

FCC 47 CFR PART 15 SUBPART C CERTIFICATION TEST REPORT

For

SMART VACUUM CLEANER

MODEL No.: PURE ONE S12, PURE ONE S12 M, PURE ONE S12 PLUS

FCC ID: 2ASWB-S12

Trade Mark: N/A

REPORT NO: ES190327975W

ISSUE DATE: April 22, 2019

Prepared for

Ecovacs Robotics Co Ltd NO 108 SHI HU RD (W) WU ZHONG ZONE, SUZHOU, JIANGSU, 215128, CN

Prepared by

EMTEK(SHENZHEN) CO., LTD.

Bldg 69, Majialong Industry Zone, Nanshan District,
Shenzhen, Guangdong, China
TEL: 86-755-26954280
FAX: 86-755-26954282

TRF No: FCC 15.247/A Page 1 of 55 Report No.: ES190327975W Ver.1.0

TABLE OF CONTENTS

1	TEST RESULT CERTIFICATION					
2	EU	T TECHNICAL DESCRIPTION	4			
3		MMARY OF TEST RESULT				
4		ST METHODOLOGY				
•	4.1 4.2 4.3	GENERAL DESCRIPTION OF APPLIED STANDARDS MEASUREMENT EQUIPMENT USED DESCRIPTION OF TEST MODES	6			
5	FA	CILITIES AND ACCREDITATIONS	8			
	5.1 5.2	FACILITIESLABORATORY ACCREDITATIONS AND LISTINGS	8 8			
6	TE	ST SYSTEM UNCERTAINTY	9			
7	SE	TUP OF EQUIPMENT UNDER TEST	10			
	7.1 7.2 7.3 7.4 7.5	RADIO FREQUENCY TEST SETUP 1 RADIO FREQUENCY TEST SETUP 2 CONDUCTED EMISSION TEST SETUP BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT	10 11 12			
8	TE	ST REQUIREMENTS	13			
	8.1 8.2 8.3 8.4 8.5	DTS(6DB)BANDWIDTH				
	8.6 8.7	CONDUCTED EMISSIONS TEST				
	0.,					

1 TEST RESULT CERTIFICATION

Applicant:	Ecovacs Robotics Co Ltd NO 108 SHI HU RD (W) WU ZHONG ZONE, SUZHOU, JIANGSU, 215128, CN
Manufacturer:	Ecovacs Robotics Co Ltd NO 108 SHI HU RD (W) WU ZHONG ZONE, SUZHOU, JIANGSU, 215128, CN
EUT Description:	SMART VACUUM CLEANER
Model Number:	PURE ONE S12, PURE ONE S12 M, PURE ONE S12 PLUS
Trademark:	N/A

Measurement Procedure Used:

APPLICABLE STANDARDS				
STANDARD	TEST RESULT			
FCC 47 CFR Part 2, Subpart J	PASS			
FCC 47 CFR Part 15, Subpart C	FASS			

The above equipment was tested by EMTEK(SHENZHEN) CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2 and Part 15.247

The test results of this report relate only to the tested sample identified in this report.

Date of Test:	April 1, 2019 to April 15, 2019
Prepared by :	Sevin Li/Editor
Reviewer :	Tre Wa
Approve & Authorized Signer : _	Joe Xia/Supervisor SHENZHEN SHENZHEN SHENZHEN STING STING

TRF No: FCC 15.247/A Page 3 of 55 Report No.: ES190327975W Ver.1.0

2 EUT TECHNICAL DESCRIPTION

Characteristics	Description			
Model Number	PURE ONE S12, PURE ONE S12 M, PURE ONE S12 PLUS Note: PURE ONE S12 and PURE ONE S12 PLUS Plus are identical in circuitry and electrical, mechanical and physical construction; the differences is model name for trading purpose; For PURE ONE S12, PURE ONE S12 have display unit and used 2500 mAh battery, the PURE ONE S12 M has no display unit used 2000mAh battery, other circuitry and electrical mechanical and physical construction are same			
IEEE 802.11 WLAN Mode Supported	⊠802.11b ⊠802.11g ⊠802.11n(20MHz channel bandwidth)			
Data Rate	⊠802.11 b:1,2,5.5,11Mbps; ⊠802.11 g:6,9,12,18,24,36,48,54Mbps; ⊠802.11n(HT20):MCS0-MCS7;			
Modulation	DSSS with DBPSK/DQPSK/CCK for 802.11b; OFDM with BPSK/QPSK/16QAM for 802.11g/n;			
Operating Frequency Range	⊠2412-2462MHz for 802.11b/g/n(HT20);			
Number of Channels	☐11 channels for 802.11b/g/n(HT20);			
Transmit Power Max	18.52 dBm			
Antenna Type	FPC antenna			
Gain	2 dBi			
Power supply	DC 26V via Adapter DC 21.6V via internal rechargeable lithium battery Adapter: Model: CHA12NA Input: AC 100-120V, 60Hz, 1.3A max Output1: DC 26.0V, 0.7A Output2: DC 26.0V, 0.7A Battery: For PURE ONE S12, PURE ONE S12 Plus Model: A12NA-02 Rating: 21.6V DC 2500mAh 54Wh For PURE ONE S12 M Model: A12NA-01 Rating: 21.6V DC 2000mAh 43.2Wh Note: Two Batteries are same except the capacity			

Note: for more details, please refer to the User's manual of the EUT.

TRF No: FCC 15.247/A Page 4 of 55 Report No.: ES190327975W Ver.1.0

3 SUMMARY OF TEST RESULT

FCC PartClause	Test Parameter	Verdict	Remark		
15.247(a)(2)	DTS (6dB) Bandwidth	PASS			
15.247(b)(3)	Maximum Peak Conducted Output Power	PASS			
15.247(e)	Maximum Power Spectral Density Level	PASS			
15.247(d)	Unwanted Emission Into Non-Restricted	PASS			
	Frequency Bands				
15.247(d)	Unwanted Emission Into Restricted Frequency	PASS			
15.209	Bands (conducted)				
15.247(d)	Radiated Spurious Emission	PASS			
15.209					
15.207	Conducted Emission Test	PASS			
15.247(b)	Antenna Application	PASS			
	NOTE1:N/A (Not Applicable)				
	NOTE2:According to FCC OET KDB 558074, the				
measurements in the restricted frequency bands. In addition, the rac					
	test is also performed to ensure the emissions emanating from the device				
	cabinet also comply with the applicable limits.				

RELATED SUBMITTAL(S) / GRANT(S):

This submittal(s) (test report) is intended for FCC ID: 2ASWB-S12 filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

TRF No: FCC 15.247/A Page 5 of 55 Report No.: ES190327975W Ver.1.0

4 TEST METHODOLOGY

4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards:

FCC 47 CFR Part 2, Subpart J

FCC 47 CFR Part 15, Subpart C

FCC KDB 558074 D01 15.247 Meas Guidance v05r01

4.2 MEASUREMENT EQUIPMENT USED

4.2.1 Conducted Emission Test Equipment

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LASTCAL.	DUE CAL.
Test Receiver	Rohde & Schwarz	ESCI	26115-010-0027	May 19, 2018	May 18, 2019
L.I.S.N.	Rohde & Schwarz	ENV216	101161	May 19, 2018	May 18, 2019
50Ω Coaxial Switch	Anritsu	MP59B	6100175589	May 20, 2018	May 19, 2019
Voltage Probe	Rohde & Schwarz	ESH2-Z3	100122	May 20, 2018	May 19, 2019
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100006	May 19, 2018	May 18, 2019
I.S.N	Teseq GmbH	ISN T800	30327	May 20, 2018	May 19, 2019

4.2.2 Radiated Emission Test Equipment

	-				
EQUIPMENT	MFR	MODEL	SERIAL	LAST CAL.	DUE CAL.
TYPE		NUMBER	NUMBER		
EMI Test Receiver	Rohde & Schwarz	ESU	1302.6005.26	May 20, 2018	May 19, 2019
Pre-Amplifier	HP	8447F	2944A07999	May 19, 2018	May 18, 2019
Bilog Antenna	Schwarzbeck	VULB9163	142	May 19, 2018	May 18, 2019
Loop Antenna	ARA	PLA-1030/B	1029	May 19, 2018	May 18, 2019
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170399	May 20, 2018	May 19, 2019
Horn Antenna	Schwarzbeck	BBHA 9120	D143	May 19, 2018	May 18, 2019
Cable	Schwarzbeck	AK9513	ACRX1	May 20, 2018	May 19, 2019
Cable	Rosenberger	N/A	FP2RX2	May 20, 2018	May 19, 2019
Cable	Schwarzbeck	AK9513	CRPX1	May 20, 2018	May 19, 2019
Cable	Schwarzbeck	AK9513	CRRX2	May 20, 2018	May 19, 2019

4.2.3 Radio Frequency Test Equipment

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LASTCAL.	DUE CAL.
Spectrum Analyzer	Agilent	E4407B	88156318	May 20, 2018	May 19, 2019
Signal Analyzer	Agilent	N9010A	My53470879	May 20, 2018	May 19, 2019
Power meter	Anritsu	ML2495A	0824006	May 20, 2018	May 19, 2019
Power sensor	Anritsu	MA2411B	0738172	May 20, 2018	May 19, 2019

Remark: Each piece of equipment is scheduled for calibration once a year.

TRF No: FCC 15.247/A Page 6 of 55 Report No.: ES190327975W Ver.1.0

4.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (802.11b: 1 Mbps; 802.11g: 6 Mbps; 802.11n (HT20): were used for all test.

Test software: ESP RF test tool v1.1.0

Power Level: ATT 20dB*0.25

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Frequency and Channel list for 802.11 b/g/n(HT20):

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	5	2432	9	2452
2	2417	6	2437	10	2457
3	2422	7	2442	11	2462
4	2427	8	2447		

Test Frequency and Channel for 802.11 b/g/n (HT20):

Lowest Frequency		Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	6	2437	11	2462

TRF No: FCC 15.247/A Page 7 of 55 Report No.: ES190327975W Ver.1.0

5 FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

Bldg 69, Majialong Industry Zone District, Nanshan District, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

5.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

EMC Lab. : Accredited by CNAS, 2016.10.24

The certificate is valid until 2022.10.28

The Laboratory has been assessed and proved to be in compliance

with CNAS-CL01: 2006(identical to ISO/IEC17025: 2005)

The Certificate Registration Number is L229

: Accredited by TUV Rheinland Shenzhen, 2016.5.19
The Laboratory has been assessed according to the requirements

INCLIEC 17025

ISO/IEC 17025.

: Accredited by FCC, August 06, 2018

The certificate is valid until August 07, 2020

Designation Number: CN1204

Test Firm Registration Number: 882943

: Accredited by Industry Canada, November 09, 2018 The Conformity Assessment Body Identifier is CN0008.

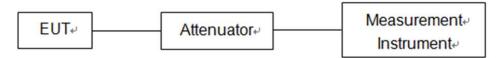
TRF No: FCC 15.247/A Page 8 of 55 Report No.: ES190327975W Ver.1.0

6 TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

apparatas.	
Parameter	Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0dB
Conducted Emissions Test	±2.0dB
Radiated Emission Test	±2.0dB
Power Density	±2.0dB
Occupied Bandwidth Test	±1.0dB
Band Edge Test	±3dB
All emission, radiated	±3dB
Antenna Port Emission	±3dB
Temperature	±0.5℃
Humidity	±3%

Measurement Uncertainty for a level of Confidence of 95%


TRF No: FCC 15.247/A Page 9 of 55 Report No.: ES190327975W Ver.1.0

7 SETUP OF EQUIPMENT UNDER TEST

7.1 RADIO FREQUENCY TEST SETUP 1

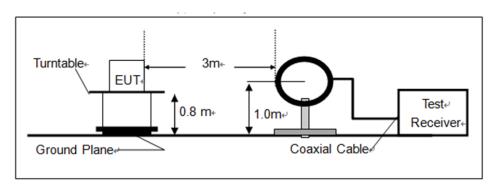
The WLAN component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements

7.2 RADIO FREQUENCY TEST SETUP 2

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

Below 30MHz:

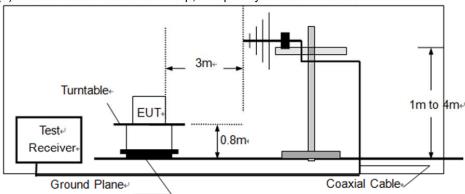
The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT androtated about its vertical axis formaximum response at each azimuth about the EUT. The center of the loopshall be 1 m above the ground. For certain applications, the loop antennaplane may also need to be positioned horizontally at the specified distance from the EUT.

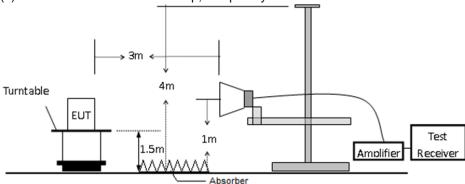

30MHz-1GHz

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

Above 1GHz:

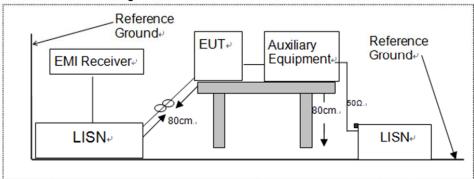
The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).


(a) Radiated Emission Test Set-Up, Frequency Below 30MHz


TRF No: FCC 15.247/A Page 10 of 55 Report No.: ES190327975W Ver.1.0

(b)Radiated Emission Test Set-Up, Frequency Below 1000MHz

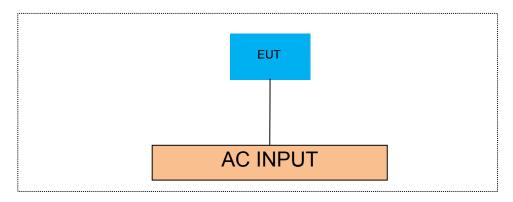
(c) Radiated Emission Test Set-Up, Frequency above 1000MHz



7.3 CONDUCTED EMISSION TEST SETUP

The mains cable of the EUT (maybe per AC/DC Adapter) must be connected to LISN. The LISN shall be placed 0.8 m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.

Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.1 m.


According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

TRF No: FCC 15.247/A Page 11 of 55 Report No.: ES190327975W Ver.1.0

7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

7.5 SUPPORT EQUIPMENT

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Series No.	Note
N/A	N/A	N/A	N/A	N/A	N/A	N/A

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

8 TEST REQUIREMENTS

8.1 DTS(6DB)BANDWIDTH

8.1.1 Applicable Standard

According to FCC Part15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r01

8.1.2 Conformance Limit

The minimum -6 dB bandwidth shall be at least 500 kHz.

8.1.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.1.4 Test Procedure

The EUT was operating in IEEE 802.11b/g/n mode and controlled its channel. Printed out the test result from the spectrum by hard copy function.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW = 100 kHz.

Set the video bandwidth (VBW) =300kHz.

Set Span=2 times OBW

Set Detector = Peak.

Set Trace mode = max hold.

Set Sweep = auto couple.

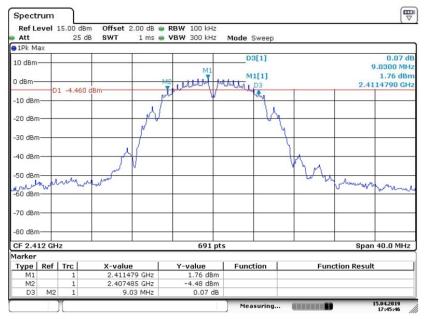
Allow the trace to stabilize.

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Measure and record the results in the test report.

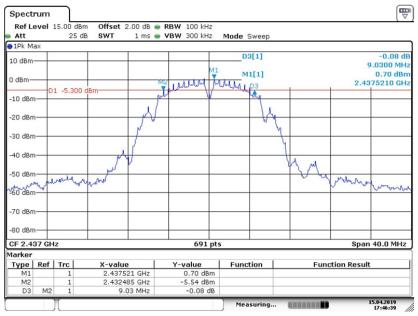
8.1.5 Test Results

Temperature : 26° C Test By: King Kong


Humidity: 60 %

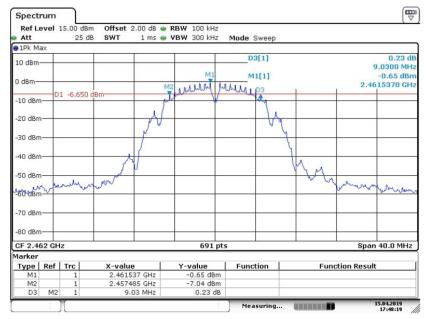
Operation	Channel	Channel Frequency	6dB Bandwidth	Limit	Verdict
Mode	Number	(MHz)	(MHz)	(kHz)	Verdict
	1	2412	9.03	>=500	PASS
802.11b	6 2437		9.03	>=500	PASS
	11	2462	9.03	>=500	PASS
	1	2412	16.324	>=500	PASS
802.11g	6	2437	16.324	>=500	PASS
	11	2462	16.324	>=500	PASS
802.11n	1	2412	17.250	>=500	PASS
(HT20)	6	2437	17.250	>=500	PASS
(11120)	11	2462	17.250	>=500	PASS

TRF No: FCC 15.247/A Page 13 of 55 Report No.: ES190327975W Ver.1.0

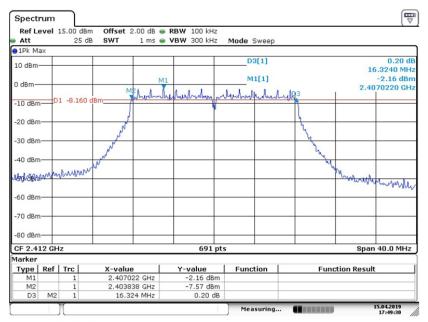

DTS (6dB) Bandwidth **Test Model** Channel 1: 2412MHz

802.11b

Date: 15.APR.2019 17:45:45

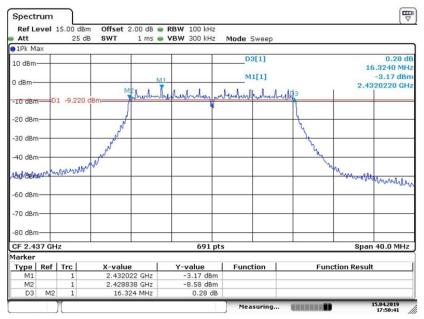

DTS (6dB) Bandwidth **Test Model** 802.11b Channel 6: 2437MHz

Date: 15.APR.2019 17:46:39

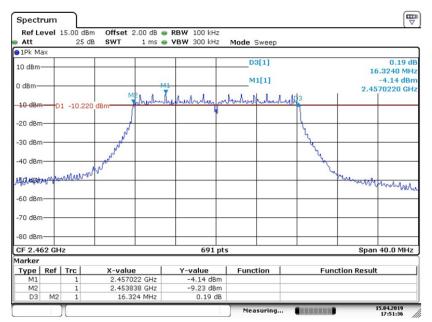


Test Model DTS (6dB) Bandwidth 802.11b Channel 11: 2462MHz

Date: 15.APR.2019 17:48:19

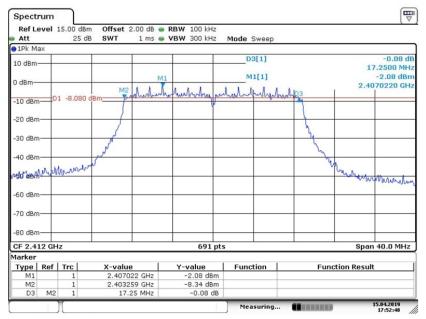

Test Model DTS (6dB) Bandwidth 802.11g
Channel 1: 2412MHz

Date: 15.APR.2019 17:49:30

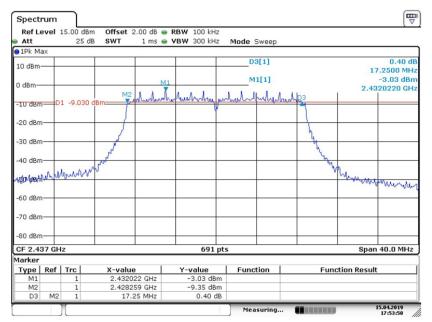

DTS (6dB) Bandwidth 802.11g Channel 6: 2437MHz

Date: 15.APR.2019 17:50:41

Test Model

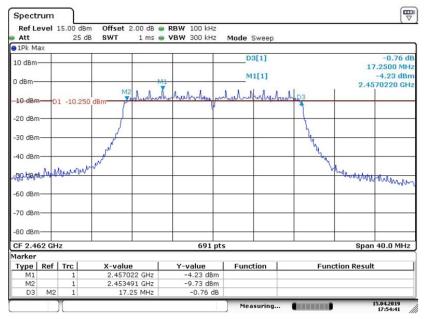

DTS (6dB) Bandwidth 802.11g Channel 11: 2462MHz

Date: 15.APR.2019 17:51:36


DTS (6dB) Bandwidth 802.11n (HT20) Channel 1: 2412MHz

Date: 15.APR.2019 17:52:48

Test Model


DTS (6dB) Bandwidth 802.11n (HT20) Channel 6: 2437MHz

Date: 15.APR.2019 17:53:51

DTS (6dB) Bandwidth 802.11n (HT20) Channel 11: 2462MHz

Date: 15.APR.2019 17:54:41

8.2 MAXIMUM PEAK CONDUCTED OUTPUT POWER

8.2.1 Applicable Standard

According to FCC Part15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r01

8.2.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm).

8.2.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.2.4 Test Procedure

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum output power setting and enable the EUT transmit continuously.

Measure the conducted output power with cable loss and record the results in the test report. Measure and record the results in the report.

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode

If the transmitter employs an antenna system that emits multiple directional beams, but does not emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device (i.e. the sum of the power supplied to all antennas, antenna elements, staves, etc., and summed across all carriers or frequency channels) shall not exceed the applicable output power limit specified insections 5.4(b) and 5.4(d). However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.

8.2.5 Test Results

Pass

See the Follow Page

TRF No: FCC 15.247/A Page 19 of 55 Report No.: ES190327975W Ver.1.0

Humidity: 60 %

Operation	Channel	Channel	Conducted Output	Limit	Marallat
Mode Number		Frequency (MHz)	Power (dBm)	(dBm)	Verdict
	1	2412	11.98	30	PASS
802.11b	6	2437	11.17	30	PASS
	11	2462	10.30	30	PASS
	1	2412	16.67	30	PASS
802.11g	6	2437	15.92	30	PASS
	11	2462	15.06	30	PASS
802.11n	1	2412	18.52	30	PASS
(ht20)	6	2437	18.47	30	PASS
(11120)	11	2462	17.81	30	PASS

8.3 MAXIMUM POWER SPECTRAL DENSITY

8.3.1 Applicable Standard

According to FCC Part15.247(e) and KDB558074 D01 Meas Guidance v05

8.3.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.3.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.3.4 Test Procedure

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance

The transmitter output (antenna port) was connected to the spectrum analyzer

Set analyzer center frequency to DTS channel center frequency.

Set the span to 1.5 times the DTS bandwidth.

Set the RBW to: 3 kHz

Set the VBW to:10 kHz.

Set Detector = peak.

Set Sweep time = auto couple.

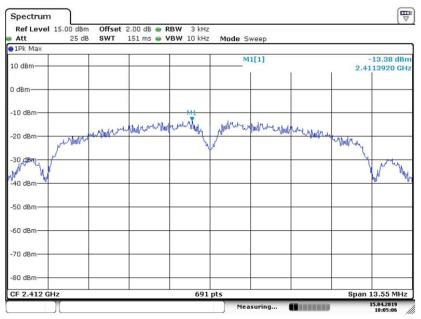
Set Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level within the RBW.

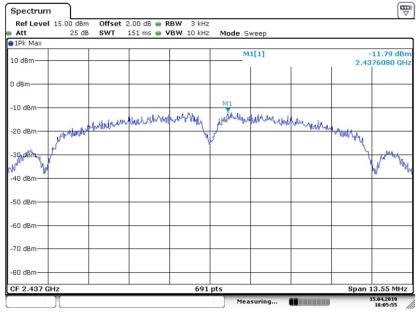
Note: If antenna Gain exceeds 6 dBi, then PSD Limit=8-(Gain- 6)

8.3.5 Test Results


Temperature : 26° C Test By: King Kong

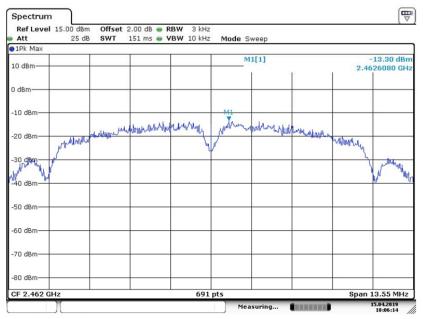
Humidity: 60 %

Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Level (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
	1	2412	-13.38	=<8	PASS
802.11b	6	2437	-11.79	=<8	PASS
	11	2462	-13.30	=<8	PASS
	1	2412	-14.07	=<8	PASS
802.11g	6	2437	-15.21	=<8	PASS
	11	2462	-15.44	=<8	PASS
000 115	1	2412	-14.80	=<8	PASS
802.11n	6	2437	-15.42	=<8	PASS
(HT20)	11	2462	-15.42	=<8	PASS
N/A					

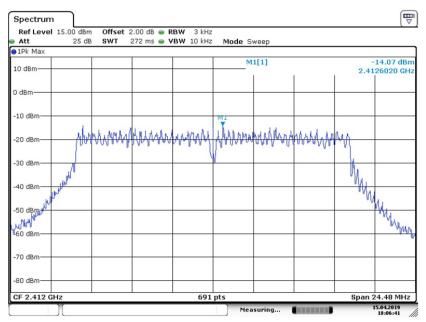


Test Model Power Spectral Density
802.11b
Channel 1: 2412MHz

Date: 15.APR.2019 18:05:05

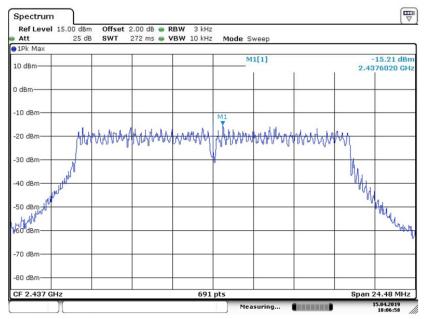

Power Spectral Density
Test Model 802.11b
Channel 6: 2437MHz

Date: 15.APR.2019 18:05:56

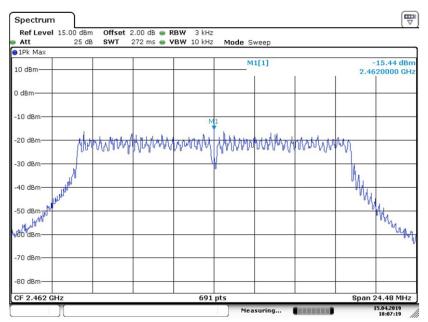


Test Model Power Spectral Density
802.11b
Channel 11: 2462MHz

Date: 15.APR.2019 18:06:14

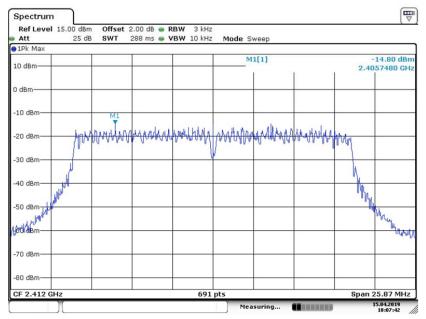

Power Spectral Density
Test Model 802.11g
Channel 1: 2412MHz

Date: 15.APR.2019 18:06:41

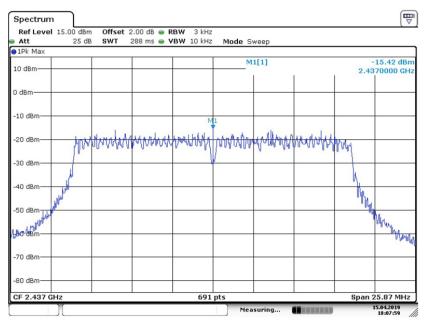


Test Model Power Spectral Density
802.11g
Channel 6: 2437MHz

Date: 15.APR.2019 18:06:58

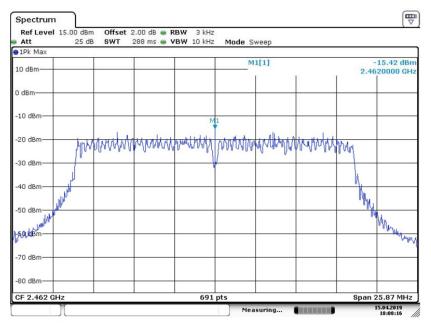

Test Model Power Spectral Density
802.11g
Channel 11: 2462MHz

Date: 15.APR.2019 18:07:18



Power Spectral Density 802.11n (HT20) Channel 1: 2412MHz

Date: 15.APR.2019 18:07:41


Test Model Power Spectral Density
802.11n (HT20)
Channel 6: 2437MHz

Date: 15.APR.2019 18:07:59

Test Model Power Spectral Density
802.11n (HT20)
Channel 11: 2462MHz

Date: 15.APR.2019 18:08:17

8.4 UNWANTED EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS

8.4.1 Applicable Standard

According to FCC Part15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r01

8.4.2 Conformance Limit

According to FCC Part 15.247(d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

8.4.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.4.4 Test Procedure

The transmitter output (antenna port) was connected to the spectrum analyzer

■ Reference level measurement

Establish a reference level by using the following procedure:

Set instrument center frequency to DTS channel center frequency.

Set the span to \geq 1.5 times the DTS bandwidth.

Set the RBW = 100 kHz.

Set the VBW \geq 3 x RBW.

Set Detector = peak.

Set Sweep time = auto couple.

Set Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

■ Emission level measurement

Set the center frequency and span to encompass frequency range to be measured.

Set the RBW = 100 kHz.

Set the VBW =300 kHz.

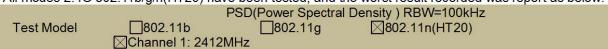
Set Detector = peak

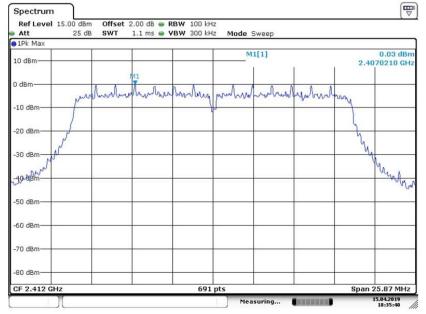
Sweep time = auto couple.

Trace mode = max hold.

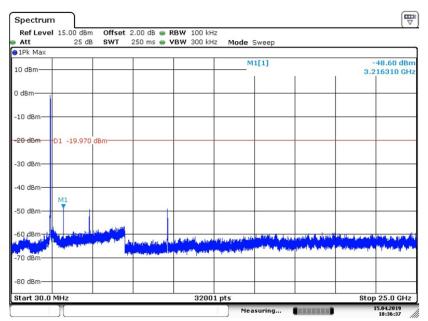
Allow trace to fully stabilize.

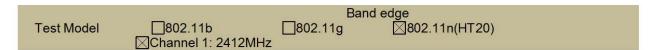
Use the peak marker function to determine the maximum amplitude level.

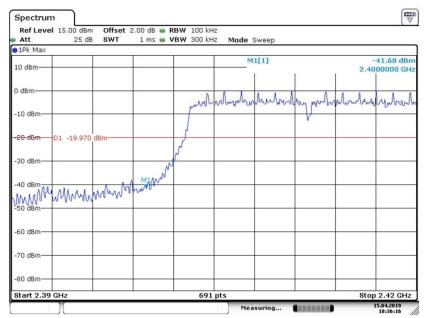

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements. Report the three highest emissions relative to the limit.


8.4.5 Test Results

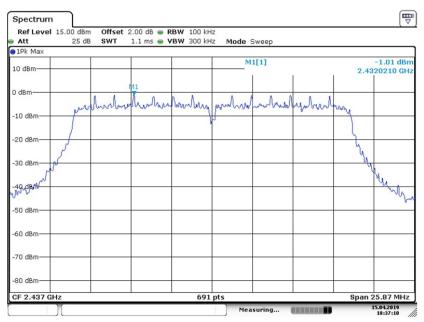
TRF No: FCC 15.247/A Page 27 of 55 Report No.: ES190327975W Ver.1.0


All modes 2.4G 802.11b/g/n(HT20) have been tested, and the worst result recorded was report as below:

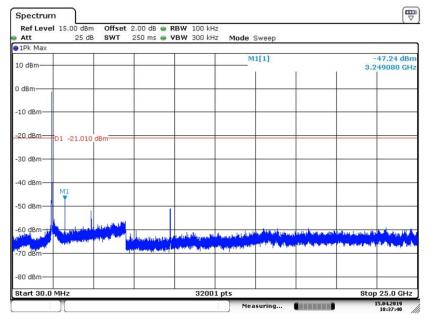

Date: 15.APR.2019 18:35:40



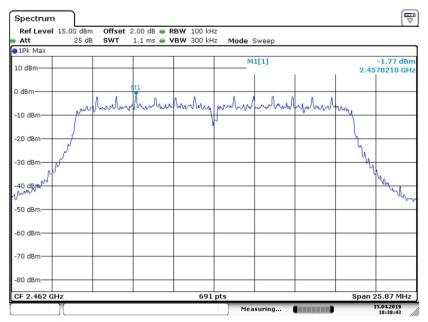
Date: 15.APR.2019 18:36:37



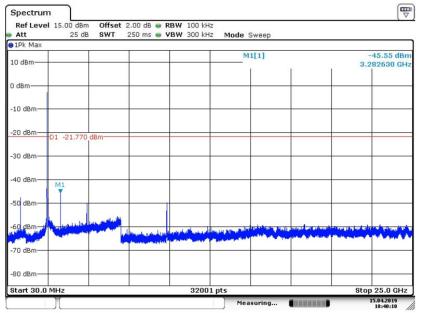
Date: 15.APR.2019 18:36:15



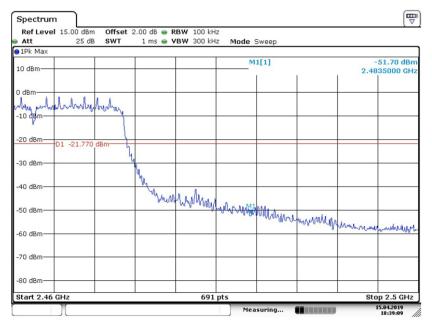
Date: 15.APR.2019 18:37:10



Date: 15.APR.2019 18:37:40



Date: 15.APR.2019 18:38:43



Date: 15.APR.2019 18:40:10

Date: 15.APR.2019 18:39:09

8.5 RADIATED SPURIOUS EMISSION

8.5.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and KDB 558074 D01 15.247 Meas Guidance v05r01

8.5.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

	NALL	N 41 1	011
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

According to FCC Part15.205,the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300
0.490-1.705	2400/F(KHz)	20 log (uV/m)	30
1.705-30	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

8.5.3 Test Configuration

Test according to clause 7.2 radio frequency test setup 2

8.5.4 Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz(1GHz to 25GHz), 100 kHz for f < 1 GHz(30MHz to 1GHz), 200Hz for f < 150KHz(9KHz to 150KHz), 9KHz for f < 30MHz(150KHz to 30KHz)

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT,

TRF No: FCC 15.247/A Page 32 of 55 Report No.: ES190327975W Ver.1.0

measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data. Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Repeat above procedures until all frequency measured was complete.

8.5.5 Test Results

■ Spurious Emission below 30MHz(9KHz to 30MHz)

Temperature: 24°C Test By: King Kong

Humidity: 53 % Test mode: TX Mode

Freq. (MHz)	Ant.Pol.		ssion BuV/m)	Limit 3m(dBuV/m)		Over(dB)	
	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor

■ Spurious Emission Above 1GHz(1GHz to 25GHz)

All modes 2.4G 802.11b/g/n have been tested, and the worst result 802.11g recorded was report as below:

Temperature : 26℃ Test By: King Kong

Humidity: 60 % Frequency: Channel 1: 2412MHz

Test mode: 802.11g

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3r	Limit 3m(dBuV/m)		er(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV
4829.00	V	51.05	49.10	74.00	54.00	-22.95	-4.90
13510.00	V	56.80	41.44	74.00	54.00	-17.20	-12.56
17991.50	V	57.77	42.37	74.00	54.00	-16.23	-11.63
4824.15	Н	51.86	49.87	74.00	54.00	-22.14	-4.13
15542.65	Н	58.31	43.17	74.00	54.00	-15.69	-10.83
17990.00	Н	58.66	43.40	74.00	54.00	-15.34	-10.60

Temperature: Test By: King Kong 26℃

Humidity: 60 % Channel 6: 2437MHz Frequency:

Test mode: 802.11g

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV
4774.00	V	51.07	50.34	74.00	54.00	-22.93	-3.66
8618.55	V	54.99	39.63	74.00	54.00	-19.01	-14.37
17311.50	V	57.41	42.74	74.00	54.00	-16.59	-11.26
4874.30	Н	53.03	50.89	74.00	54.00	-20.97	-3.11
15552.00	Н	56.71	41.43	74.00	54.00	-17.29	-12.57
17756.05	Н	57.49	43.26	74.00	54.00	-16.51	-10.74

26℃ Test By: King Kong Temperature:

Humidity: 60 % Frequency: Channel 11: 2462MHz

Test mode: 802.11g

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3	Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV	
4924.45	V	52.63	49.27	74.00	54.00	-21.37	-4.73	
11706.60	V	56.38	41.00	74.00	54.00	-17.62	-13.00	
17489.00	V	57.90	42.67	74.00	54.00	-16.10	-11.33	
4924.45	Н	51.41	50.14	74.00	54.00	-22.59	-3.86	
14877.10	Н	55.93	40.23	74.00	54.00	-18.07	-13.77	
17992.35	Н	56.04	41.67	74.00	54.00	-17.96	-12.33	

Note: (1) All Readings are Peak Value (VBW=3MHz) and Average Value (VBW=10Hz).

(2) Emission Level= Reading Level+Probe Factor +Cable Loss.
(3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

■ Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz
All modes 2.4G 802.11b/g/n have been tested, and the worst result 802.11g recorded was report as below:

Temperature : 26° C Test By: King Kong

Humidity: 60 % Frequency: Channel 1: 2412MHz

Test mode: 802.11n(HT20)

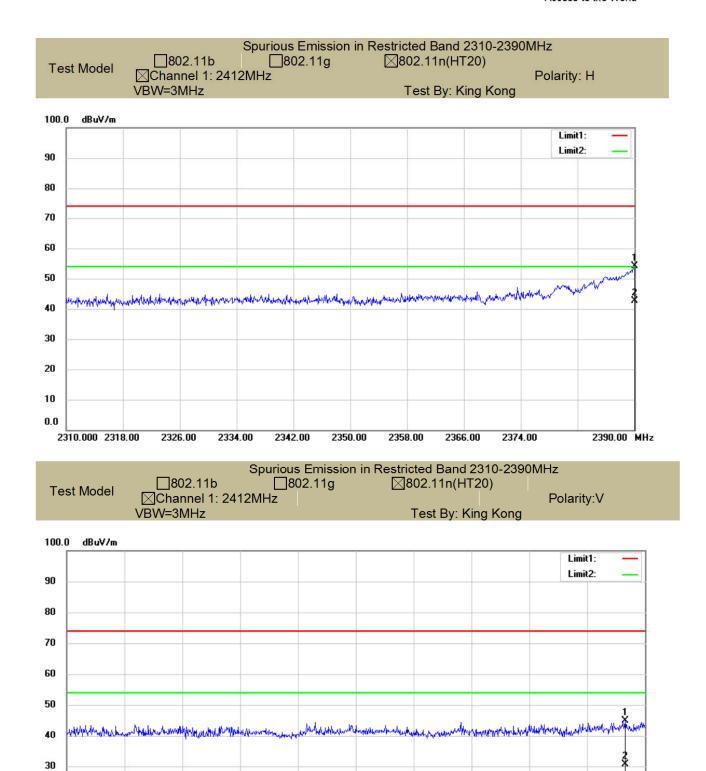
Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Margin (dB)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	Margin (dB)
2390.00	Н	54.18	74.00	-19.82	42.61	54.00	-11.39
2387.34	V	44.84	74.00	-29.16	30.52	54.00	-23.48

Temperature : 26℃ Test By: King Kong

Humidity: 60 % Frequency: Channel 11: 2462MHz

Test mode: 802.11n(HT20)

Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Margin (dB)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	Margin (dB)
2483.53	Н	49.49	74.00	-24.51	36.37	54.00	-17.63
2483.72	V	47.65	74.00	-26.35	35.27	54.00	-18.73


Note: (1) All Readings are Peak Value (VBW=3MHz) and Average Value (VBW=10Hz).

(2) Emission Level= Reading Level+Probe Factor +Cable Loss.

(3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

TRF No: FCC 15.247/A Page 35 of 55 Report No.: ES190327975W Ver.1.0

TRF No: FCC 15.247/A Page 36 of 55 Report No.: ES190327975W Ver.1.0

2350.00

2358.00

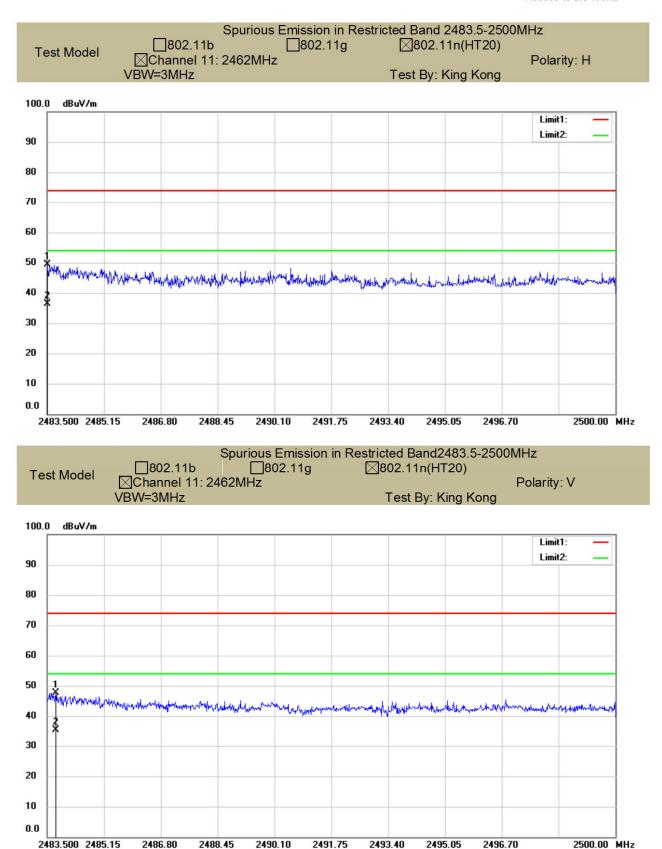
2366.00

2374.00

2390.00 MHz

20

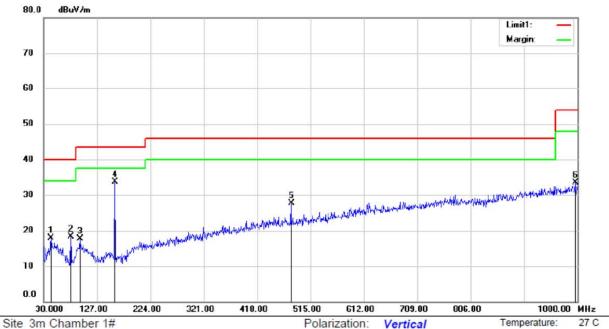
10 0.0


2310.000 2318.00

2326.00

2334.00

2342.00



Humidity:

43 %

■ Spurious Emission below 1GHz (30MHz to 1GHz) All modes 2.4G 802.11b/g/n(HT20) have been tested, and the worst result 802.11b recorded was report as below:

For Model: PURE ONE S12 M

Limit: (RE)FCC PART 15 CLASS B Power: AC 120V/60Hz

Mode: 802.11b 2412MHz

Wode. 002. 11b 241

Note:

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	43.5800	29.41	-11.44	17.97	40.00	-22.03	QP			
	79.4700	35.10	-16.87	18.23	40.00	-21.77	QP			
	95.9600	31.07	-13.28	17.79	43.50	-25.71	QP			
*	159.9800	48.36	-14.72	33.64	43.50	-9.86	QP			
	480.0800	32.76	-5.03	27.73	46.00	-18.27	QP			
	996.1200	29.57	3.87	33.44	54.00	-20.56	QP			
	*	MHz 43.5800 79.4700 95.9600	Mk. Freq. Level MHz dBuV 43.5800 29.41 79.4700 35.10 95.9600 31.07 * 159.9800 48.36 480.0800 32.76	Mk. Freq. Level Factor MHz dBuV dB 43.5800 29.41 -11.44 79.4700 35.10 -16.87 95.9600 31.07 -13.28 * 159.9800 48.36 -14.72 480.0800 32.76 -5.03	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 43.5800 29.41 -11.44 17.97 79.4700 35.10 -16.87 18.23 95.9600 31.07 -13.28 17.79 * 159.9800 48.36 -14.72 33.64 480.0800 32.76 -5.03 27.73	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m dBuV/m 43.5800 29.41 -11.44 17.97 40.00 79.4700 35.10 -16.87 18.23 40.00 95.9600 31.07 -13.28 17.79 43.50 * 159.9800 48.36 -14.72 33.64 43.50 480.0800 32.76 -5.03 27.73 46.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB dBuV/m dB 43.5800 29.41 -11.44 17.97 40.00 -22.03 79.4700 35.10 -16.87 18.23 40.00 -21.77 95.9600 31.07 -13.28 17.79 43.50 -25.71 * 159.9800 48.36 -14.72 33.64 43.50 -9.86 480.0800 32.76 -5.03 27.73 46.00 -18.27	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB uV/m dB uV/m <td>Mk. Freq. Level Factor ment Limit Over Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm 43.5800 29.41 -11.44 17.97 40.00 -22.03 QP 79.4700 35.10 -16.87 18.23 40.00 -21.77 QP 95.9600 31.07 -13.28 17.79 43.50 -25.71 QP * 159.9800 48.36 -14.72 33.64 43.50 -9.86 QP 480.0800 32.76 -5.03 27.73 46.00 -18.27 QP</td> <td>Mk. Freq. Level Factor ment Limit Over Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree 43.5800 29.41 -11.44 17.97 40.00 -22.03 QP 79.4700 35.10 -16.87 18.23 40.00 -21.77 QP 95.9600 31.07 -13.28 17.79 43.50 -25.71 QP * 159.9800 48.36 -14.72 33.64 43.50 -9.86 QP 480.0800 32.76 -5.03 27.73 46.00 -18.27 QP</td>	Mk. Freq. Level Factor ment Limit Over Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm 43.5800 29.41 -11.44 17.97 40.00 -22.03 QP 79.4700 35.10 -16.87 18.23 40.00 -21.77 QP 95.9600 31.07 -13.28 17.79 43.50 -25.71 QP * 159.9800 48.36 -14.72 33.64 43.50 -9.86 QP 480.0800 32.76 -5.03 27.73 46.00 -18.27 QP	Mk. Freq. Level Factor ment Limit Over Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree 43.5800 29.41 -11.44 17.97 40.00 -22.03 QP 79.4700 35.10 -16.87 18.23 40.00 -21.77 QP 95.9600 31.07 -13.28 17.79 43.50 -25.71 QP * 159.9800 48.36 -14.72 33.64 43.50 -9.86 QP 480.0800 32.76 -5.03 27.73 46.00 -18.27 QP

*:Maximum data x:Over limit !:over margin Operator: CTR

TRF No: FCC 15.247/A Page 38 of 55 Report No.: ES190327975W Ver.1.0