

User's Guide

# HDMS – IP6K9K RADAR

User's Guide



RevisionNumber : 1.01 Date : Dec 06, 2022 Writer : Kim Chang Woo

This document contains all the resources needed to set up the HDMS IP6K9K RADAR for performance evaluation.

| Project Manager |  |
|-----------------|--|
| Technology      |  |
| Quality         |  |
| Production      |  |
|                 |  |





# Revision history

| Date     | Description                                            | Name   | Note  |
|----------|--------------------------------------------------------|--------|-------|
| 22.11.06 | First                                                  | CW.KIM | V1.00 |
| 22.12.05 | 1.1 Detailed Specifications RF Power to Maximum output | CW.KIM | V1.01 |
|          | Power                                                  |        |       |
|          |                                                        |        |       |
|          |                                                        |        |       |
|          |                                                        |        |       |
|          |                                                        |        |       |





# List

| 1 RA   | DAR (Radio Detection and Ranging)?                             | 4  |
|--------|----------------------------------------------------------------|----|
| 1.1    | Detailed Specifications                                        | 5  |
| 1.2    | About RADAR antennamodule measurement ranges and beam patterns | 6  |
| 2 Co   | mponents                                                       | 8  |
| 2.1    | IP6K9K RADAR                                                   | 8  |
| 2.2    | RADAR Bracket                                                  | 8  |
| 2.3    | Connect cable                                                  | 9  |
| 2.4    | Power supply and PC connection                                 | 13 |
| 3 Co   | mmunication Protocol                                           | 14 |
| 4 RA   | DAR Installation and Test Procedure                            | 15 |
| 4.1    | RADAR Test Compliance                                          | 15 |
| 4.2    | RADAR Installation Compliance                                  | 15 |
| 4.3    | RADAR Test Method (How to Use a Tripod)                        |    |
| 4.4    | RADAR Test Method (How to Use in Vehicle)                      | 16 |
| 5. Ap  | pendix                                                         | 17 |
| Interf | erence Mitigation For AWR1443 RADAR Device                     | 17 |
| 1 Ty   | pes of Interference in FMCW RADAR                              | 17 |
| 2 Inte | erference Avoidance                                            | 17 |
| Manu   | facturer Information                                           | 18 |



- 1 RADAR (Radio Detection and Ranging)?
  - It is a device that measures the distance or shape to an object by radiating strong electromagnetic waves and measuring reflected waves reflected by the object.
  - Compared to other sensors, it has higher permeability (lower impact on clouds and weather) and can detect long distances.
  - The Frequency Modulated Continuous Wave (FMCW) method is mostly used, the hardware configuration is easier than other modulation methods, and it has high resolution and speed resolution in terms of performance.
  - HDMS FMCW RADAR is a RADAR with a 80 ~
     81Ghz frequency band and is installed in heavy equipment with stable and excellent performance and is used to detect people.
  - It is installed in heavy equipment and can be expected to reduce injuries and accident rates due to collision prevention and prevention with RADAR and reduce the cost of human and material resources due to accident prevention.
  - RADAR data output information is as follows.
    - ✓ Distance(X,Y Coordinates)
    - ✓ Object Signal Power

Construction Equipment Safety Radar



Avoid collisions, reduce accidents and injuries

#### Efficiency

Efficient equipment operation

#### Compatibility

Superior performance at the construction site

### Ruggedness

 Excellent performance due to moisture, dust, vibration and weather



**Detailed Specifications** 1.1

# Short Range FMCW RADAR



## [IP6K9K RADAR]

#### Safety

✓ Prevent Collision,

✓ Decrease Accidents & Injured

#### Efficiency

Efficient Operating Machinery

### Compatibility

✓ Outstanding Performance

Ruggedness ✓ Great Stability in

Construction Area Environment

| There is about            | Shore hange                                                                               |
|---------------------------|-------------------------------------------------------------------------------------------|
| Division                  | Descriptions                                                                              |
| Power input               | 6 ~ 36 Vdc                                                                                |
| Operation voltage         | 24 Vdc                                                                                    |
| Operating temperature(°C) | -40 ~ 85                                                                                  |
| Storage temperature(°C)   | -40 ~ 85                                                                                  |
| Current Consumption       | <2W                                                                                       |
| Water/Dust Proof          | IP6K9K***                                                                                 |
| INTERFACE                 | CAN Protocol Version 2.0<br>Part A, B and ISO 11898-1,<br>CAN-FD support, Not Termination |
| Frequency                 | 80 ~ 81 GHz                                                                               |
| Modulation                | FMCW                                                                                      |
| Position Accuracy         | < 0.5 m                                                                                   |
| Update frequency          | 5 Hz (20 Hz**)                                                                            |
| Target separability       | < 0.5 m                                                                                   |
| Minimum range             | < 0.5 m                                                                                   |
| Maximum range             | 10 m                                                                                      |
| Azimuth angle range       | (100°(±5%)                                                                                |
| Vertical FOV              | 30 ° (±1%)                                                                                |
| Maximum output Power      | 22.34dBm(E.I.R.P)                                                                         |
| Latency                   | First object detection : 200ms →<br>after objects detected 50ms                           |

Short Range

\*Refers to a target with RCS of -10dBsm (Based on ISO 16001). \*\*Maximum performance, it could be controlled by a user program. \*\*\*Waterproof Test(Based on ISO16750-4, DIN 40050-9).

# Main Features

- Compliance with ISO 16001, 3401 standards.
- Stop Target detect performance and Moving Target detect performance are satisfied.

EMCW RADAR

- > All tests are applied and complied with Construction area environment.
- Testing detect performance with all environment area.

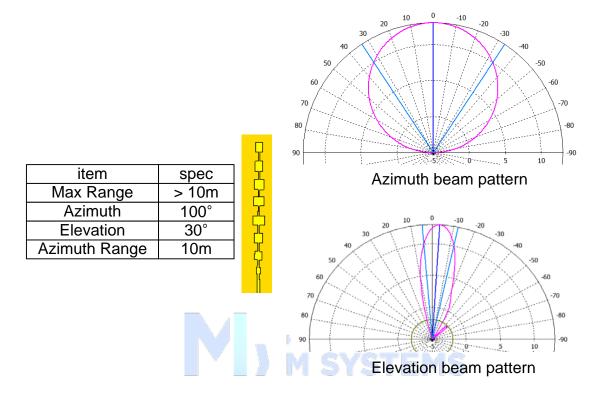
# 2.3 Receiver requirements

# 2.3.1 Receiver spurious emissions

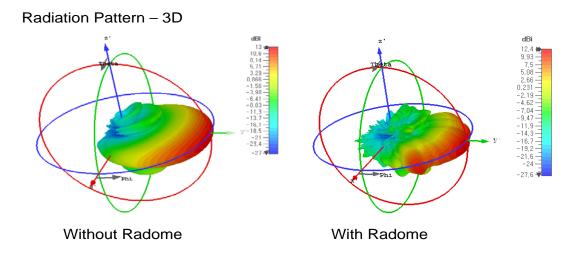
#### - Definition:

Receiver spurious emissions are emissions at any frequency when the equipment is in receive mode.

Test method


: EN 303 396 V 1.1.1 clause 6.3.11

#### - Measurement Data: Not Applicable


This EUT is the receiver is co-located with and operates simultaneously with the transmitter.



- 1.2 About RADAR antennamodule measurement ranges and beam patterns
- RADAR's beam pattern computer simulation image is as follows, and RADAR's beam pattern is different depending on the presence or absence of a cover of the case.



RADAR Antenna Module, Detecting Range, Azimuth Pattern



# **RADAR Antenna Module beam radiation pattern**

(Left: Top case remove, Right: Top case)



- > This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
- > This equipment has been tested and found to comply with the limits for a digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
  - Reorient or relocate the receiving antenna.
  - Increase the separation between the equipment and receiver.
  - Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
  - Consult the dealer or an experienced radio/TV technician for help

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

This device should be installed and operated with minimum 20 cm between the radiator and your body.

Prohibited applications of RADAR equipment under this service rule include fixed RADAR use outside of airport areas and airborne RADAR operations.

- This device can be operated in at least one Member State without infringing applicable requirements on the use of radio spectrum.



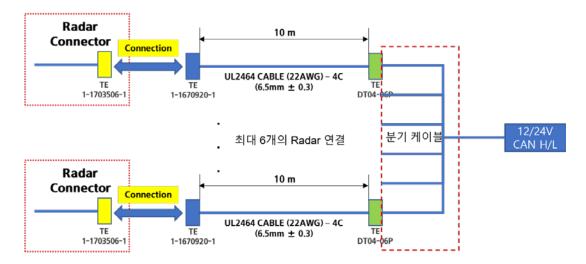
- 2 Components
  - 2.1 IP6K9K RADAR
  - RADAR product is composed in detail as follows.
    - ✓ Top Case, Bottom Case
    - ✓ Connect Cables
    - ✓ Interface board, RADAR Antenna module



IP6K9K RADAR(22RA-22000)

2.2 RADAR Bracket




**RADAR Bracket, assembly screws** 

- Bracket is used to fix RADAR in a specific position.
- Four M8 screws are used to fix the bracket and RADAR.



# 2.3 Connect cable

- The basic configuration for RADAR and the connection cable is as follows.



- Refer to the table below and the image for the pin configuration of the connection cable TE 1-1703506-1 of RADAR.



[Front of Connect]

[Pin Number of Connect]

|                         |                | GPIO Input Value(0:Low, 1:High) |                       |                       |  |  |
|-------------------------|----------------|---------------------------------|-----------------------|-----------------------|--|--|
| Install_Position        | CAN ID         | PIN 6<br>(Radar ID 1)           | PIN 7<br>(Radar ID 2) | PIN 8<br>(Radar ID 3) |  |  |
| Instal_addr_Rear        | 0x18FF326<br>C | Open/GND                        | Open/GND              | Open/GND              |  |  |
| Instal_addr_Right       | 0x18FF326<br>A | Open/GND                        | Open/GND              | 24v                   |  |  |
| Instal_addr_Left        | 0x18FF326<br>8 | Open/GND                        | 24v                   | Open/GND              |  |  |
| Instal_addr_Right_front | 0x18FF326<br>B | Open/GND                        | 24v                   | 24v                   |  |  |
| Instal_addr_Left_front  | 0x18FF326<br>9 | 24v                             | Open/GND              | Open/GND              |  |  |



| Instal_check_reserved1 | 0x18FF326<br>D | 24v | Open/GND | 24v      |
|------------------------|----------------|-----|----------|----------|
| Instal_check_reserved2 | 0x18FF32F<br>1 | 24v | 24v      | Open/GND |
| Instal_check_reserved3 | 0x18FF32F<br>2 | 24v | 24v      | 24v      |





- 10m extension cable (ID 1~6): A cable that extends the distance according to the installation location of the RADAR and distinguishes CAN IDs by location



10m Extension Cable



CAN ID 1



CAN ID 2



CAN ID 3



CAN ID 5













- Split cable : Split cables that allow you to connect up to 6 RADARs

- To connect the connecting cable, connect the parts that fit into the grooves as shown in the figure below.





2.4 Power supply and PC connection.

- Apply 12/24V to the connection cable, connect PCAN to USB to CAN H/L, and check information on the object detected from RADAR through PCAN View.

| PCAN-View            |               |                      |                                           |           |            |            |                   | -     |       | × |
|----------------------|---------------|----------------------|-------------------------------------------|-----------|------------|------------|-------------------|-------|-------|---|
| File CAN Edit Trans  | smit View Tra | ace Window           | v Help                                    |           |            |            |                   |       |       |   |
| 📔 🔒 🔗 🔏 •            | e 🖄 🖂 🖁       | <mark>X</mark> 🗈 🕯   |                                           | ? 🗔       |            |            |                   |       |       |   |
| 📃 Receive / Transmit | 🚥 Trace 🛛 🔫   | PCAN-USB             | FD 🛛 💀 Bus Load                           | 🛕 Error ( | Generator  |            |                   |       |       |   |
| CAN-ID               | TypeL         | Length [             | Data                                      |           |            | Cycle Tim  | e                 | Count | t     |   |
| 18FF326Dh            | 8             | 5                    | 5 3C 0C 00 00 00 00                       | 00        |            | 5.0        |                   | 3228  |       |   |
| lia 1.               | Radar CAN     | V 연결시                | 기본 <u>Recv</u> Dat                        | a         |            |            |                   |       |       |   |
| L Keceix             | CAN-ID는 C     | **********           | ********                                  | -         |            |            |                   |       |       |   |
| CAN-ID               | _             | able에 [[             | 나라 변경됨)<br>Data                           |           | Cycle Time | Count      | Trigger           | Cor   | mment |   |
| CAN-ID<br>18FF326Fh  | _             | able에 [[<br>Length [ | 나라 변경됨)                                   |           | Cycle Time | Count<br>6 | Trigger<br>Manual | Co    | mment |   |
| CAN-ID               | Type L<br>8   | able에 대<br>Length 대  | 나라 변경됨)<br>Data<br>F 00 00 00 00 00 00 00 | 00 [      |            | 6          | Manual            | Con   |       |   |

Check packet output status when connecting to PCAN





# 3 Communication Protocol

- RADAR basic communication uses CAN 2.0B and the communication speed is 500kBit/s.

- Refer to Table 1 below for the packet structure of RADAR. (The CAN ID of RADAR varies depending on the cable being connected.)

| Start | Length | Signal Name                | Factor | Offect | Ra  | Range<br>Un |       | Description                                                                                                                                                                                                                                                                                                                               |
|-------|--------|----------------------------|--------|--------|-----|-------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit   | Lengui | Signal Maine               | Pactor | Unser  | min | max         | OIIIt | Description                                                                                                                                                                                                                                                                                                                               |
| 0     | 4      | RADAR Detect Packet Number | 1      | 0      | 0   | 15          | _     | 0 : NOT USED / Error<br>1 ~ 5 : RADAR Packet Number                                                                                                                                                                                                                                                                                       |
| 4     | 4      | Install Position           | 1      | 0      | 0   | 15          | _     | <ul> <li>0: RR_BR - Rear RADAR, Backward, Rearward-looking</li> <li>1: SR_RR - Side RADAR, Right-hand side, Rearward-looking</li> <li>2: SR_LR - Side RADAR, Left-hand side, Rearward-looking</li> <li>3: SR_RF - Side RADAR, Right-hand side, Forward-looking</li> <li>4: SR_LF - Side RADAR, Left-hand side, Forward-looking</li> </ul> |
| 8     | 2      | RADAR Status               | 1      | 0      | 0   | 3           | -     | 0 : Normal, 1 : Swing, 2 : Moving                                                                                                                                                                                                                                                                                                         |
| 10    | 2      | Reserved                   | 1      | 0      | 0   | 3           | -     | Reserved                                                                                                                                                                                                                                                                                                                                  |
| 12    | 8      | RADAR SW version           | 1      | 0      | 0   | 255         | -     | RADAR Software version(ex, 0x10 = ver 1.0)                                                                                                                                                                                                                                                                                                |
| 20    | 10     | n-th Target X data-        | _1     | 0      | 0   | 1023        | cm    | n : packet number<br>0 : 0 cm<br>1~511 : + (X_Distance ) cm<br>512 ~ 1023 : -((1024-X_Distance) ) cm                                                                                                                                                                                                                                      |
| 30    | 10     | n-th Target Y da <u>ta</u> | 1      | 0      | 0   | 1023        | cm    | n : packet number<br>0 : 0 cm<br>1~1023 : + (Y_Distance ) cm                                                                                                                                                                                                                                                                              |
| 40    | 10     | n-th Target Power data     | 1      | 0      | 0   | 1023        | d R   | n : packet number<br>0~1023 : Power dBm                                                                                                                                                                                                                                                                                                   |
| 50    | 10     | Reserved                   | 1      | 0      | 0   | 1023        |       | Reserved                                                                                                                                                                                                                                                                                                                                  |
| 60    | 4      | Fault Code                 | 1      | 0      | 0   | 15          | -     | Fault Code<br>0x0 : Normal<br>0x1 : RADAR Interface board Error<br>0x2 : RADAR Module board Error<br>0x3 : Position Pin Error (Not connect)<br>0x4 : Position Pin Error (Redundant connect)                                                                                                                                               |

# Table 1 RADAR CAN Protocol(Total 8Byte)

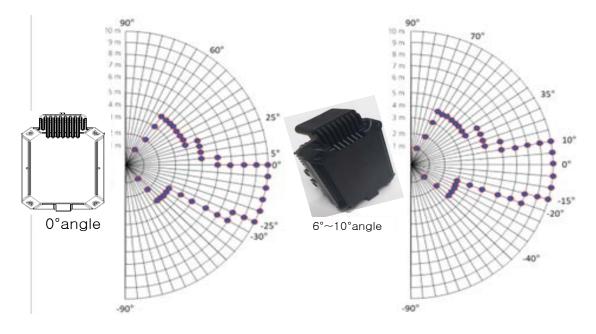


# 4 RADAR Installation and Test Procedure

4.1 RADAR Test Compliance

- The installation location and installation method of RADAR are based on "Appendix C. Test Procedure for RADAR Sensors in ISO 16001 2017 documents".

- RADAR's test object should be a human body part protruding to the sensing area. For testing, a real person with the height of an intermediate pilot must use it in accordance with ISO 3411.


- The surrounding environment for the test should be an open space of flat terrain based on dry sand, dry gravel, or a combination of dry sand and dry gravel. Everyone except the person performing the test should be in an area not detected by RADAR (excerpt from part of the C.3 test area of ISO 16001 2017).

## 4.2 RADAR Installation Compliance

- This RADAR is permanently attached or fixed to the vehicle. (If the RADAR is shaken by surrounding environment or vibration, the basic sensing performance may be degraded.)

- Using RADAR's bracket or self-made bracket, it can be well fixed to the position where the RADAR is mounted.

- The recommended installation height of RADAR is 1.4-1.6m, and the angle of RADAR can be adjusted according to the installation environment. (As the angle of RADAR faces downward, the detection range decreases, and ground effect may occur due to the ground.)

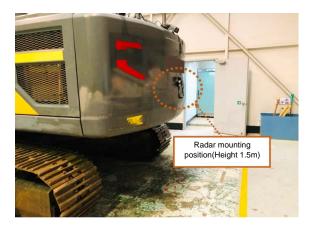


Detection range according to RADAR installation angle



# 4.3 RADAR Test Method (How to Use a Tripod)

- Fix the RADAR using a tripod, adjust the height of 1.4-1.6m, and adjust the angle of the RADAR according to the environment to check the detection result of humans to adjust the installation height and angle.


- If the environment is complex, there is a possibility of misunderstanding. Therefore, it is recommended to perform the RADAR test in an open space with a left and right width of 10 meters or more.



# HYUNDAI

# 4.4 RADAR Test Method (How to Use in Vehicle) STEMS

- In the picture below, the test was conducted by mounting it on the actual excavator equipment, and the test was conducted by mounting it using a bracket at a height of 1.5m for each equipment. The test was conducted by mounting a RADAR at a location of 1.5 meters for each equipment.



Mount on an excavator(For Example)



5. Appendix

Interference Mitigation For AWR1443 RADAR Device

- References : swra662\_Interference Mitigation For AWRIWR Devices http://www.ti.com/lit/an/swra662/swra662.pdf
- 1 Types of Interference in FMCW RADAR
  - Crossing Interference
  - Parallel Interference
  - Between Crossing and Parallel Interference
- 2 Interference Avoidance

| NO | Technique                                                            | Method                                                                                                                                                                                                                                            | Implementable in<br>TI device.                                                                                                                   | Usefulness and simplicity                                                              |
|----|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 1  | CFAR -based<br>mitigation                                            | Increase the CFAR thresholds<br>accounting for the interference.<br>This decreases the detection<br>sensitivity but avoids spurious<br>sidelobes.                                                                                                 | Yes. The detection<br>threshold is user<br>programmable.                                                                                         | Debatable usefulness.<br>Very simple to<br>implement.                                  |
| 2  | Dithering in<br>time domain.                                         | Dithering the idle time (time<br>between chirps) or the interframe<br>time (time between frames). Since<br>this dither is different for the<br>Aggressor and the Victim, the<br>probability of interference on more<br>than one chirp is reduced. | Yes. A near infinite<br>variation is possible on<br>the 'idle time'. Frames<br>can be generated with<br>dithering as well<br>(software control). | Very Useful. specially in<br>a parallel interferer<br>scenario. Simple to<br>implement |
| 3  | Direction<br>specific<br>predefined<br>frequency band<br>separation. | Use a separate RF bandwidth for<br>long range RADAR, and short-<br>range RADAR. Use a different RF<br>Bandwidth for front facing RADAR,<br>and another band for rear facing<br>RADAR.                                                             | Yes.                                                                                                                                             | Debatable usefulness<br>Very simple to<br>implement and process.                       |
| 4  | Detect<br>interference<br>and repair Rx<br>results                   | The region of the ADC affected by<br>interference is deduced, and<br>'repaired'. Detection is performed<br>using statistical information of the<br>ADC data. Repairing involves –<br>interpolation (for short sections) or<br>'signal healing'    | Yes. IWR1443 devices<br>provide side channel<br>information (called<br>chirp quality) to aid in<br>narrowing down the<br>region of interference. | Very Useful.                                                                           |



| 5 | Dithering the<br>phase of each<br>chirp                                          | Randomize the transmitted phase<br>of each chirp. Since the aggressor<br>would have no notion of this<br>randomized phase, the phase of<br>the interference event would be<br>randomized spreading the<br>interference across chirps | Yes.                                 | Extremely Useful.<br>Especially in a<br>parallel interferer<br>scenario. The<br>reduction in the<br>interference level is a<br>function of the<br>number of chirps. |
|---|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 | Digital Beam<br>Forming                                                          | Place a notch at the direction of<br>the interferer 'adaptively'. This is<br>done by applying a notch filter to<br>the receiver array before<br>processing.                                                                          | Yes.                                 | May not work well if<br>there are only a<br>limited number of<br>receivers. Also, the<br>DoA of the aggressor<br>needs to be<br>estimated a priori.                 |
| 7 | Detect<br>interference<br>and change<br>timing of<br>transmit chirp<br>or frames | If an interferer is detected, avoid<br>it, either in frequency or in time.<br>Essentially – frequency/time<br>hopping.                                                                                                               | Yes.                                 | Possibly the most<br>useful technique.<br>Reasonably simple to<br>implement.                                                                                        |
| 8 | Specific<br>polarization of<br>the antennas                                      | Use horizontal polarization for a<br>certain set of antennas, and<br>vertical polarization for another<br>set.                                                                                                                       | STERIS<br>Needs antenna<br>designers | Useful – but only<br>two different options<br>are available. Also,<br>increased complexity<br>in antenna design.                                                    |

# Manufacturer Information

- Manufacturer : HYUNDAI M SYSTEMS Co,.Ltd.
- Address : #102-805, 806, 88, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea
- Label Information





# **FCC Instructions**

## FCC Compliance Statement(Part 15.19 (3))

This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

#### FCC Interference Statement(Part 15.105)

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.

• Connect the equipment into an outlet on a circuit different from which the receiver is connected. • Consult the dealer or an experienced radio/TV technician for help.

# FCC Caution

Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

# FCC Radiation Exposure Statement (Part 2.1091)

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. **This** equipment should be installed and operated with minimum distance 20 cm between the radiator and your body. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

'SDoC form will be attached to the manual when placing to the market.'





# IC

## Industry Canada Statement

This device complies with RSS-251 of the Industry Canada Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Ce dispositif est conforme à la norme CNR-251 d'Industrie Canada applicable aux appareils radio exempts de licence. Son fonctionnement est sujet aux deux conditions suivantes: (1) le dispositif ne doit pas produire de brouillage préjudiciable, et (2) ce dispositif doit accepter tout brouillage reçu, y compris un brouillage susceptible de provoquer un fonctionnement indésirable.

## Industry Canada Radiation Exposure Statement

This equipment complies with IC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20 cm between the radiator & your body.

# Déclaration d'exposition aux radiations

Cet équipement est conforme aux limites d'exposition aux rayonnements IC établies pour un environnement non con trôlé. Cet équipement doit être installé et utilisé avec un minimum de 20 cm de distance entre la source de rayonnement et votre corps.



# **CE RED\_EU declaration**

(This product can be used in which EU members, in accordance with Article 10(10) **or** this product can be used in at least one EU country, in accordance with Article 10(2))

