Page 1 of 78 # APPLICATION CERTIFICATION FCC Part 15C On Behalf of Shenzhen Marvo Technology Co., Ltd Wireless Stereo Headset Model No.: TCU007, PBT96, DEP001, DEP002, DEP006, DEP007, DEP008, DEP009, DEP010 FCC ID: 2ASWR-TCU007 Prepared for : Shenzhen Marvo Technology Co., Ltd Address : 6 F, Building A, DongFangYaYuan, Chentian Community, Xixiang, Bao'an District, Shenzhen, China Prepared by : Shenzhen Accurate Technology Co., Ltd. Address : 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: (0755) 26503290 Fax: (0755) 26503396 Report No. : ATE20190447 Date of Test : April 8-April 16, 2019 Date of Report : April 17, 2019 # TABLE OF CONTENTS | D | escri | iption | Page | |----|--------------|---|------| | Te | est R | Report Certification | | | | | E OF CONTENTS | 9 | | 1. | | ENERAL INFORMATION | | | | 1.1. | Description of Device (EUT) | | | | 1.2. | Accessory and Auxiliary Equipment | | | | 1.3. | Description of Test Facility | | | | 1.4. | Measurement Uncertainty | | | 2. | \mathbf{M} | IEASURING DEVICE AND TEST EQUIPMENT | | | 3. | | PERATION OF EUT DURING TESTING | | | | 3.1. | Operating Mode | | | | 3.2. | Configuration and peripherals | | | 4. | FF | REQUENCY HOPPING SYSTEM REQUIREMENTS | | | | 4.1. | Standard and Limit | | | | 4.2. | EUT Pseudorandom Frequency Hopping Sequence | | | | 4.3. | Frequency Hopping System | | | 5. | TE | EST PROCEDURES AND RESULTS | 11 | | 6. | 20 | DDB BANDWIDTH TEST | 12 | | | 6.1. | Block Diagram of Test Setup | | | | 6.2. | The Requirement For Section 15.247(a)(1) | | | | 6.3. | EUT Configuration on Measurement | | | | 6.4. | Operating Condition of EUT | | | | 6.5. | Test Procedure | | | | 6.6. | Test Result | | | 7. | CA | ARRIER FREQUENCY SEPARATION TEST | | | | 7.1. | Block Diagram of Test Setup | | | | 7.2. | The Requirement For Section 15.247(a)(1) | | | | 7.3. | EUT Configuration on Measurement | | | | 7.4.
7.5. | Operating Condition of EUT Test Procedure | | | | 7.5.
7.6. | Test Result | | | 8. | | UMBER OF HOPPING FREQUENCY TEST | | | | 8.1. | Block Diagram of Test Setup | | | | 8.2. | The Requirement For Section 15.247(a)(1)(iii) | | | | 8.3. | EUT Configuration on Measurement | | | | 8.4. | Operating Condition of EUT | | | | 8.5. | Test Procedure | | | | 8.6. | Test Result | 26 | | 9. | DV | WELL TIME TEST | 28 | | | 9.1. | Block Diagram of Test Setup | 28 | | | 9.2. | The Requirement For Section 15.247(a)(1)(iii) | 28 | | | 9.3. | EUT Configuration on Measurement | | | | 9.4. | Operating Condition of EUT | 28 | | 9.6. Test Result | 28 | |---|----------------| | 7.0. 10st Rosult | 29 | | 10. MAXIMUM PEAK OUTPUT POWER TEST | 35 | | 10.1. Block Diagram of Test Setup | | | 10.2. The Requirement For Section 15.247(b)(1) | | | 10.3. EUT Configuration on Measurement | | | 10.4. Operating Condition of EUT | | | 10.5. Test Procedure | 35 | | 10.6. Test Result | 36 | | 11. RADIATED EMISSION TEST | 42 | | 11.1. Block Diagram of Test Setup | 42 | | 11.2. The Limit For Section 15.247(d) | | | 11.3. Restricted bands of operation | | | 11.4. Configuration of EUT on Measurement | | | 11.5. Operating Condition of EUT | 45 | | 11.6. Test Procedure | 45 | | 11.7. Data Sample | 46 | | 11.8. The Field Strength of Radiation Emission Measurement Results | 46 | | 12. BAND EDGE COMPLIANCE TEST | 59 | | 12.1. Block Diagram of Test Setup | 50 | | 12.1. Diock Diagram of Test Setup | | | 12.2. The Requirement For Section 15.247(d) | | | 12.2. The Requirement For Section 15.247(d)12.3. EUT Configuration on Measurement | 59
59 | | 12.2. The Requirement For Section 15.247(d) 12.3. EUT Configuration on Measurement 12.4. Operating Condition of EUT | 59
59
59 | | 12.2. The Requirement For Section 15.247(d) 12.3. EUT Configuration on Measurement 12.4. Operating Condition of EUT 12.5. Test Procedure | 59
59
59 | | 12.2. The Requirement For Section 15.247(d) 12.3. EUT Configuration on Measurement 12.4. Operating Condition of EUT | 59
59
59 | | 12.2. The Requirement For Section 15.247(d) 12.3. EUT Configuration on Measurement 12.4. Operating Condition of EUT 12.5. Test Procedure | | | 12.2. The Requirement For Section 15.247(d) 12.3. EUT Configuration on Measurement 12.4. Operating Condition of EUT 12.5. Test Procedure 12.6. Test Result | | | 12.2. The Requirement For Section 15.247(d) 12.3. EUT Configuration on Measurement 12.4. Operating Condition of EUT 12.5. Test Procedure 12.6. Test Result 13. AC POWER LINE CONDUCTED EMISSION TEST | | | 12.2. The Requirement For Section 15.247(d) 12.3. EUT Configuration on Measurement 12.4. Operating Condition of EUT 12.5. Test Procedure 12.6. Test Result 13. AC POWER LINE CONDUCTED EMISSION TEST 13.1. Block Diagram of Test Setup | | | 12.2. The Requirement For Section 15.247(d) 12.3. EUT Configuration on Measurement 12.4. Operating Condition of EUT 12.5. Test Procedure 12.6. Test Result 13. AC POWER LINE CONDUCTED EMISSION TEST 13.1. Block Diagram of Test Setup. 13.2. Power Line Conducted Emission Test Limits 13.3. Configuration of EUT on Measurement 13.4. Operating Condition of EUT | | | 12.2. The Requirement For Section 15.247(d) 12.3. EUT Configuration on Measurement 12.4. Operating Condition of EUT 12.5. Test Procedure 12.6. Test Result 13.1. Block Diagram of Test Setup 13.2. Power Line Conducted Emission Test Limits 13.3. Configuration of EUT on Measurement 13.4. Operating Condition of EUT 13.5. Test Procedure | | | 12.2. The Requirement For Section 15.247(d) 12.3. EUT Configuration on Measurement 12.4. Operating Condition of EUT 12.5. Test Procedure 12.6. Test Result 13. AC POWER LINE CONDUCTED EMISSION TEST 13.1. Block Diagram of Test Setup 13.2. Power Line Conducted Emission Test Limits 13.3. Configuration of EUT on Measurement 13.4. Operating Condition of EUT 13.5. Test Procedure 13.6. Data Sample | | | 12.2. The Requirement For Section 15.247(d) 12.3. EUT Configuration on Measurement 12.4. Operating Condition of EUT 12.5. Test Procedure 12.6. Test Result 13. AC POWER LINE CONDUCTED EMISSION TEST 13.1. Block Diagram of Test Setup 13.2. Power Line Conducted Emission Test Limits 13.3. Configuration of EUT on Measurement 13.4. Operating Condition of EUT 13.5. Test Procedure 13.6. Data Sample 13.7. Test Results | | | 12.2. The Requirement For Section 15.247(d) 12.3. EUT Configuration on Measurement 12.4. Operating Condition of EUT 12.5. Test Procedure 12.6. Test Result 13. AC POWER LINE CONDUCTED EMISSION TEST 13.1. Block Diagram of Test Setup 13.2. Power Line Conducted Emission Test Limits 13.3. Configuration of EUT on Measurement 13.4. Operating Condition of EUT 13.5. Test Procedure 13.6. Data Sample | | | 12.2. The Requirement For Section 15.247(d) 12.3. EUT Configuration on Measurement 12.4. Operating Condition of EUT 12.5. Test Procedure 12.6. Test Result 13. AC POWER LINE CONDUCTED EMISSION TEST 13.1. Block Diagram of Test Setup 13.2. Power Line Conducted Emission Test Limits 13.3. Configuration of EUT on Measurement 13.4. Operating Condition of EUT 13.5. Test Procedure 13.6. Data Sample 13.7. Test Results | | Page 4 of 78 # **Test Report Certification** Applicant : Shenzhen Marvo Technology Co., Ltd Address : 6 F, Building A, DongFangYaYuan, Chentian Community, Xixiang, Bao'an District, Shenzhen, China EUT Description : Wireless Stereo Headset Model No. : TCU007, PBT96, DEP001, DEP002, DEP006, DEP007, DEP008, DEP009, DEP010 Measurement Procedure Used: # FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013 The device described above is tested by Shenzhen Accurate Technology Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and Shenzhen Accurate Technology Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements. This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Shenzhen Accurate Technology Co., Ltd. | Date of Test: | April 8-April 16, 2019 | |-------------------------------
--| | Date of Report: | April 17, 2019 | | Test Engineer: | Star Yang | | | (Star Yang, Engineer) | | Prepared by : | TECHNOLOG AND THE CHINA CONTRACTOR OF CONTRACTOR OF THE CHINA CONTRACTOR OF THE | | Approved & Authorized Signer: | (St Approved | | | (Sean Liu, Manager) | Page 5 of 78 #### 1. GENERAL INFORMATION #### 1.1.Description of Device (EUT) Model Number : TCU007, PBT96, DEP001, DEP002, DEP006, DEP007, DEP008, DEP009, DEP010 (Note: We hereby state that these models are identical in interior structure, electrical circuits and components, Just model name is different. Therefore only model TCU007 is for tests.) Bluetooth version : V4.2 (BR+EDR) Frequency Range : 2402MHz-2480MHz Number of Channels : 79 Antenna Gain(Max) : 1.3dBi Antenna type : PCB antenna Modulation mode : GFSK, $\pi / 4$ DQPSK, 8DPSK Hardware version : V1.0 Software version : V1.0 Power Supply : DC 3.7V (Powered by Lithium battery) or DC 5V (Powered by charging port) Applicant : Shenzhen Marvo Technology Co., Ltd Address : 6 F, Building A, DongFangYaYuan, Chentian Community, Xixiang, Bao'an District, Shenzhen, China Manufacturer : Shenzhen Marvo Technology Co., Ltd Address : 6 F, Building A, DongFangYaYuan, Chentian Community, Xixiang, Bao'an District, Shenzhen, China # 1.2. Accessory and Auxiliary Equipment | AC/DC Power Adapter: | | Model:TEKA006-0501000UKU | |--------------------------|--|------------------------------| | (provided by laboratory) | | Input: 100-240V~50/60Hz 0.3A | | | | Output: DC 5V/1A | Page 6 of 78 # 1.3.Description of Test Facility EMC Lab : Recognition of accreditation by Federal Communications Commission (FCC) The Designation Number is CN1189 The Registration Number is 708358 Listed by Innovation, Science and Economic Development Canada (ISEDC) The Registration Number is 5077A-2 Accredited by China National Accreditation Service for Conformity Assessment (CNAS) The Registration Number is CNAS L3193 Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 4297.01 Name of Firm . Shenzhen Accurate Technology Co., Ltd. Site Location . 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China # 1.4. Measurement Uncertainty Conducted Emission Expanded Uncertainty = 2.23dB, k=2 Radiated emission expanded uncertainty = 3.08dB, k=2 (9kHz-30MHz) Radiated emission expanded uncertainty = 4.42dB, k=2 (30MHz-1000MHz) Radiated emission expanded uncertainty = 4.06dB, k=2 (Above 1GHz) 2. MEASURING DEVICE AND TEST EQUIPMENT **Table 1: List of Test and Measurement Equipment** | Kind of equipment | Manufacturer | Туре | S/N | Calibrated dates | Calibrated until | |-----------------------------|---------------------------|-------------------------------------|-----------|------------------|------------------| | EMI Test Receiver | Rohde&Schwarz | ESCS30 | 100307 | Jan. 05, 2019 | 1 Year | | EMI Test Receiver | Rohde& Schwarz | ESR | 101817 | Jan. 05, 2019 | 1 Year | | Spectrum Analyzer | Rohde&Schwarz | FSV40 | 101495 | Jan. 05, 2019 | 1 Year | | Pre-Amplifier | Compliance
Direction | RSU-M2 | 38322 | Jan. 05, 2019 | 1 Year | | Pre-Amplifier | Agilent | 8447D | 294A10619 | Jan. 05, 2019 | 1 Year | | Loop Antenna | Schwarzbeck | FMZB1516 | 1516131 | Jan. 05, 2019 | 1 Year | | Bilog Antenna | Schwarzbeck | VULB9163 | 9163-323 | Jan. 05, 2019 | 1 Year | | Horn Antenna | Schwarzbeck | BBHA9120D | 9120D-655 | Jan. 05, 2019 | 1 Year | | Horn Antenna | Schwarzbeck | BBHA9170 | 9170-359 | Jan. 05, 2019 | 1 Year | | LISN | Schwarzbeck | NSLK8126 | 8126431 | Jan. 05, 2019 | 1 Year | | Highpass Filter | Wainwright
Instruments | WHKX3.6/18G-10S
S | N/A | Jan. 05, 2019 | 1 Year | | Band Reject Filter | Wainwright
Instruments | WRCG2400/2485-2
375/2510-60/11SS | N/A | Jan. 05, 2019 | 1 Year | | RF Coaxial Cable | SUHNER | N-5m(Frequency range:9KHz-26.5GHz) | NO.3 | Jan. 05, 2019 | 1 Year | | RF Coaxial Cable | SUHNER | N-5m(Frequency range:9KHz-26.5GHz) | NO.4 | Jan. 05, 2019 | 1 Year | | RF Coaxial Cable | SUHNER | N-1m(Frequency range:9KHz-26.5GHz) | NO.5 | Jan. 05, 2019 | 1 Year | | RF Coaxial Cable | SUHNER | N-1m(Frequency range:9KHz-26.5GHz) | NO.6 | Jan. 05, 2019 | 1 Year | | Temporary antenna connector | NTGS | 14AE | N/A | Apr. 11, 2019 | N/A | Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list. Page 8 of 78 # 3. OPERATION OF EUT DURING TESTING # 3.1. Operating Mode The mode is used: Transmitting mode Low Channel: 2402MHz Middle Channel: 2441MHz High Channel: 2480MHz Hopping Note: The equipment under test (EUT) was tested under fully-charged battery. The Bluetooth has been tested under continuous transmission mode. EUT is connected to a computer through the usb-serial controller tool and Use test software to set the test mode. Test software is (RDA ToolKit 8.03.03) # 3.2. Configuration and peripherals **EUT** Figure 1 Setup: Transmitting mode # 4. FREQUENCY HOPPING SYSTEM REQUIREMENTS #### 4.1.Standard and Limit According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. - (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. - (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hop sets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted. # 4.2.EUT Pseudorandom Frequency Hopping Sequence Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 34, 51, 72, 09, 01, 64, 22, 33, 41, 32, 47, 65, 73, 53, 69, 06, 17, 04, 20, 36, 52, 38, 66, 70, 78, 68, 76, 21, 29, 10, 26, 49, 00, 58, 44, 59, 75, 13, 03, 14, 11, 35, 43, 37, 50, 61, 77, 55, 71, 02, 23, 07, 27, 39, 54, 46, 48, 15, 63, 62, 67, 25, 31, 12, 28, 19, 60, 42, 57, 74, 16, 05, 18, 30, 45, etc. The system receiving have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals. 4.3. Frequency Hopping System This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The
frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used. This device was tested with a bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements FCC Part 15.247 rule. # 5. TEST PROCEDURES AND RESULTS | FCC Rules | Description of Test | Result | |-------------------------------------|--|-----------| | Section 15.247(a)(1) | 20dB Bandwidth Test | Compliant | | Section 15.247(a)(1) | Carrier Frequency Separation Test | Compliant | | Section 15.247(a)(1)(iii) | Number Of Hopping Frequency Test | Compliant | | Section 15.247(a)(1)(iii) | Dwell Time Test | Compliant | | Section 15.247(b)(1) | Maximum Peak Output Power Test | Compliant | | Section 15.247(d)
Section 15.209 | Radiated Emission Test | Compliant | | Section 15.247(d) | Band Edge Compliance Test | Compliant | | Section 15.207 | AC Power Line Conducted Emissions
Limits Test | Compliant | | Section 15.203 | Antenna Requirement | Compliant | #### 6. 20DB BANDWIDTH TEST #### 6.1.Block Diagram of Test Setup # 6.2. The Requirement For Section 15.247(a)(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. # 6.3.EUT Configuration on Measurement The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application. # 6.4. Operating Condition of EUT - 6.4.1. Setup the EUT and simulator as shown as Section 6.1. - 6.4.2. Turn on the power of all equipment. - 6.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit. #### 6.5. Test Procedure - 6.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable. - 6.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz. - 6.5.3. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB. 6.6.Test Result Test Lab: Shielding room Test Engineer: Star | Channel | Frequency (MHz) | | П/4-DQPSK
20dB Bandwidth | | Result | |---------|-----------------|----------------|-----------------------------|----------------|--------| | Low | 2402 | (MHz)
1.104 | (MHz)
1.362 | (MHz)
1.344 | Pass | | Middle | 2441 | 1.104 | 1.380 | 1.350 | Pass | | High | 2480 | 1.098 | 1.368 | 1.350 | Pass | The spectrum analyzer plots are attached as below. # **GFSK Mode** $\Pi/4$ -DQPSK Mode #### 8DPSK Mode Page 17 of 78 7. CARRIER FREQUENCY SEPARATION TEST # 7.1.Block Diagram of Test Setup # 7.2. The Requirement For Section 15.247(a)(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. # 7.3.EUT Configuration on Measurement The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application. # 7.4. Operating Condition of EUT - 7.4.1. Setup the EUT and simulator as shown as Section 7.1. - 7.4.2. Turn on the power of all equipment. - 7.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit. # 7.5.Test Procedure - 7.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable. - 7.5.2.Set RBW of spectrum analyzer to 30 kHz and VBW to 100 kHz. Adjust Span to 3 MHz. - 7.5.3.Set the adjacent channel of the EUT Maxhold another trace. - 7.5.4.Measurement the channel separation # 7.6.Test Result Test Lab: Shielding room Test Engineer: Star #### **GFSK** | Channel | Frequency | Channel | Limit | Result | |---------|-----------|-----------------|-------------------|--------| | Chamie | (MHz) | Separation(MHz) | (MHz) | Result | | Low | 2402 | 1.008 | 25KHz or 2/3*20dB | Pass | | LOW | 2403 | 1.008 | bandwidth | | | Middle | 2440 | 1.002 | 25KHz or 2/3*20dB | Pass | | Middle | 2441 | | bandwidth | | | High | 2479 | 1.002 | 25KHz or 2/3*20dB | Dogg | | High | 2480 | 1.002 | bandwidth | Pass | #### ∏/4-DOPSK | 117 1 2 21 2 | | | | | |--------------|-----------|-----------------|-------------------|--------| | Channel | Frequency | Channel | Limit | Result | | Chainlei | (MHz) | Separation(MHz) | (MHz) | Kesuit | | Low | 2402 | 1.002 | 25KHz or 2/3*20dB | Pass | | LOW | 2403 | 1.002 | bandwidth | | | Middle | 2440 | 1.002 | 25KHz or 2/3*20dB | Pass | | Middle | 2441 | | bandwidth | | | High | 2479 | 1.002 | 25KHz or 2/3*20dB | Dogg | | High | 2480 | 1.002 | bandwidth | Pass | #### 8DPSK | Channel | Frequency (MHz) | Channel
Separation(MHz) | Limit
(MHz) | Result | |---------|-----------------|----------------------------|-------------------|--------| | Low | 2402 | 1.002 | 25KHz or 2/3*20dB | Pass | | Low | 2403 | 1.002 | bandwidth | rass | | Middle | 2440 | 1.002 | 25KHz or 2/3*20dB | Pass | | Middle | 2441 | 1.002 | bandwidth | rass | | High | 2479 | 1.002 | 25KHz or 2/3*20dB | Pass | | riigii | 2480 | 1.002 | bandwidth | Pass | **GFSK Mode** # ∏/4-DQPSK Mode Page 22 of 78 300 kHz/ Center 2.4405 GHz #### 8DPSK Mode 8. NUMBER OF HOPPING FREQUENCY TEST # 8.1.Block Diagram of Test Setup # 8.2. The Requirement For Section 15.247(a)(1)(iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. #### 8.3.EUT Configuration on Measurement The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application. # 8.4. Operating Condition of EUT - 8.4.1. Setup the EUT and simulator as shown as Section 8.1. - 8.4.2. Turn on the power of all equipment. - 8.4.3.Let the EUT work in TX (Hopping on) modes measure it. #### 8.5.Test Procedure - 8.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable. - 8.5.2.Set the spectrum analyzer as RBW=100 kHz, VBW=300 kHz. - 8.5.3.Max hold, view and count how many channel in the band. 8.6.Test Result Test Lab: Shielding room Test Engineer: Star | Total number of | Measurement result(CH) | Limit(CH) | Result | |-----------------|------------------------|-----------|--------| | hopping channel | 79 | ≥15 | Pass | The spectrum analyzer plots are attached as below. # Number of hopping channels (GFSK Mode) # Number of hopping channels (8DPSK Mode) Page 28 of 78 #### 9. DWELL TIME TEST # 9.1.Block Diagram of Test Setup #### 9.2. The Requirement For Section 15.247(a)(1)(iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. # 9.3.EUT Configuration on Measurement The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application. # 9.4. Operating Condition of EUT - 9.4.1. Setup the EUT and simulator as shown as Section 9.1. - 9.4.2. Turn on the power of all equipment. - 9.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit. #### 9.5.Test Procedure - 9.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable. - 9.5.2.Set center frequency of spectrum analyzer = operating frequency. - 9.5.3. Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Span=0Hz, Adjust Sweep=5ms, 10ms, 15ms. Get the pulse time. - 9.5.4.Repeat above procedures until all frequency measured were complete. Page 29 of 78 # 9.6.Test Result Test Lab: Shielding room Test Engineer: Star #### GFSK Mode (Worse case) | Mode | Channel Frequency (MHz) | Pulse Time (ms) | Dwell
Time
(ms) | Limit (ms) | |-------------|----------------------------------|------------------------|-------------------------------|------------| | DH1 | 2441 | 0.430 | 137.6 | 400 | | A period to | ransmit time = $0.4 \times 79 =$ | 31.6 Dwell time = pv | ulse time \times (1600/(2*) | 79))×31.6 | | DH3 | 2441 | 1.680 | 268.8 | 400 | | A period to | ransmit time = 0.4×79 = | 31.6 Dwell time = pu | ulse time \times (1600/(4*' | 79))×31.6 | | DH5 | 2441 | 2.960 | 315.7 | 400 | | A period to | ransmit time = $0.4 \times 79 =$ | 31.6 Dwell time = pu | ulse time \times (1600/(6*) | 79))×31.6 | #### $\Pi/4$ -DQPSK Mode (Worse case) | Mode | Channel Frequency (MHz) | Pulse Time (ms) | Dwell Time
(ms) | Limit (ms) | | |--|----------------------------------|----------------------|--|------------|--| | DH1 | 2441 | 0.450 | 144.0 | 400 | | | A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(2*79)) \times 31.6$ | | | | | | | DH3 | 2441 | 1.720 | 275.2 | 400 | | | A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(4*79)) \times 31.6$ | | | | 79))×31.6 | | | DH5 | 2441 | 2.960 | 315.7 | 400 | | | A period to | ransmit time = $0.4 \times 79 =$ | 31.6 Dwell time = pu | Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$ | | | #### 8DPSK Mode (Worse case) | Mode | Channel Frequency (MHz) | Pulse Time (ms) | Dwell Time
(ms) | Limit (ms) | |--|-------------------------|-----------------|--------------------|------------| | DH1 | 2441 | 0.440 | 140.8 | 400 | | A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(2*79)) \times 31.6$ | | | | | | DH3 | 2441 | 1.720 | 275.2 | 400 | | A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(4*79)) \times 31.6$ | | | | | | DH5 | 2441 | 2.990 | 318.9 | 400 | | A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$ | | | | 79))×31.6 | Note: We tested GFSK mode and $\Pi/4$ -DQPSK & 8DPSK mode the low, middle and high channel and recorded the worse case data for all test mode. The spectrum analyzer plots are attached as below. #### **GFSK Mode** #### DH1 Middle channel #### DH3 Middle channel Page 31 of 78 # ∏/4-DQPSK Mode #### 2-DH1 Middle channel 8DPSK Mode #### 3-DH1 Middle channel #### 3-DH3 Middle channel Page 34 of 78 3-DH5 Middle channel 10.MAXIMUM PEAK OUTPUT POWER TEST # 10.1.Block Diagram of Test Setup # 10.2. The Requirement For Section 15.247(b)(1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts. # 10.3.EUT Configuration on Measurement The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application. #### 10.4. Operating Condition of EUT - 10.4.1. Setup the EUT and simulator as shown as Section 10.1. - 10.4.2. Turn on the power of all equipment. - 10.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit. # 10.5.Test Procedure - 10.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable. - 10.5.2.Set RBW of spectrum analyzer to 3MHz and VBW to 3MHz. - 10.5.3.Measurement the maximum peak output power. Page 36 of 78 10.6.Test Result Test Lab: Shielding room Test Engineer: Star # **GFSK Mode** | Channel | Frequency (MHz) | Peak Output Power
(dBm/W) | Limits (dBm/W) | Result | |---------|-----------------|------------------------------|----------------|--------| | Low | 2402 | 2.02/0.0016 | 21 / 0.125 | Pass | | Middle | 2441 | 2.57/0.0018 | 21 / 0.125 | Pass | | High | 2480 | 2.42/0.0017 | 21 / 0.125 | Pass | # ∏/4-DQPSK Mode | Channel | Frequency
(MHz) | Peak Output Power
(dBm/W) | Limits (dBm/W) | Result | |---------|--------------------|------------------------------|----------------|--------| | Low | 2402 | -0.23/0.0009 | 21 / 0.125 | Pass | | Middle | 2441 | 1.69/0.0015 | 21 / 0.125 | Pass | | High | 2480 | 1.41/0.0014 | 21 / 0.125 | Pass | # 8DPSK Mode | Channel | Frequency (MHz) | Peak Output Power (dBm/W) | Limits (dBm/W) | Result | |---------|-----------------|---------------------------|----------------|--------| | Low | 2402 | 0.38/0.0011 | 21 / 0.125 | Pass | | Middle | 2441 | 1.87/0.0015 | 21 / 0.125 | Pass | | High | 2480 | 1.60/0.0014 | 21 / 0.125 | Pass | The spectrum analyzer plots are attached as below. **GFSK Mode** # ∏/4-DQPSK Mode Page 39 of 78 8DPSK Mode Center 2.48 GHz High channel *RBW 3 MHz Marker 1 [T1] *VBW 10 MHz 1.60 dBm 15 dBm Att 40 dB SWT 2.5 ms 2.479880000 GHz Offset 10 dB 1 MHz/ Span 10 MHz # 11. RADIATED EMISSION TEST # 11.1.Block Diagram of Test Setup ### 11.1.1.Block diagram of connection between the EUT and peripherals #### 11.1.2.Semi-Anechoic Chamber Test Setup Diagram #### (B)Radiated Emission Test Set-Up. Frequency 30MHz-1GHz Page 43 of 78 #### (C) Radiated Emission Test Set-Up. Frequency above 1GHz #### 11.2. The Limit For Section 15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a). ## 11.3.Restricted bands of operation #### 11.3.1.FCC Part 15.205 Restricted bands of operation (a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below: | MHz | MHz | MHz | GHz | |--------------------------|---------------------|---------------|---------------| | 0.090-0.110 | 16.42-16.423 | 399.9-410 | 4.5-5.15 | | ¹ 0.495-0.505 | 16.69475-16.69525 | 608-614 | 5.35-5.46 | | 2.1735-2.1905 | 16.80425-16.80475 | 960-1240 | 7.25-7.75 | | 4.125-4.128 | 25.5-25.67 | 1300-1427 | 8.025-8.5 | | 4.17725-4.17775 | 37.5-38.25 | 1435-1626.5 | 9.0-9.2 | | 4.20725-4.20775 | 73-74.6 | 1645.5-1646.5 | 9.3-9.5 | | 6.215-6.218 | 74.8-75.2 | 1660-1710 | 10.6-12.7 | | 6.26775-6.26825 | 108-121.94 | 1718.8-1722.2 | 13.25-13.4 | | 6.31175-6.31225 | 123-138 | 2200-2300 | 14.47-14.5 | | 8.291-8.294 | 149.9-150.05 | 2310-2390 | 15.35-16.2 | | 8.362-8.366 | 156.52475-156.52525 | 2483.5-2500 | 17.7-21.4 | | 8.37625-8.38675 | 156.7-156.9 | 2690-2900 | 22.01-23.12 | | 8.41425-8.41475 | 162.0125-167.17 | 3260-3267 | 23.6-24.0 | | 12.29-12.293 | 167.72-173.2 | 3332-3339 | 31.2-31.8 | | 12.51975-12.52025 | 240-285 | 3345.8-3358 | 36.43-36.5 | | 12.57675-12.57725 | 322-335.4 | 3600-4400 | $\binom{2}{}$ | | 13.36-13.41 | | | | ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 (b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements. ## 11.4.Configuration of EUT on Measurement The equipment is installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application. ²Above 38.6 Page 45 of 78 11.5. Operating Condition of EUT - 11.5.1. Setup the EUT and simulator as shown as Section 11.1. - 11.5.2. Turn on the power of all equipment. - 11.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit. #### 11.6.Test Procedure The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. This EUT was tested in 3 orthogonal
positions and the Worse case position data was reported. During the radiated emission test, the spectrum analyzer was set with the following configurations: - 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak at frequency below 1GHz. - 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. - 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz. - 4. All modes of operation were investigated and the worst-case emissions are reported. Page 46 of 78 #### 11.7.Data Sample | Frequency | Reading | Factor | Result | Limit | Margin | Remark | |-----------|---------|--------|----------|----------|--------|--------| | (MHz) | (dBµv) | (dB/m) | (dBµv/m) | (dBµv/m) | (dB) | | | X.XX | 28.66 | -15.19 | 13.47 | 40.0 | -26.53 | QP | Frequency(MHz) = Emission frequency in MHz Reading($dB\mu\nu$) = Uncorrected Analyzer/Receiver reading Factor (dB/m) = Antenna factor + Cable Loss – Amplifier gain Result($dB\mu\nu/m$) = Reading($dB\mu\nu$) + Factor(dB/m) Limit $(dB\mu v/m) = Limit$ stated in standard Margin (dB) = Result(dB μ v/m) - Limit (dB μ v/m) QP = Quasi-peak Reading Calculation Formula: $Margin(dB) = Result (dB\mu V/m) - Limit(dB\mu V/m)$ Result($dB\mu V/m$)= Reading($dB\mu V$)+ Factor(dB/m) The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit. ## 11.8. The Field Strength of Radiation Emission Measurement Results #### Pass. Test Lab: 3m Anechoic chamber Test Engineer: Star Note: 1.We tested GFSK mode, $\Pi/4$ -DQPSK Mode & 8QPSK mode and recorded the Worse case data (GFSK mode) for all test mode. 2. Testing is carried out with frequency rang 9kHz to the tenth harmonics, which above 3th Harmonics are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured. The measurements greater than 20dB below the limit from 9kHz to 30MHz and 18 to 26.5GHz. The spectrum analyzer plots are attached as below. Page 47 of 78 #### **Below 1GHz** # ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Job No.: star2019 #35 Standard: FCC Part 15C 3M Radiated Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Wireless Stereo Headset Mode: TX 2402MHz Model: **TCU007** Manufacturer: Marvo Polarization: Horizontal Power Source: DC 3.7V Date: 19/04/16/ Time: 9/15/23 Engineer Signature: star Distance: 3m | No. | Freq.
(MHz) | Reading (dBuV/m) | Factor (dB) | Result (dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | Height
(cm) | Degree
(deg.) | Remark | |-----|----------------|------------------|-------------|-----------------|-------------------|----------------|----------|----------------|------------------|--------| | 1 | 144.7898 | 55.56 | -28.05 | 27.51 | 43.50 | -15.99 | QP | 200 | 178 | | | 2 | 218.4097 | 56.45 | -24.03 | 32.42 | 46.00 | -13.58 | QP | 200 | 269 | | | 3 | 303.8851 | 63.07 | -21.11 | 41.96 | 46.00 | -4.04 | QP | 200 | 300 | | | 4 | 368.6681 | 54.20 | -18.80 | 35.40 | 46.00 | -10.60 | QP | 200 | 247 | | | 5 | 452.0013 | 56.74 | -17.21 | 39.53 | 46.00 | -6.47 | QP | 200 | 135 | | | 6 | 749.6761 | 42.92 | -10.34 | 32.58 | 46.00 | -13.42 | QP | 200 | 175 | | Page 48 of 78 # ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Job No.: star2019 #36 Standard: FCC Part 15C 3M Radiated Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Wireless Stereo Headset Mode: TX 2402MHz Model: TCU007 Manufacturer: Marvo Polarization: Vertical Power Source: DC 3.7V Date: 19/04/16/ Time: 9/16/26 Engineer Signature: star Distance: 3m | No. | Freq.
(MHz) | Reading (dBuV/m) | Factor
(dB) | Result
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | Height (cm) | Degree
(deg.) | Remark | |-----|----------------|------------------|----------------|--------------------|-------------------|----------------|----------|-------------|------------------|--------| | 1 | 144.7898 | 46.66 | -28.05 | 18.61 | 43.50 | -24.89 | QP | 100 | 300 | | | 2 | 167.8136 | 45.40 | -26.23 | 19.17 | 43.50 | -24.33 | QP | 100 | 245 | | | 3 | 215.3616 | 44.23 | -24.05 | 20.18 | 43.50 | -23.32 | QP | 100 | 103 | | | 4 | 299.6440 | 48.62 | -21.23 | 27.39 | 46.00 | -18.61 | QP | 100 | 42 | | | 5 | 540.7070 | 42.87 | -15.09 | 27.78 | 46.00 | -18.22 | QP | 100 | 92 | | | 6 | 765.6480 | 39.44 | -9.89 | 29.55 | 46.00 | -16.45 | QP | 100 | 144 | | Page 49 of 78 # ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Job No.: star2019 #37 Standard: FCC Part 15C 3M Radiated Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Wireless Stereo Headset Mode: TX 2441MHz Model: TCU007 Manufacturer: Marvo Polarization: Horizontal Power Source: DC 3.7V Date: 19/04/16/ Time: 9/14/08 Engineer Signature: star Distance: 3m | No. | Freq.
(MHz) | Reading (dBuV/m) | Factor (dB) | Result
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | Height (cm) | Degree
(deg.) | Remark | |-----|----------------|------------------|-------------|--------------------|-------------------|----------------|----------|-------------|------------------|--------| | 1 | 224.6361 | 53.72 | -23.94 | 29.78 | 46.00 | -16.22 | QP | 200 | 321 | | | 2 | 286.2653 | 61.39 | -21.83 | 39.56 | 46.00 | -6.44 | QP | 200 | 25 | | | 3 | 303.8851 | 61.95 | -21.11 | 40.84 | 46.00 | -5.16 | QP | 200 | 214 | | | 4 | 312.5482 | 61.19 | -20.86 | 40.33 | 46.00 | -5.67 | QP | 200 | 103 | | | 5 | 368.6681 | 53.27 | -18.80 | 34.47 | 46.00 | -11.53 | QP | 200 | 254 | | | 6 | 523.8763 | 48.74 | -15.59 | 33.15 | 46.00 | -12.85 | QP | 200 | 166 | | Page 50 of 78 # ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Job No.: star2019 #38 Standard: FCC Part 15C 3M Radiated Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Wireless Stereo Headset Mode: TX 2441MHz Model: TCU007 Manufacturer: Marvo Polarization: Vertical Power Source: DC 3.7V Date: 19/04/16/ Time: 9/17/23 Engineer Signature: star Distance: 3m | No. | Freq.
(MHz) | Reading (dBuV/m) | Factor (dB) | Result (dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | Height (cm) | Degree
(deg.) | Remark | |-----|----------------|------------------|-------------|-----------------|-------------------|----------------|----------|-------------|------------------|--------| | 1 | 175.0404 | 45.44 | -26.51 | 18.93 | 43.50 | -24.57 | QP | 100 | 39 | | | 2 | 215.3616 | 44.00 | -24.05 | 19.95 | 43.50 | -23.55 | QP | 100 | 54 | | | 3 | 265.9035 | 45.04 | -22.71 | 22.33 | 46.00 | -23.67 | QP | 100 | 102 | | | 4 | 312.5482 | 47.93 | -20.86 | 27.07 | 46.00 | -18.93 | QP | 100 | 244 | | | 5 | 533.1611 | 42.61 | -15.29 | 27.32 | 46.00 | -18.68 | QP | 100 | 66 | | | 6 | 739.2136 | 37.89 | -10.57 | 27.32 | 46.00 | -18.68 | QP | 100 | 14 | | Page 51 of 78 # ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Job No.: star2019 #40 Standard: FCC Part 15C 3M Radiated Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Wireless Stereo Headset Mode: TX 2480MHz Model: TCU007 Manufacturer: Marvo Polarization: Horizontal Power Source: DC 3.7V Date: 19/04/16/ Time: 9/19/59 Engineer Signature: star Distance: 3m | No. | Freq.
(MHz) | Reading (dBuV/m) | Factor (dB) | Result (dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | Height (cm) | Degree
(deg.) | Remark | |-----|----------------|------------------|-------------|-----------------|-------------------|----------------|----------|-------------|------------------|--------| | 1 | 140.7767 | 55.11 | -27.96 | 27.15 | 43.50 | -16.35 | QP | 200 | 145 | | | 2 | 218.4097 | 56.72 | -24.03 | 32.69 | 46.00 | -13.31 | QP | 200 | 320 | | | 3 | 295.4623 | 63.75 | -21.39 | 42.36 | 46.00 | -3.64 | QP | 200 | 144 | | | 4 | 368.6681 | 55.58 | -18.80 | 36.78 | 46.00 | -9.22 | QP | 200 | 176 | | | 5 | 490.0450 | 51.36 | -16.46 | 34.90 | 46.00 | -11.10 | QP | 200 | 52 | | | 6 | 790.2465 | 43.29 | -9.25 | 34.04 | 46.00 | -11.96 | QP | 200 | 351 | | Page 52 of 78 # ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Job No.: star2019 #39 Standard: FCC Part 15C 3M Radiated Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Wireless Stereo Headset Mode: TX 2480MHz Model: TCU007 Manufacturer: Marvo Polarization: Vertical Power Source: DC 3.7V Date: 19/04/16/ Time: 9/18/23 Engineer Signature: star Distance: 3m | No. | Freq.
(MHz) | Reading (dBuV/m) | Factor
(dB) | Result
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | Height (cm) | Degree
(deg.) | Remark | |-----|----------------|------------------|----------------|--------------------|-------------------|----------------|----------|-------------|------------------|--------| | 1 | 144.7899 | 44.59 | -28.05 | 16.54 | 43.50 | -26.96 | QP | 100 | 136 | | | 2 | 175.0404 | 45.23 | -26.51 | 18.72 | 43.50 | -24.78 | QP | 100 | 148 | | | 3 | 207.1968 | 43.66 | -24.14 | 19.52 | 43.50 | -23.98 | QP | 100 | 211 | | | 4 | 299.6441
| 47.87 | -21.23 | 26.64 | 46.00 | -19.36 | QP | 100 | 265 | | | 5 | 544.5202 | 40.96 | -14.97 | 25.99 | 46.00 | -20.01 | QP | 100 | 345 | | | 6 | 790.2466 | 36.78 | -9.25 | 27.53 | 46.00 | -18.47 | QP | 100 | 212 | | Page 53 of 78 #### **Above 1GHz** # ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Job No.: star2018 #289 Standard: FCC Part 15C 3M Radiated Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Wireless Stereo Headset Mode: TX 2402MHz Model: TCU007 Manufacturer: Marvo Polarization: Horizontal Power Source: DC 3.7V Date: 19/04/16/ Time: 9/23/55 Engineer Signature: star Distance: Page 54 of 78 # ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Job No.: star2018 #288 Standard: FCC Part 15C 3M Radiated Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Wireless Stereo Headset Mode: TX 2402MHz Model: TCU007 Manufacturer: Marvo Note: Report No.:ATE20190447 Polarization: Vertical Power Source: DC 3.7V Date: 19/04/16/ Time: 9/21/56 Engineer Signature: star Distance: Page 55 of 78 # ACCURATE TECHNOLOGY CO., LTD. F1, Bldg, A, Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Job No.: star2018 #290 Standard: FCC Part 15C 3M Radiated Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % Wireless Stereo Headset EUT: Mode: TX 2441MHz Model: **TCU007** Manufacturer: Marvo Note: Report No.:ATE20190447 Polarization: Horizontal Power Source: DC 3.7V Date: 19/04/16/ Time: 9/25/59 Engineer Signature: star Distance: Page 56 of 78 ## ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Job No.: star2018 #291 Standard: FCC Part 15C 3M Radiated Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Wireless Stereo Headset Mode: TX 2441MHz Model: TCU007 Manufacturer: Marvo Note: Report No.:ATE20190447 Polarization: Vertical Power Source: DC 3.7V Date: 19/04/16/ Time: 9/28/10 Engineer Signature: star Distance: Page 57 of 78 # ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Job No.: star2018 #293 Standard: FCC Part 15C 3M Radiated Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Wireless Stereo Headset Mode: TX 2480MHz **TCU007** Model: Manufacturer: Marvo Polarization: Horizontal Power Source: DC 3.7V Date: 19/04/16/ Time: 9/32/40 Engineer Signature: star Distance: Report No.:ATE20190447 Note: | No. | Freq.
(MHz) | Reading (dBuV/m) | Factor
(dB) | Result
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | Height (cm) | Degree
(deg.) | Remark | | |-----|----------------|------------------|----------------|--------------------|-------------------|----------------|----------|-------------|------------------|--------|--| | 1 | 2480.034 | 95.03 | -7.84 | 87.19 | 1 | 1 | peak | | | | | | 2 | 4960.044 | 46.46 | -1.92 | 44.54 | 74.00 | -29.46 | peak | | | | | Page 58 of 78 # ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Job No.: star2018 #292 Standard: FCC Part 15C 3M Radiated Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Wireless Stereo Headset Mode: TX 2480MHz Model: **TCU007** Manufacturer: Marvo Polarization: Vertical Power Source: DC 3.7V Date: 19/04/16/ Time: 9/30/32 Engineer Signature: star Distance: | No. | Freq.
(MHz) | Reading (dBuV/m) | Factor (dB) | Result
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | Height (cm) | Degree
(deg.) | Remark | | |-----|----------------|------------------|-------------|--------------------|-------------------|----------------|----------|-------------|------------------|--------|--| | 1 | 2480.034 | 99.52 | -7.84 | 91.68 | 1 | 1 | peak | | | | | | 2 | 4960.044 | 47.28 | -1.92 | 45.36 | 74.00 | -28.64 | peak | | | | | 12.BAND EDGE COMPLIANCE TEST ## 12.1.Block Diagram of Test Setup ## 12.2.The Requirement For Section 15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a). #### 12.3.EUT Configuration on Measurement The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application. ### 12.4. Operating Condition of EUT - 12.4.1. Setup the EUT and simulator as shown as Section 12.1. - 12.4.2. Turn on the power of all equipment. - 12.4.3.Let the EUT work in TX (Hopping off, Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2480MHz TX frequency to transmit. Page 60 of 78 ### 12.5.Test Procedure - 12.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable. - 12.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz with convenient frequency span including 100 kHz bandwidth from band edge. - 12.5.3. The band edges was measured and recorded. #### 12.6.Test Result Test Lab: Shielding room Test Engineer: Star Note: Both hopping-on mode and hopping-off mode had been pre-tested, and only the Worse case was recorded in the test report. #### **Conducted Band Edge Result** Non-hopping mode | Non-nopping mode | | | | |------------------|---------------------|--------------------|--------| | Frequency | Result of Band Edge | Limit of Band Edge | Result | | (MHz) | (dBc) | (dBc) | | | | | | | | | GFSK Mo | ode | | | 2400.00 | 44.73 | > 20dBc | Pass | | 2483.50 | 47.39 | > 20dBc | Pass | | | _ | | | | | Π/4-DQPSK | Mode | | | 2400.00 | 45.33 | > 20dBc | Pass | | 2483.50 | 47.63 | > 20dBc | Pass | | | | | | | | 8DPSK M | ode | | | 2400.00 | 44.82 | > 20dBc | Pass | | 2483.50 | 45.31 | > 20dBc | Pass | The spectrum analyzer plots are attached as below. ∏/4-DQPSK Mode Page 64 of 78 #### **Radiated Band Edge Result** #### Note: - 1. Emissions attenuated more than 20 dB below the permissible value are not reported. - 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows: Result = Reading + Corrected Factor 3. Display the measurement of peak values. #### Test Procedure: The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. The EUT was tested in 3 orthogonal planes. Let the EUT work in TX (Hopping off, Hopping on) modes measure it. We select 2402MHz, 2480MHz TX frequency to transmit(Hopping off mode). We select 2402-2480MHz TX frequency to transmit(Hopping on mode). During the radiated emission test, the spectrum analyzer was set with the following configurations: - 1.The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. - 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz. - 3.All modes of operation were investigated and the Worse case (GFSK Mode) emissions are reported. Test Lab: 3m Anechoic chamber Test Engineer: Star The spectrum analyzer plots are attached as below. Page 65 of 78 # Non-hopping mode ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Job No.: star2018 #297 Standard: FCC Part 15C 3M Radiated Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Wireless Stereo Headset Mode: TX 2402MHz Model: TCU007 Manufacturer: Marvo Polarization: Horizontal Power Source: DC 3.7V Date: 19/04/16/ Time: 9/43/34 Engineer Signature: star Distance: Note: Report No.:ATE20190447 | No. | Freq.
(MHz) | Reading (dBuV/m) | Factor
(dB) | Result
(dBuV/m) | Limit
(dBuV/m) |
Margin
(dB) | Detector | Height (cm) | Degree
(deg.) | Remark | |-----|----------------|------------------|----------------|--------------------|-------------------|----------------|----------|-------------|------------------|--------| | 1 | 2390.000 | 40.50 | -8.00 | 32.50 | 74.00 | -41.50 | peak | | LTY I | | | 2 | 2390.000 | 33.57 | -8.00 | 25.57 | 54.00 | -28.43 | AVG | | | | | 3 | 2400.000 | 52.56 | -7.97 | 44.59 | 74.00 | -29.41 | peak | | | | | 4 | 2400.000 | 45.61 | -7.97 | 37.64 | 54.00 | -16.36 | AVG | | | | Page 66 of 78 ## ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Job No.: star2018 #296 Standard: FCC Part 15C 3M Radiated Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Wireless Stereo Headset Mode: TX 2402MHz Model: TCU007 Manufacturer: Marvo Polarization: Vertical Power Source: DC 3.7V Date: 19/04/16/ Time: 9/41/56 Engineer Signature: star Distance: Note: Report No.:ATE20190447 | No. | Freq.
(MHz) | Reading (dBuV/m) | Factor
(dB) | Result
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | Height (cm) | Degree
(deg.) | Remark | | |-----|----------------|------------------|----------------|--------------------|-------------------|----------------|----------|-------------|------------------|--------|--| | 1 | 2390.000 | 41.86 | -8.00 | 33.86 | 74.00 | -40.14 | peak | | | | | | 2 | 2390.000 | 34.90 | -8.00 | 26.90 | 54.00 | -27.10 | AVG | | | | | | 3 | 2400.000 | 54.19 | -7.97 | 46.22 | 74.00 | -27.78 | peak | | | | | | 4 | 2400.000 | 46.21 | -7.97 | 38.24 | 54.00 | -15.76 | AVG | | | | | Page 67 of 78 ## ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Job No.: star2018 #294 Standard: FCC Part 15C 3M Radiated Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Wireless Stereo Headset Mode: TX 2480MHz Model: TCU007 Manufacturer: Marvo Polarization: Horizontal Power Source: DC 3.7V Date: 19/04/16/ Time: 9/36/39 Engineer Signature: star Distance: Note: Report No.:ATE20190447 | No. | Freq.
(MHz) | Reading (dBuV/m) | Factor
(dB) | Result
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | Height (cm) | Degree
(deg.) | Remark | |-----|----------------|------------------|----------------|--------------------|-------------------|----------------|----------|-------------|------------------|--------| | 1 | 2483.500 | 40.87 | -7.76 | 33.11 | 74.00 | -40.89 | peak | | 1-2-1 | | | 2 | 2483.500 | 33.24 | -7.76 | 25.48 | 54.00 | -28.52 | AVG | | | | | 3 | 2500.000 | 40.36 | -7.71 | 32.65 | 74.00 | -41.35 | peak | | | | | 4 | 2500.000 | 34.01 | -7.71 | 26.30 | 54.00 | -27.70 | AVG | | | | Page 68 of 78 # ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Job No.: star2018 #295 Standard: FCC Part 15C 3M Radiated Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Wireless Stereo Headset Mode: TX 2480MHz Model: TCU007 Manufacturer: Marvo Polarization: Vertical Power Source: DC 3.7V Date: 19/04/16/ Time: 9/37/47 Engineer Signature: star Distance: Note: Report No.:ATE20190447 | No. | Freq.
(MHz) | Reading (dBuV/m) | Factor (dB) | Result
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | Height (cm) | Degree
(deg.) | Remark | |-----|----------------|------------------|-------------|--------------------|-------------------|----------------|----------|-------------|------------------|--------| | 1 | 2483.500 | 42.12 | -7.76 | 34.36 | 74.00 | -39.64 | peak | | | | | 2 | 2483.500 | 35.10 | -7.76 | 27.34 | 54.00 | -26.66 | AVG | | | | | 3 | 2500.000 | 40.58 | -7.71 | 32.87 | 74.00 | -41.13 | peak | | | | | 4 | 2500.000 | 33.94 | -7.71 | 26.23 | 54.00 | -27.77 | AVG | | | | Page 69 of 78 # Hopping mode ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Job No.: star2018 #298 Standard: FCC Part 15C 3M Radiated Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Wireless Stereo Headset Mode: Hopping Model: TCU007 Manufacturer: Marvo Note: Report No.:ATE20190447 Polarization: Horizontal Power Source: DC 3.7V Date: 19/04/16/ Time: 9/50/14 Engineer Signature: star Distance: | No. | Freq.
(MHz) | Reading (dBuV/m) | Factor (dB) | Result
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | Height (cm) | Degree
(deg.) | Remark | | |-----|----------------|------------------|-------------|--------------------|-------------------|----------------|----------|-------------|------------------|--------|-----| | 1 | 2390.000 | 40.77 | -8.00 | 32.77 | 74.00 | -41.23 | peak | | | | | | 2 | 2390.000 | 33.41 | -8.00 | 25.41 | 54.00 | -28.59 | AVG | | | | 1 | | 3 | 2400.000 | 50.23 | -7.97 | 42.26 | 74.00 | -31.74 | peak | | | | | | 4 | 2400.000 | 43.55 | -7.97 | 35.58 | 54.00 | -18.42 | AVG | 1 | | | | | 5 | 2483.500 | 43.50 | -7.76 | 35.74 | 74.00 | -38.26 | peak | | | | | | 6 | 2483.500 | 36.08 | -7.76 | 28.32 | 54.00 | -25.68 | AVG | | 17 | | | | 7 | 2500.000 | 42.26 | -7.71 | 34.55 | 74.00 | -39.45 | peak | | | 7 | | | 8 | 2500.000 | 35.47 | -7.71 | 27.76 | 54.00 | -26.24 | AVG | | | | - 4 | Page 70 of 78 # ACCURATE TECHNOLOGY CO., LTD. F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396 Job No.: star2018 #299 Standard: FCC Part 15C 3M Radiated Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % EUT: Wireless Stereo Headset Mode: Hopping Model: TCU007 Manufacturer: Marvo Note: Report No.:ATE20190447 Polarization: Vertical Power Source: DC 3.7V Date: 19/04/16/ Time: 10/00/31 Engineer Signature: star Distance: | | | limit1: — | |-----|---|--| | 90 | Moderness | limit2: | | 80 | | | | 70 | | | | 60 | | | | 50 | * | | | 40 | _{1,M} / | 5
3
4
7 | | 30 | Adatum garangan kangan ara Adat Historia da la manayan ara Adat | "" " " " " " " " " " " " " " " " " " " | | 20 | | | | 10 | | | | 0.0 | | | | No. | Freq.
(MHz) | Reading (dBuV/m) | Factor
(dB) | Result
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Detector | Height (cm) | Degree
(deg.) | Remark | |-----|----------------|------------------|----------------|--------------------|-------------------|----------------|----------|-------------|------------------|--------| | 1 | 2390.000 | 41.98 | -8.00 | 33.98 | 74.00 | -40.02 | peak | | | | | 2 | 2390.000 | 34.25 | -8.00 | 26.25 | 54.00 | -27.75 | AVG | | | | | 3 | 2400.000 | 58.78 | -7.97 | 50.81 | 74.00 | -23.19 | peak | | | | | 4 | 2400.000 | 51.71 | -7.97 | 43.74 | 54.00 | -10.26 | AVG | | | | | 5 | 2483.500 | 46.96 | -7.76 | 39.20 | 74.00 | -34.80 | peak | | | | | 6 | 2483.500 | 39.62 | -7.76 | 31.86 | 54.00 | -22.14 | AVG | | | | | 7 | 2500.000 | 41.22 | -7.71 | 33.51 | 74.00 | -40.49 | peak | | | | | 8 | 2500.000 | 33.58 | -7.71 | 25.87 | 54.00 | -28.13 | AVG | | | | # 13.AC POWER LINE CONDUCTED EMISSION TEST # 13.1.Block Diagram of Test Setup 13.1.1.Block diagram of connection between the EUT and simulators # 13.1.2.Test System Setup Note: 1. Support units were connected to second LISN. 2. Both of LISNs (AMIN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units. Page 72 of 78 #### 13.2. Power Line Conducted Emission Test Limits | Frequency | Limit d | $B(\mu V)$ | |--------------|------------------|---------------| | (MHz) | Quasi-peak Level | Average Level | | 0.15 - 0.50 | 66.0 – 56.0 * | 56.0 – 46.0 * | | 0.50 - 5.00 | 56.0 | 46.0 | | 5.00 - 30.00 | 60.0 | 50.0 | NOTE1: The lower limit shall apply at the transition frequencies. NOTE2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz. ## 13.3. Configuration of EUT on Measurement The equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application. ## 13.4. Operating Condition of EUT - 13.4.1. Setup the EUT and simulator as shown as Section 13.1. - 13.4.2. Turn on the power of all equipment. - 13.4.3.Let the EUT work in test mode and measure it. #### 13.5.Test Procedure The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10: 2013 on Conducted Emission Measurement. The bandwidth of test receiver (R & S ESCS30) is set at 9kHz. The frequency range from 150kHz to 30MHz is checked. Page 73 of 78 ## 13.6.Data Sample | Frequency | Transducer | QuasiPeak | Average | QuasiPeak | Average | QuasiPeak | Average | Remark | |-----------|------------|-----------|---------|-----------|---------|-----------|---------|-------------| | (MHz) | value | Level | Level | Limit | Limit | Margin | Margin | (Pass/Fail) | | | (dB) | (dBµV) | (dBµV) | (dBµV) | (dBµV) | (dB) | (dB) | | | X.XX | 10.6 | 25.3 | 17.0 | 59.0 | 49.0 | 33.4 | 31.7 | Pass | $$\begin{split} & Frequency(MHz) = Emission \ frequency \ in \ MHz \\ & Transducer \ value(dB) = Insertion \ loss \ of \ LISN + Cable \ Loss \\ & Level(dB\mu V)
= Quasi-peak \ Reading/Average \ Reading + Transducer \ value \\ & Limit \ (dB\mu V) = Limit \ stated \ in \ standard \\ & Margin = Limit \ (dB\mu V) - Level \ (dB\mu V) \end{split}$$ Calculation Formula: Margin = Limit ($dB\mu V$) - Level ($dB\mu V$) #### 13.7.Test Results #### Pass. The frequency range from 150kHz to 30MHz is checked. Maximizing procedure was performed on the six (6) highest emissions of the EUT. Emissions attenuated more than 20 dB below the permissible value are not reported. All data was recorded in the Quasi-peak and average detection mode. The spectral diagrams are attached as below. ACCURATE TECHNOLOGY CO., LTD #### CONDUCTED EMISSION STANDARD FCC PART 15 C Wireless Stereo Headset M/N:TCU007 EUT: Manufacturer: Operating Condition: BT communication 1#Shielding Room Test Site: Operator: Star Test Specification: L 120V/60Hz Comment: Report No.:ATE20190447 Start of Test: 04/08/2019 / 3:14:29PM SCAN TABLE: "V 9K-30MHz fin" Short Description: SU _SUB_STD_VTERM2 1.70 Start Stop Step IF Detector Meas. Transducer Bandw. Frequency Frequency Width Time QuasiPeak 1.0 s 9.0 kHz 150.0 kHz 100.0 Hz 200 Hz NSLK8126 2008 Average QuasiPeak 1.0 s 9 kHz NSLK8126 2008 150.0 kHz 30.0 MHz 5.0 kHz Average #### MEASUREMENT RESULT: "LLED001 fin" | 04/08/2019 3: | 18PM | | | | | | | |------------------|---------------|--------------|---------------|--------------|----------|------|-----| | Frequency
MHz | Level
dBµV | Transd
dB | Limit
dBµV | Margin
dB | Detector | Line | PE | | 0.160000 | 32.30 | 10.5 | 66 | 33.2 | QP | Ll | GND | | 0.430000 | 41.50 | 10.7 | 57 | 15.8 | QP | L1 | GND | | 0.640000 | 33.00 | 10.8 | 56 | 23.0 | QP | L1 | GND | | 1.085000 | 31.20 | 10.9 | 56 | 24.8 | QP | L1 | GND | | 2.940000 | 33.50 | 11.1 | 56 | 22.5 | QP | L1 | GND | | 23.755000 | 30.00 | 11.5 | 60 | 30.0 | QP | L1 | GND | #### MEASUREMENT RESULT: "LLED001 fin2" | 04/08/2019 3 | :18PM | | | | | | | |------------------|---------------|--------------|---------------|--------------|----------|------|-----| | Frequency
MHz | Level
dBµV | Transd
dB | Limit
dBµV | Margin
dB | Detector | Line | PE | | 0.160000 | 21.90 | 10.5 | 56 | 33.6 | AV | L1 | GND | | 0.425000 | 33.80 | 10.7 | 47 | 13.5 | AV | L1 | GND | | 0.640000 | 24.90 | 10.8 | 46 | 21.1 | AV | L1 | GND | | 1.095000 | 22.70 | 10.9 | 46 | 23.3 | AV | L1 | GND | | 2.930000 | 21.40 | 11.1 | 46 | 24.6 | AV | L1 | GND | | 23.635000 | 23.50 | 11.5 | 50 | 26.5 | AV | L1 | GND | Page 75 of 78 #### ACCURATE TECHNOLOGY CO., LTD #### CONDUCTED EMISSION STANDARD FCC PART 15 C EUT: Wireless Stereo Headset M/N:TCU007 Manufacturer: Operating Condition: BT communication 1#Shielding Room Test Site: Star Operator: Test Specification: N 120V/60Hz Comment: Report No.: ATE20190447 04/08/2019 / 3:18:47PM Start of Test: # SCAN TABLE: "V 9K-30MHz fin" Short Description: _SU _SUB_STD_VTERM2 1.70 Start Step Stop IF Detector Meas. Transducer Frequency Frequency Width Bandw. Time 150.0 kHz 100.0 Hz 9.0 kHz QuasiPeak 1.0 s 200 Hz NSLK8126 2008 Average 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008 Average #### MEASUREMENT RESULT: "LLED002 fin" | ì | 04/08/2019 3: | 23PM | | | | | | | |---|------------------|---------------|--------------|---------------|--------------|----------|------|-----| | | Frequency
MHz | Level
dBµV | Transd
dB | Limit
dBµV | Margin
dB | Detector | Line | PE | | | 0.355000 | 33.20 | 10.6 | 59 | 25.6 | QP | N | GND | | | 0.430000 | 38.70 | 10.7 | 57 | 18.6 | QP | N | GND | | | 0.555000 | 29.70 | 10.7 | 56 | 26.3 | QP | N | GND | | | 1.065000 | 24.40 | 10.9 | 56 | 31.6 | QP | N | GND | | | 3.150000 | 29.80 | 11.1 | 56 | 26.2 | QP | N | GND | | | 23.260000 | 25.80 | 11.5 | 60 | 34.2 | OP | N | GND | #### MEASUREMENT RESULT: "LLED002_fin2" | 0. | 4/08/2019 3: | 23PM | | | | | | | |----|------------------|---------------|--------------|---------------|--------------|----------|------|-----| | | Frequency
MHz | Level
dBµV | Transd
dB | Limit
dBµV | Margin
dB | Detector | Line | PE | | | 0.355000 | 22.60 | 10.6 | 49 | 26.2 | AV | N | GND | | | 0.430000 | 26.90 | 10.7 | 47 | 20.4 | AV | N | GND | | | 0.555000 | 19.60 | 10.7 | 46 | 26.4 | AV | N | GND | | | 1.075000 | 14.40 | 10.9 | 46 | 31.6 | AV | N | GND | | | 3.150000 | 16.10 | 11.1 | 46 | 29.9 | AV | N | GND | | | 23.560000 | 23.70 | 11.5 | 50 | 26.3 | AV | N | GND | #### ACCURATE TECHNOLOGY CO., LTD #### CONDUCTED EMISSION STANDARD FCC PART 15 C EUT: Wireless Stereo Headset M/N:TCU007 Manufacturer: Operating Condition: BT communication 1#Shielding Room Test Site: Operator: Star Test Specification: N 240V/60Hz Report No.:ATE20190447 Comment: 04/08/2019 / 3:24:17PM Start of Test: # SCAN TABLE: "V 9K-30MHz fin" Short Description: SU _SUB_STD_VTERM2 1.70 UB_STD_view... Detector Meas. IF Time Bandw. Step Start Stop Transducer Frequency Frequency Width 150.0 kHz 100.0 Hz 9.0 kHz QuasiPeak 1.0 s 200 Hz NSLK8126 2008 Average 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008 Average #### MEASUREMENT RESULT: "LLED003 fin" | 04/08/2019 3: | 27PM | | | | | | | |------------------|---------------|--------------|---------------|--------------|----------|------|-----| | Frequency
MHz | Level
dBµV | Transd
dB | Limit
dBµV | Margin
dB | Detector | Line | PE | | 0.210000 | 34.60 | 10.5 | 63 | 28.6 | QP | N | GND | | 0.440000 | 35.60 | 10.7 | 57 | 21.5 | QP | N | GND | | 0.655000 | 29.10 | 10.8 | 56 | 26.9 | QP | N | GND | | 2.950000 | 33.70 | 11.1 | 56 | 22.3 | QP | N | GND | | 3.400000 | 32.60 | 11.1 | 56 | 23.4 | QP | N | GND | | 20.410000 | 33.10 | 11.4 | 60 | 26.9 | OP | N | GND | #### MEASUREMENT RESULT: "LLED003 fin2" | 0 | 4/08/2019 3: | | | 2 | Action | | 2. | 0.02 | |---|------------------|---------------|--------------|---------------|--------------|----------|------|------| | | Frequency
MHz | Level
dBµV | Transd
dB | Limit
dBµV | Margin
dB | Detector | Line | PE | | | 0.210000 | 20.20 | 10.5 | 53 | 33.0 | AV | N | GND | | | 0.440000 | 26.20 | 10.7 | 47 | 20.9 | AV | N | GND | | | 0.670000 | 19.50 | 10.8 | 46 | 26.5 | AV | N | GND | | | 2.950000 | 18.10 | 11.1 | 46 | 27.9 | AV | N | GND | | | 3.390000 | 18.30 | 11.1 | 46 | 27.7 | AV | N | GND | | | 20.530000 | 22.50 | 11.4 | 50 | 27.5 | AV | N | GND | Page 77 of 78 #### ACCURATE TECHNOLOGY CO., LTD ### CONDUCTED EMISSION STANDARD FCC PART 15 C Wireless Stereo Headset M/N:TCU007 EUT: Manufacturer: Operating Condition: BT communication 1#Shielding Room Test Site: Operator: Star Test Specification: L 240V/60Hz Comment: Report No.:ATE20190447 Start of Test: 04/08/2019 / 3:28:20PM SCAN TABLE: "V 9K-30MHz fin" Short Description: SU _SUB_STD_VTERM2 1.70 Detector Meas. Start Stop Step IF Transducer Frequency Frequency Bandw. Width Time QuasiPeak 1.0 s 9.0 kHz 150.0 kHz 100.0 Hz 200 Hz NSLK8126 2008 Average QuasiPeak 1.0 s 9 kHz NSLK8126 2008 150.0 kHz 30.0 MHz 5.0 kHz Average #### MEASUREMENT RESULT: "LLED004 fin" | 04/08/2019 3: | :32PM | | | | | | | |------------------|---------------|--------------|---------------|--------------|----------|------|-----| | Frequency
MHz | Level
dBµV | Transd
dB | Limit
dBµV | Margin
dB | Detector | Line | PE | | 0.310000 | 32.90 | 10.6 | 60 | 27.1 | QP | L1 | GND | | 0.425000 | 40.40 | 10.7 | 57 | 16.9 | QP | L1 | GND | | 0.770000 | 34.90 | 10.8 | 56 | 21.1 | QP | L1 | GND | | 1.255000 | 33.00 | 10.9 | 56 | 23.0 | QP | L1 | GND | | 2.920000 | 36.60 | 11.1 | 56 | 19.4 | QP | L1 | GND | | 20.410000 | 34.90 | 11.4 | 60 | 25.1 | QP | L1 | GND | | | | | | | | | | #### MEASUREMENT RESULT: "LLED004 fin2" | 04/08/2019 3 | :32PM | | | | | | | |------------------|---------------|--------------|---------------|--------------|----------|------|-----| | Frequency
MHz | Level
dBµV | Transd
dB | Limit
dBµV | Margin
dB | Detector | Line | PE | | 0.310000 | 26.10 | 10.6 | 50 | 23.9 | AV | L1 | GND | | 0.425000 | 32.80 | 10.7 | 47 | 14.5 | AV | L1 | GND | | 0.775000 | 26.20 | 10.8 | 46 | 19.8 | AV | L1 | GND | | 1.255000 | 24.70 | 10.9 | 46 | 21.3 | AV | L1 | GND | | 2.840000 | 25.00 | 11.0 | 46 | 21.0 | AV | L1 | GND | | 20.260000 | 24.60 | 11.4 | 50 | 25.4 | AV | L1 | GND | Page 78 of 78 # 14.ANTENNA REQUIREMENT # 14.1.The Requirement According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. #### 14.2.Antenna Construction Device is equipped with permanent attached antenna, which isn't displaced by other antenna. The Max Antenna gain of EUT is 1.3dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203. ***** End of Test Report *****