Report No: CCISE190304102

FCC REPORT

Applicant: Shenzhen LINGDU Auto Electronics Co., Ltd.

Address of Applicant: 1801-1808 Haiyun Building, No. 468 Minzhi Avenue, Longhua,

Shenzhen, Guangdong, China

Equipment Under Test (EUT)

Product Name: CAR DVR

Model No.: GS31- GS31N

FCC ID: 2ASWV-GS31-GS31N

Applicable standards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 12 Mar., 2019

Date of Test: 13 Mar., to 05 Jul., 2019

Date of report issued: 06 Jul., 2019

Test Result: PASS*

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	06 Jul., 2019	Original

Tested by: Date: 06 Jul., 2019

Test Engir⊯er

Reviewed by: Date: 06 Jul., 2019

Project Engineer

3 Contents

		ŀ	Page
1	С	OVER PAGE	1
2	V	ERSION	2
3	С	ONTENTS	3
4	TI	EST SUMMARY	4
5		ENERAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE	
	5.4	Measurement Uncertainty	
	5.5	DESCRIPTION OF SUPPORT UNITS	
	5.6	RELATED SUBMITTAL(S) / GRANT (S)	
	5.7	DESCRIPTION OF CABLE USED	
	5.8	LABORATORY FACILITY	6
	5.9	LABORATORY LOCATION	6
	5.10	TEST INSTRUMENTS LIST	7
6	T	EST RESULTS AND MEASUREMENT DATA	8
	6.1	CONDUCTED EMISSION	8
	6.2	RADIATED EMISSION	
7	T	EST SETUP PHOTO	17
8	F	LIT CONSTRUCTIONAL DETAILS	12

4 Test Summary

Test Item	Section in CFR 47	Result
Conducted Emission	Part 15.107	N/A
Radiated Emission	Part 15.109	Pass

Remark:

Pass: The EUT complies with the essential requirements in the standard.

N/A: The EUT not applicable of the test item.

5 General Information

5.1 Client Information

Applicant:	Shenzhen LINGDU Auto Electronics Co., Ltd.	
Address: 1801-1808 Haiyun Building, No. 468 Minzhi Avenue, Longhua, Sher Guangdong, China		
Manufacturer:	Shenzhen LINGDU Auto Electronics Co., Ltd.	
Address:	1801-1808 Haiyun Building, No. 468 Minzhi Avenue, Longhua, Shenzhen, Guangdong, China	
Factory:	Dongguan KAKA Electronic Technology Co., Ltd	
Address:	No.395,Huanshi East Road, Shitanpu, Tangxia Town, Dongguan, Guangdong, China	

5.2 General Description of E.U.T.

Product Name:	CAR DVR
Model No.:	GS31- GS31N
Power supply:	Rechargeable Li-ion Battery DC3.7V, 400mAh
Car charging:	Model: HC-801 Input: DC 12V-24V Output: DC 5.0V, 2.5A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

5.3 Test Mode

Operating mode	Detail description
PC mode Keep the EUT in Downloading mode(Worst case)	
Charging+Recording mode Keep the EUT in Charging+Recording mode	
Charging+Playing mode	Keep the EUT in Charging+Playing mode
GPS mode Keep the EUT in GPS receiver mode	

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.54 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.84 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 2311 8282 Fax: +86 (0) 755 2311 6366

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC
LENOVO	Laptop	SL510	2847A65	DoC

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

Cable Type	Description	Length	From	То
Car adapter	Unshielded	3.5m	EUT	Adapter
Detached USB Cable	Unshielded	1.2m	EUT	PC

5.8 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.9 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

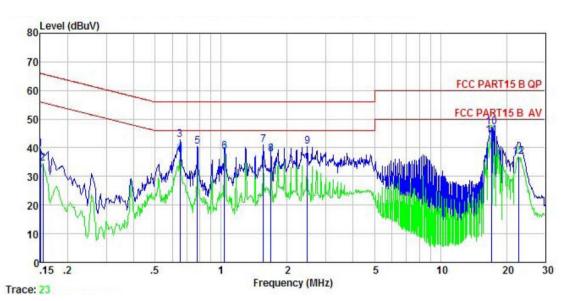
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 2311 8282 Fax: +86 (0) 755 2311 6366

5.10 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due date
			5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	(mm-dd-yy)	(mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2018	03-17-2019
Loop Antenna	SCHWARZBECK	TWZD1319D	00044	03-18-2019	03-17-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2018	03-17-2019
BICOTILOG ATTETITA	SCHWARZBECK	VOLD9103	497	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2018	03-17-2019
понт Апценна	SCHWARZBECK	DDNA9120D	910	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	١	/ersion: 6.110919	b
D	LID	0447D	0044400050	03-18-2018	03-17-2019
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020
Due emplifier	CD	PAP-1G18	44004	03-18-2018	03-17-2019
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020
Chaatrum analyzar	Rohde & Schwarz	FSP30	101454	03-18-2018	03-17-2019
Spectrum analyzer	Ronde & Schwarz	F3F3U	101454	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Took Dooring	Dahala 8 Oahaar	E0DD7	404070	03-18-2018	03-17-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020
0-1-1-	70501	7400 NII NII 04	4000450	03-18-2018	03-17-2019
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020
Coblo	MICRO COAY	MED64620	V10742 F	03-18-2018	03-17-2019
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2018	03-17-2019
Cable	SUTINER	30COFLEX 100	30193/4FE	03-18-2019	03-17-2020

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Took Doosiyar	Dahda 9 Cabusan	FOOL	404400	03-18-2018	03-17-2019	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020	
Dulas Limitar	SCHWARZBECK	OSRAM 2306	9731	03-18-2018	03-17-2019	
Pulse Limiter	SCHWARZBECK	USKAW 2306		03-18-2019	03-17-2020	
LION	CLIACE	MNIOOFOD	4.447	03-18-2018	03-17-2019	
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019	
Cabla	LID	405024	NI/A	03-18-2018	03-17-2019	
Cable	HP	10503A	N/A	03-18-2019	03-17-2020	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

6 Test results and Measurement Data


6.1 Conducted Emission

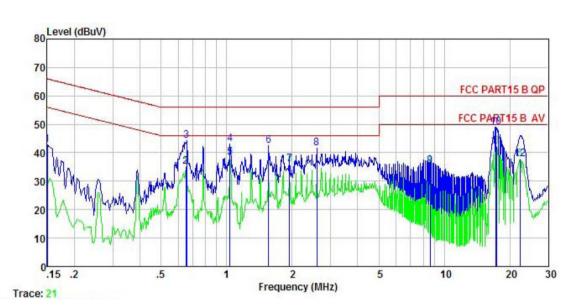
Test Requirement:	FCC Part 15 B Section 15.10	07			
Test Method:	ANSI C63.4:2014	ANSI C63.4:2014			
Test Frequency Range:	150kHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:		Limit	(dBµV)		
Limit	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	0.5-30	60	50		
	* Decreases with the logarith	nm of the frequency.			
Test setup:	Reference Plan	ne			
	AUX Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 				
Test environment:	Temp.: 22.5 °C Humid.: 55% Press.: 101kPa				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				

Measurement data:

Product name:	CAR DVR	Product model:	GS31- GS31N
Test by:	YT	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	₫B	₫B	dBu₹	dBu∜	<u>d</u> B	
1	0.150	28.72	0.18	10.78	39.68	66.00	-26.32	QP
2	0.154	23.61	0.18	10.78	34.57	55.78	-21.21	Average
3	0.651	31.91	0.13	10.77	42.81	56.00	-13.19	QP
1 2 3 4 5 6 7 8 9	0.651	26.95	0.13	10.77	37.85	46.00	-8.15	Average
5	0.779	29.40	0.13	10.80	40.33	56.00	-15.67	QP
6	1.037	27.56	0.13	10.87	38.56	46.00	-7.44	Average
7	1.560	29.82	0.14	10.93	40.89	56.00	-15.11	QP
8	1.689	26.70	0.14	10.94	37.78	46.00	-8.22	Average
9	2.474	29.31	0.15	10.94	40.40	56.00	-15.60	QP
10	17.109	36.09	0.30	10.91	47.30	60.00	-12.70	QP
11	17.109	33.12	0.30	10.91	44.33	50.00	-5.67	Average
12	22.775	25.75	0.31	10.90	36.96	50.00	-13.04	Average


Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Page 9 of 18

Product name:	CAR DVR	Product model:	GS31- GS31N
Test by:	YT	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

Remark

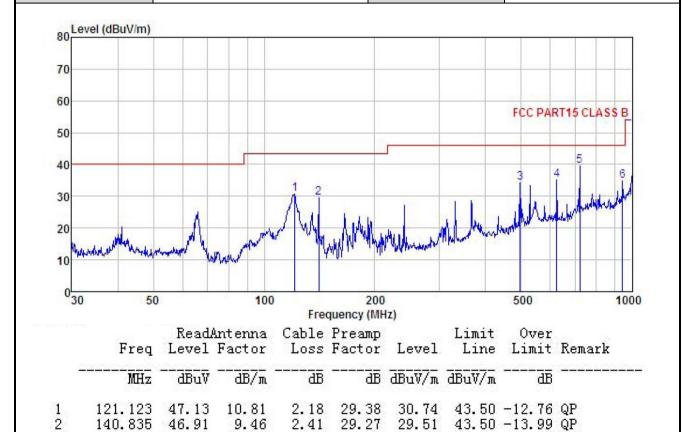
Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
MHz	dBu∀	<u>dB</u>	<u>ab</u>	dBu₹	dBu∜	<u>db</u>	
0.150	30.90	0.99	10.78	42.67	66.00	-23.33	QP
0.651	23.66	0.63	10.77	35.06	46.00	-10.94	Average
0.654	32.42	0.97	10.77	44.16	56.00	-11.84	QP
1.037	31.31	0.97	10.87	43.15	56.00	-12.85	QP
1.037	26.72	0.67	10.87	38.26	46.00	-7.74	Average
1.560	30.71	0.98	10.93	42.62			
1.949	24.41	0.67	10.96	36.04	46.00	-9.96	Average
2.594	29.83	0.99	10.93	41.75			
8.592	23.86	0.69	10.88	35.43	50.00	-14.57	Average
17.291	37.31	0.80	10.91	49.02			
17.383	30.52	0.69	10.92	42.13	50.00	-7.87	Average
22.298	26.14	0.69	10.90	37.73			
	MHz 0. 150 0. 651 0. 654 1. 037 1. 037 1. 560 1. 949 2. 594 8. 592 17. 291 17. 383	Freq Level MHz dBuV 0.150 30.90 0.651 23.66 0.654 32.42 1.037 31.31 1.037 26.72 1.560 30.71 1.949 24.41 2.594 29.83 8.592 23.86 17.291 37.31 17.383 30.52	Freq Level Factor MHz dBuV dB 0.150 30.90 0.99 0.651 23.66 0.63 0.654 32.42 0.97 1.037 31.31 0.97 1.037 26.72 0.67 1.560 30.71 0.98 1.949 24.41 0.67 2.594 29.83 0.99 8.592 23.86 0.69 17.291 37.31 0.80 17.383 30.52 0.69	MHz dBuV dB dB 0.150 30.90 0.99 10.78 0.651 23.66 0.63 10.77 0.654 32.42 0.97 10.77 1.037 31.31 0.97 10.87 1.037 26.72 0.67 10.87 1.560 30.71 0.98 10.93 1.949 24.41 0.67 10.96 2.594 29.83 0.99 10.93 8.592 23.86 0.69 10.88 17.291 37.31 0.80 10.91 17.383 30.52 0.69 10.92	MHz dBuV dB dB dBuV 0.150 30.90 0.99 10.78 42.67 0.651 23.66 0.63 10.77 35.06 0.654 32.42 0.97 10.77 44.16 1.037 31.31 0.97 10.87 43.15 1.037 26.72 0.67 10.87 38.26 1.560 30.71 0.98 10.93 42.62 1.949 24.41 0.67 10.96 36.04 2.594 29.83 0.99 10.93 41.75 8.592 23.86 0.69 10.88 35.43 17.291 37.31 0.80 10.91 49.02 17.383 30.52 0.69 10.92 42.13	MHz dBuV dB dB dBuV dBuV 0.150 30.90 0.99 10.78 42.67 66.00 0.651 23.66 0.63 10.77 35.06 46.00 0.654 32.42 0.97 10.77 44.16 56.00 1.037 31.31 0.97 10.87 43.15 56.00 1.037 26.72 0.67 10.87 38.26 46.00 1.560 30.71 0.98 10.93 42.62 56.00 1.949 24.41 0.67 10.96 36.04 46.00 2.594 29.83 0.99 10.93 41.75 56.00 8.592 23.86 0.69 10.88 35.43 50.00 17.291 37.31 0.80 10.91 49.02 60.00 17.383 30.52 0.69 10.92 42.13 50.00	MHz dBuV dB dB dBuV dBuV dB 0.150 30.90 0.99 10.78 42.67 66.00 -23.33 0.651 23.66 0.63 10.77 35.06 46.00 -10.94 0.654 32.42 0.97 10.77 44.16 56.00 -11.84 1.037 31.31 0.97 10.87 43.15 56.00 -12.85 1.037 26.72 0.67 10.87 38.26 46.00 -7.74 1.560 30.71 0.98 10.93 42.62 56.00 -13.38 1.949 24.41 0.67 10.96 36.04 46.00 -9.96 2.594 29.83 0.99 10.93 41.75 56.00 -14.25 8.592 23.86 0.69 10.88 35.43 50.00 -14.57 17.291 37.31 0.80 10.91 49.02 60.00 -10.98 17.383 30.52 0.69

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.2 Radiated Emission

Test Requirement:	FCC Part 15 B S	ection 15.1	09				
Test Method:	ANSI C63.4:2014	1					
Test Frequency Range:	30MHz to 25000f	MHz					
Test site:	Measurement Dis	stance: 3m	(Sen	ni-Anechoic	Chamber)		
Receiver setup:	Frequency	Detect		RBW VBW		Remark	
	30MHz-1GHz	Quasi-pe		120kHz	300kHz	Quasi-peak Value	
	Above 1GHz	Peak RMS		1MHz	3MHz	Peak Value	
			1MHz	3MHz	Average Value		
Limit:	Frequenc		Lim	nit (dBuV/m	@3m)	Remark	
	30MHz-88N			40.0		Quasi-peak Value	
	88MHz-216I			43.5 46.0		Quasi-peak Value	
	216MHz-960			54.0		Quasi-peak Value	
	960MHz-10	סחע		54.0 54.0		Quasi-peak Value Average Value	
	Above 1G	Hz		74.0		Peak Value	
Test setup:	Below 1GHz Turn Table Ground Plane Above 1GHz	4m 4m 1			Antenna Tower Search Antenna Test Leiver		
	Horn Antenna Tower AE EUT Ground Reference Plane Test Receiver Test Receiver						


Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 						
	ground	to determine al and vertica	the maximun	n value of the	field stren	rs above the gth. Both t to make the	
	and the	arranged to its worst case rom 1 meter to 4 meters grees to 360 degrees to					
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.						
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.						
Test environment:	Temp.:	24 °C	Humid.:	57%	Press.:	1 01kPa	
Test Instruments:	Refer to se	ection 5.9 for	details				
Test mode:	Refer to se	ection 5.3 for	details				
Test results:	Passed						
Remark:		observed value from 30MH:	ue above 6G z to 6GHz	Hz are the n	iose floor ,	Only report	

Measurement Data:

Below 1GHz:

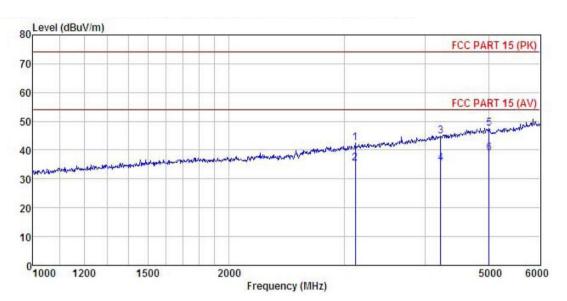
Product Name:	CAR DVR	Product Model:	GS31- GS31N
Test By:	YT	Test mode:	PC mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24°C Huni: 57%

3 495.934 41.39 18.06 3.59 28.94 34.10 46.00 -11.90 QP 4 625.078 40.54 19.61 3.90 28.86 35.19 46.00 -10.81 QP 5 721.726 43.28 20.49 46.00 -6.55 QP 4.2628.58 39.45 6 942.131 35.85 22.67 4.13 27.75 34.90 46.00 -11.10 QP

Remark.

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

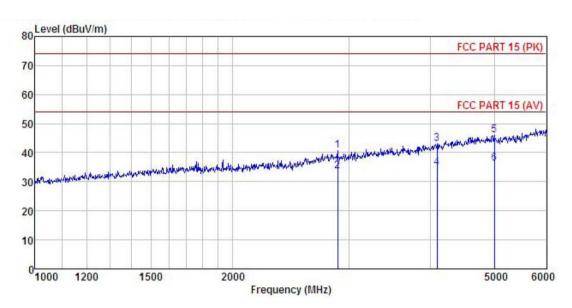
oduct N	lame:	CAR DVR				Product	Model:	GS3	GS31- GS31N		
est By:		YT				Test mod	de:	PC r	PC mode		
est Frequ	uency:	y: 30 MHz ~ 1 GHz Polarization:			zation: Horizontal			Horizontal			
est Volta	ıge:	AC 120V/60Hz				Environment: Te			p: 24 ℃	Huni: 57%	
	and AdDreit Uses										
80 Lev	/el (dBuV/m)										
70											
60								FCC	PART15 CI	LASSB	
50								-			
40											
40					. 2 .				5 I		
30					1.141		4	1.	Lidensky	Lille	
					A. 10 A.	1 1	10 1	1 1	L. MIN	0.000	
201		1		Α.	4.0401	k f lk a lallu	- Maria - 1.	1 who had	A -Passilla.		
20		A	. MAN	walul.		MALALA	Markey Markey	handhodayld hado	Af-Newfale.		
	population and white partie	every hour	Jan	M		MANAMA	Marchael March	handlashed hande	A-readily.		
104/ _W	44.00	- Mary May		and wh	MANA 11	MANUAL AND	Marchael March	her all holds	A-realth.		
	44.00	- marina Au	, m. 1. m.		21 equency (f	OO (THZ)	Marchand March	500	A-radia.	1000	
104/ _W	50	ReadA		Fr Cable		MHz)	Limit Line	500 Over	Remark		
104/ _W	50	ReadA	10 Intenna	Fr Cable	equency (1 Preamp Factor	MHz) Level		500 Over			
10 th	50 Freq	Read! Level	10 Intenna Factor	Fr Cable Loss ————dB	equency (P Preamp Factor ————— dB	MHz) Level dBuV/m	Line	500 Over Limit			
10 1/4 0 30	50 Freq MHz 165.487 181.283	Read! Level dBuV 47.02 47.98	antenna Factor dB/m 9.49	Cable Loss dB 2.62 2.74	equency (F Preamp Factor dB 29.09 28.96	MHz) Level dBuV/m 30.04 31.77	Line dBuV/m 43.50 43.50	500 Over Limit ———————————————————————————————————			
10 1/4 0 30	50 Freq MHz 165.487 181.283 196.510	Read/ Level dBuV 47.02 47.98 45.12	10 Antenna Factor ————————————————————————————————————	Err Cable Loss dB 2.62 2.74 2.84	equency (Preamp Factor ————————————————————————————————————	MHz) Level dBuV/m 30.04 31.77 29.61	Line dBuV/m 43.50 43.50 43.50	500 Over Limit ———————————————————————————————————			
10 1/4 0 30	50 Freq MHz 165.487 181.283 196.510 314.377	Read/ Level dBuV 47.02 47.98 45.12 38.00	10 Antenna Factor ————————————————————————————————————	Fr Cable Loss 	equency (Preamp Factor ————————————————————————————————————	MHz) Level dBuV/m 30.04 31.77 29.61 26.40	Line dBuV/m 43.50 43.50 43.50 46.00	500 Over Limit ———————————————————————————————————			
10 th	50 Freq MHz 165.487 181.283 196.510	Read/ Level dBuV 47.02 47.98 45.12	10 Antenna Factor ————————————————————————————————————	Err Cable Loss dB 2.62 2.74 2.84	equency (Preamp Factor ————————————————————————————————————	MHz) Level dBuV/m 30.04 31.77 29.61 26.40	Line dBuV/m 43.50 43.50 43.50 46.00 46.00	500 Over Limit ———————————————————————————————————			


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz:

Product Name:	CAR DVR	Product Model:	GS31- GS31N
Test By:	YT	Test mode:	PC mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24°C Huni: 57%


REMARK	Freq		Antenna Factor		Preamp Factor	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∀	dB/m	₫B	dB	dBuV/m	dBuV/m	dB	
1 2 3 4 5	3121.637 3121.637 4220.584 4220.584 5008.886 5008.886	47.78 40.78 47.46 37.89 48.17 39.56	28. 68 28. 68 30. 61 30. 61 31. 91 31. 91	5.39 5.39 6.43 6.43 6.94 6.94		42.37 35.37 44.95 35.38 47.64 39.03	54.00 74.00 54.00 74.00	-29.05 -18.62 -26.36	Average Peak Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	CAR DVR	Product Model:	GS31- GS31N
Test By:	YT	Test mode:	PC mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24°C Huni: 57%

REMAR	K :	Read	Antenna	Cable	Dreamn		Limit	Over	
	Freq		Factor				Line		Remark
	MHz	dBu∜			<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	2887.875	46.85	28.39	5.23	41.59	40.73		-33.27	
2	2887.875	39.88	28.39	5.23	41.59	33.76			Average
3	4091.203	46.02	30.37	6.23	41.81	43.04		-30.96	
4	4091.203	37.85	30.37	6.23	41.81	34.87	54.00	-19.13	Average
5	4999.149	46.48	31.90	6.94	41.88	45.94	74.00	-28.06	Peak
6	4999.149	36.85	31.90	6.94	41.88	36.31	54.00	-17.69	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.