass		
Remark: Pass: The EUT complies with the essential requirements in the standard. N/A: The EUT not applicable of the test item.				

5 General Information

5.1 Client Information

Applicant:	Shenzhen LINGDU Auto Electronics Co., Ltd.	
Address:	1801-1808 Haiyun Building, No. 468 Minzhi Avenue, Longhua, Shenzhen, Guangdong, China	
Manufacturer:	Shenzhen LINGDU Auto Electronics Co., Ltd.	
Address:	1801-1808 Haiyun Building, No. 468 Minzhi Avenue, Longhua, Shenzhen, Guangdong, China	
Factory:	Dongguan KAKA Electronic Technology Co., Ltd	
Address:	No.395, Huanshi East Road, Shitanpu,TangxiaTown, Dongguan, Guangdong, China	

5.2 General Description of E.U.T.

Product Name:	S04
Model No.:	S04
Power supply:	Rechargeable Li-ion DC3.7V-500mAh
DC adapter :	Model: HC-801 Input: DC 12-24V, 0.15A Output: DC 5.0V, 2.5A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

5.3 Test Mode

Operating mode	Detail description		
Charging+Recording mode	Keep the EUT in Charging+(HDMI Output)Recording mode (worst case mode)		
Charging+Playing mode	Keep the EUT in Charging+(HDMI Output)Playing mode		
GPS mode	Keep the EUT in GPS receiver mode		
The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and			

vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.54 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.84 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
Skyworth	Color LCD TV	24E12HR	K026709	N/A
GS Japan	Lead-acid battery	55D26R-MFZ	8362810610	N/A
Samsung	TF(microSD)	MB-MC32D	N/A	N/A

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

Cable Type Descripti		Length	From	То
Non-separating USB Cable	Unshielded	3.5m	EUT	Car charger

5.8 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.9 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd. Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.10 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019	
EMI Test Software	AUDIX	E3	Version: 6.110919b			
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020	
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020	
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020	

6 Test results and Measurement Data

6.1 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.107				
Test Method:	ANSI C63.4:2014				
Test Frequency Range:	150kHz to 30MHz	150kHz to 30MHz			
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:	Erequency range (MHz)	Limit	(dBµV)		
		Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	0.5-30	60	50		
	* Decreases with the logarith	im of the frequency.			
Test setup:	Reference Plar	ne			
	LISN 40cm 80cm Filter AC power Equipment E.U.T Filter AC power Test table/Insulation plane EMI Receiver				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	The power supply of the EUT is by the car charger, so not need to be tested.				

6.2 Radiated Emission

Test Requirement:	FCC Part 15 B Section 15.109								
Test Method:	ANSI C63.4:2014								
Test Frequency Range:	30MHz to 25000MHz								
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Receiver setup:	Frequency Detector RBW VBW Remark								
	30MHz-1GHz	Quasi-p	eak 120kHz		300kHz	Quasi-peak Value			
	Above 1GHz	Peak		1MHz	3MHz	Peak Value			
	RMS 1MHz 3MHz Average Value								
Limit:	Frequency Limit (dBuV/m @3m) Remark								
	30MHz-88N	<u>/Hz</u>		40.0		Quasi-peak Value			
	88MHz-216	MHZ		43.5		Quasi-peak Value			
	216MHz-960			46.0		Quasi-peak Value			
	960IVIHZ-10	HZ		54.0		Quasi-peak Value			
	Above 1G	Hz		54.0		Average value			
Test setup:	Below 1GHz			- ==	Antenna Tower				
	EUT Turn Table Ground Plane Above 1GHz			RF	Search Antenna Test zeiver				
		EUT table)	3ar Ground Refe	Horn Antenna Horn Antenna Prence Plane	Antenna Tow	er			

Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	All of the observed value above 6GHz ware the niose floor , which were no recorded

Measurement Data:

DC 12V:

T	inc.	S04			P	Product model:		S04			
Test By:		Carey			т	est mode:	Chargi	Charging&Recording mod			
Test Frequ	ency:	30 MHz ~	1 GHz		P	Polarization:		Vertica	Vertical		
Test Voltag	je:	DC 12V			E	invironme	nt:	Temp:	Temp: 24°C Huni: 5		
Level (o	BuV/m)										
80											
70											
10											
60											
								FCC F	PART	15 CLASS B	
50									-		
						J					
40							2	2 4	5	6	
1.000							1 Ī	11 I	1		
30				-		- P		1.1		Malake	
10000											
20						1. Add	Alena	L.L. MILA	-Alle	A.M.A.M.	
20	41					Walker	Anthenen	blakeman	wither a	MAR DIS HAR	
20	mundu	inda e di	maldure	millin	under	Without	hum	which projuct	dine	ALC AND THE REAL PROPERTY OF	
20 10 wmww	mult	whenthe	madedun	undal	unture	Whent	getween the	which provide a	and the second		
20 10	menthe	www.	mader	undala	under have	literations	Mussi	William Constant	and providence	1000	
20 10	50	www.	nugh dung 100	Freq	200 uency (MH	litta land	godinester.	500	al phat	1000	
20 10	50	ReadA	100	Freq	200 uency (MH Preamp	III. And Annual (z)	Limit	500 Over		1000	
20 10	50 Freq	ReadA	100 Intenna Factor	Freq Cable Loss	200 uency (MH Preamp Factor	iz) Level	Limit	500 Over Limit	Rem	1000 ark	
20 10	50 Freq MHz	ReadA Level	100 Intenna Factor	Frequences	200 uency (MH Preamp Factor dB	Iz) Level	Limit Line dBuV/m	500 Over Limit	Rem	1000 ark	
20 10	50 Freq MHz	ReadA Level	100 Intenna Factor dB/m	Freq Cable Loss	200 uency (MH Factor dB	iz) Level dBuV/m	Limit Line dBuV/m	500 Over Limit	Rem	1000 ark	
20 10 0 30	50 Freq MHz 297.224	ReadA Level dBuV 42.63	100 Intenna Factor dB/m 13.56	Freq Cable Loss dB 2.93	200 uency (MH Preamp Factor dB 28.46	z) Level dBuV/m 30.66	Limit Line dBuV/m 46.00	500 Over Limit -15.34	Rem	1000 ark	
20 10 0 30	50 Freq MHz 297.224 389.355	ReadA Level dBuV 42.63 45.71	100 intenna Factor dB/m 13.56 15.15	Frequences Cable Loss dB 2.93 3.08	200 uency (MH Preamp Factor dB 28.46 28.73	Iz) Level dBuV/m 30.66 35.21	Limit Line dBuV/m 46.00	500 Over Limit 	Rem	1000 ark	
20 10 0 30	50 Freq MHz 297.224 389.355 475.499 562.662	ReadA Level dBuV 42.63 45.71 42.44	100 100 intenna Factor dB/m 13.56 15.15 17.38 19.67	Freq Cable Loss dB 2.93 3.08 3.41	200 uency (MH Preamp Factor dB 28.46 28.73 28.91	Iz) Level dBuV/m 30.66 35.21 34.32	Limit Line dBuV/m 46.00 46.00 46.00	500 Over Limit -15.34 -10.79 -11.68	Rem QP QP QP	1000 ark	
20 10 0 30	50 Freq MHz 297.224 389.355 475.499 562.662 649.660	ReadA Level dBuV 42.63 45.71 42.44 43.55 42.12	100 100 intenna Factor dB/m 13.56 15.15 17.38 18.67 19.70	Freq Cable Loss dB 2.93 3.08 3.41 3.90 3.86	200 uency (MH Preamp Factor dB 28.46 28.73 28.91 29.06 29.78	Iz) Level dBuV/m 30.66 35.21 34.32 37.06 36.90	Limit Line dBuV/m 46.00 46.00 46.00 46.00	500 500 Over Limit -15.34 -10.79 -11.68 -8.94 -9.10	Rem QP QP QP QP QP QP	1000 ark	
20 10 0 30	50 Freq MHz 297.224 389.355 475.499 562.662 649.660 744.866	Read# Level dBuV 42.63 45.71 42.44 43.55 42.12 39.80	100 100 Intenna Factor dB/m 13.56 15.15 17.38 18.67 19.70 20.59	Freq Cable Loss dB 2.93 3.08 3.41 3.90 3.86 4.34	200 uency (MH Preamp Factor dB 28.46 28.73 28.91 29.06 28.78 28.50	z) Level dBuV/m 30.66 35.21 34.32 37.06 36.90 36.23	Limit Line dBuV/m 46.00 46.00 46.00 46.00 46.00 46.00	500 500 0ver Limit -15.34 -10.79 -11.68 -8.94 -9.10 -9.77	Rem QP QP QP QP QP QP QP QP	1000 ark	

DC 24V:

Pro	duct Na	me:	S04				roduct mo	odel:	S04	S04		
Tes	t By:		Carey	Carey				1	Chargir	Charging&Recording mode		
Tes	t Freque	ency:	30 MHz -	- 1 GHz		Р	olarizatio	n:	Vertical	Vertical		
Tes	t Voltag	e:	DC 24V			E	nvironme	nt:	Temp: 2	Huni: 57%		
00	Level (d	BuV/m)										
00												
70			_									
60										_		
									FCC	PART15 C	LASSB	
50												
40			_						2	3 4 5	e	
20								1	11	Ĩ I I I	1111	
50					1					1 und	It a hard be	
20				1	7.1		11 de	ah man	hyper and a state of the state	A DECE		
10	La Barryan	marchandy	when had	Mulus	Wanter	heathertown	hall have a					
			- Anna I			SNA STR						
0	30	50		100	10	20	0		500		1000	
			Poor	lántanna	Free	Juency (M	Hz)	I imit	Ower			
		Fre	q Level	Factor	Loss	Factor	Level	Line	Limit	Remark		
	-	MCH	z dBu		dB	āB	dBuV/m	dBuV/m	ā			
	1	389.35	5 43.75	15.15	3.08	28.73	33.25	46.00	-12.75	QP		
	2	446.41	4 45.22	16.41	3.19	28.86	35.96	46.00	-10.04	QP		
	3	562.66	2 42.29	18.67	3.90	29.06	35.80	46.00	-10.20	QP		
	5	744.86	6 40.97	20.59	4.34	28.50	37.40	46.00	-8.60	QP		
	6	996.50	0 39.31	22.79	4.45	27.45	39.10	54.00	-14.90	QP		
Ren 1	nark:	aval - Des	niver Deed	aval , Anton	no Footor	Cablad	000 Dro-	molific - F-	tor			
1. 2.	The emi	ever = Rec ssion levels	of other fre	ever + Anten quencies are	e very low	+ Cable Lo	limit and r	not show in	test report	t.		

Above 1GHz:

DC 12V

louuci	Name:			Product m	odel:	S04	S04					
est By:		Carey				Test mode	*:	Charg	ing&Rec	ording mode		
est Freq	luency:	1 GHz ~ 6) GHz			Polarizatio	on:	Vertica	Vertical			
est Volta	age:	DC 12V				Environme	ent:	Temp	Temp: 24℃ Huni:			
Level	(dBuV/m)											
50								F	CC PAR	T 15 (PK)		
0												
50												
	_							F	CC PAR	T 15 (AV)		
0						_				5		
10								1	-	3 minute		
					-	a meter harmont	mann	Vulton	WAAAAA			
	March Land	1	100 000 00		And the second							
10 mplemet	-	providence	"approximation	rendered the	nurshingal weather							
30 	Look of the state	productionare	aphartan and	ngenderes Madd	nersely and the start							
30 	Low and the second second	making	liphyshop and	ngendenis Minde	number of the second							
80	Low of a state of the state of	prochestoriase	and and a second second	a fendenes made	nerskerpe ^{lme} r ^{te} l							
30 	1200	1500	2	000					500	10 6000		
30 	1200	1500	2	000 Fred	Juency (MI	Hz)			500)0 6000		
30 	1200 Freq	1500 ReadA Level	2 ntenna Factor	000 Free Loss	uency (MI Preamp Factor	Hz) Level	Limit Line	Over Limit	500 Remark)0 6000 k		
0 0 0 1000	1200 Freq	1500 ReadA Level	ntenna Factor	000 Free Loss dB	uency (Mi Preamp Factor 	Hz) Level dBuV/m	Limit Line dBuV/m	Over Limit dB	500 Remari)0 6000 k		
1 1	1200 Freq MHz 4185,457	1500 ReadA Level 2 dBuV 45. 72	2 ntenna Factor dB/m 30.34	000 Free Loss dB 6, 37	uency (MI Preamp Factor dB 41.81	Hz) Level dBuV/m 40.62	Limit Line dBuV/m 74.00	Over Limit 	500 Remari)0 6000 k		
1 20 0 1000	1200 Freq MHz 4185.457 4185.457	1500 ReadA Level 2 dBuV 45.72 36.69	2 ntenna Factor dB/m 30.34 30.34	0000 Free Loss dB 6.37 6.37	uency (Mi Preamp Factor dB 41.81 41.81	Hz) Level dBuV/m 40.62 31.59	Limit Line dBuV/m 74.00 54.00	Over Limit -33.38 -22.41	500 Remark Peak Avera	00 6000 k		
1 20 0 1000 1000	1200 Freq 4185.457 4185.457 5161.626	1500 ReadA Level dBuV 45.72 36.69 43.93	2 ntenna Factor dB/m 30.34 30.34 31.80	0000 Free Loss dB 6.37 6.37 7.06	puency (Mi Preamp Factor dB 41.81 41.81 41.94	Hz) Level dBuV/m 40.62 31.59 40.85	Limit Line dBuV/m 74.00 54.00 74.00	Over Limit -33.38 -22.41 -33.15	500 Remark Peak Avera Peak	00 6000 k ge		
1 20 0 1000 1000	1200 Freq 1200 KHz 4185.457 4185.457 5161.626 5161.626	1500 ReadA Level dBuV 45. 72 36. 69 43. 93 37. 84	2 ntenna Factor dB/m 30.34 30.34 31.80 31.80	0000 Free Loss dB 6.37 7.06 7.06 7.06	uency (MI Preamp Factor dB 41.81 41.81 41.94 41.94	Hz) Level dBuV/m 40.62 31.59 40.85 34.76	Limit Line dBuV/m 74.00 54.00 74.00 54.00	Over Limit 	500 Remari Peak Avera Peak Avera	00 6000 k ge ge		
1 20 0 1000 1000	1200 Freq 1200 KHz 4185.457 4185.457 5161.626 5161.626 5946.487	1500 ReadA Level 2 dBuV 45.72 36.69 43.93 37.84 45.17	2 ntenna Factor dB/m 30.34 30.34 31.80 31.80 31.80 32.69	0000 Free Loss dB 6.37 7.06 7.06 7.92	uency (Mi Preamp Factor dB 41.81 41.81 41.94 41.94 41.94 42.04	Hz) Level dBuV/m 40.62 31.59 40.85 34.76 43.74	Limit Line dBuV/m 74.00 54.00 74.00 54.00 74.00 74.00	Over Limit 	500 Remark Peak Avera Peak Avera Peak)0 6000 k ge ge		

DC 24V:

Product Name:	S04			Р	roduct mo	del:	S04				
Test By:	Carey			т	est mode:		Chargir	ng&Record	ling mode		
Test Frequency:	1 GHz ~ 6	GHz		Р	olarizatior	larization: Vertical		Vertical			
Test Voltage:	DC 24V			E	nvironme	nt:	Temp: 2	Huni: 57%			
Level (dBuV/m)											
80							F	CC PART	15 (PK)		
70											
60											
00							F	CC PART	15 (AV)		
50							5		montheman		
7.					1	3 manunder	allasander	up data the			
40	Herenander	munder	Annasata was	white		4	ľ				
30	-				2	_	_				
20						-					
10											
10											
01000 1200	1500	20	00			8.		5000	6000		
			Frequ	uency (MH	z)						
	ReadA	ntenna	Cable	Preamp		Limit	Over				
Fre	1 Level	Factor	Loss	Factor	Level	Line	Limit	Kemark			
MH	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB				
1 2788.474	49.19	28.06	5.12	41.67	42.52	74.00	-31.48	Peak			
2 2788.474	38.70	28.06	5.12	41.67	32.03	54.00	-21.97	Averag	e		
3 3394.07	48.42	28.58	5.62	41.35	43.40	74.00	-30.60	Peak			
4 3394.07	38.65	28.58	5.62	41.35	33.63	54.00	-20.37	Averag	e		
6 4439.01	0 00.21	30.39	0.10	42.00	20 06	F4.00	-20.20	reak	-		
0 4439.01	40.18	30.39	0.10	42.00	30.20	54.00	-10. (4	Averag	8		
Demerly											
remark: 1 Final Level – Rece	iver Read Iov	/el + ∆nten	na Factor	+ Cable I	ass - Pres	mnlifier Fa	ctor				

