Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

CTATEST	TEST REPORT
FCC PART 15.2	47& RSS-247 Issue 2 February 2017
Report Reference No FCC ID	CTA23050900101 2ASV7-EADV3
Compiled by (position+printed name+signature):	File administrators Zoey Cao
Supervised by (position+printed name+signature):	Project Engineer Amy Wen
Approved by (position+printed name+signature):	RF Manager Eric Wang
Date of issue	May 15, 2023
Testing Laboratory Name	Shenzhen CTA Testing Technology Co., Ltd.
Address:	Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Baoʻan District, Shenzhen, China
Applicant's name	American Time & Signal Co.
Address:	140 Third Street South Dassel MN 55325 United States
Test specification:	restine
0	FCC PART 15.247
C.T.	RSS-247 Issue 2 February 2017
Standard	RSS-Gen Issue 5, April 2018+Amendment 1, March 2019+Amendment 2, February 2021
	ANSI C63.10: 2013
Shenzhen CTA Testing Technology Co material. Shenzhen CTA Testing Tech	Co., Ltd. All rights reserved. whole or in part for non-commercial purposes as long as the b., Ltd. is acknowledged as copyright owner and source of the nology Co., Ltd. takes no responsibility for and will not assume reader's interpretation of the reproduced material due to its
Test item description	Dynamic Display
Trade Mark:	EverAlert
Manufacturer	EverAlert Parado Enterprises Co.,Ltd EADV3
Model/Type reference:	EADV3
Listed Models	EADV, EADV2
Modulation	GFSK, Π/4DQPSK, 8DPSK
Frequency	From 2402MHz to 2480MHz
Rating	DC 12.0V From external circuit
Result	DC 12.0V From external circuit PASS

Equipment under Test : Dynamic Display Model /Type : EADV3 Listed Models : EADV, EADV2 (Note: only for FCC certification) HVINS : EADV3 Applicant : American Time & Signal Co. Address : 140 Third Street South Dassel MN 55325 United States Manufacturer : Parado Enterprises Co.,Ltd Address : #412-1, Bld #A, DanLi Industrial Park, 16th KangZheng Rd. NanW LongGang, ShenZhen GuangDong, 518112	CTATESTING	TEST REPOR	RT
Listed Models : EADV, EADV2 (Note: only for FCC certification) HVINS : EADV3 Applicant : American Time & Signal Co. Address : 140 Third Street South Dassel MN 55325 United States Manufacturer : Parado Enterprises Co.,Ltd Address : #412-1, Bld #A, DanLi Industrial Park, 16th KangZheng Rd. NanW LongGang, ShenZhen GuangDong, 518112		TATESTIC	
Listed Models : EADV, EADV2 (Note: only for FCC certification) HVINS : EADV3 Applicant : American Time & Signal Co. Address : 140 Third Street South Dassel MN 55325 United States Manufacturer : Parado Enterprises Co.,Ltd Address : #412-1, Bld #A, DanLi Industrial Park, 16th KangZheng Rd. NanW LongGang, ShenZhen GuangDong, 518112	Equipment under Test	: Dynamic Display	
Listed Models : EADV, EADV2 (Note: only for FCC certification) HVINS : EADV3 Applicant : American Time & Signal Co. Address : 140 Third Street South Dassel MN 55325 United States Manufacturer : Parado Enterprises Co.,Ltd Address : #412-1, Bld #A, DanLi Industrial Park, 16th KangZheng Rd. NanW LongGang, ShenZhen GuangDong, 518112	Model /Type	: EADV3	
HVINS : EADV3 Applicant : American Time & Signal Co. Address : 140 Third Street South Dassel MN 55325 United States Manufacturer : Parado Enterprises Co.,Ltd Address : #412-1, Bld #A, DanLi Industrial Park, 16th KangZheng Rd. NanW LongGang, ShenZhen GuangDong, 518112	Listed Models		
Address : 140 Third Street South Dassel MN 55325 United States Manufacturer : Parado Enterprises Co.,Ltd Address : #412-1, Bld #A, DanLi Industrial Park, 16th KangZheng Rd. NanW LongGang, ShenZhen GuangDong, 518112	HVINS	TE: EADV3	
Address : 140 Third Street South Dassel MN 55325 United States Manufacturer : Parado Enterprises Co.,Ltd Address : #412-1, Bld #A, DanLi Industrial Park, 16th KangZheng Rd. NanW LongGang, ShenZhen GuangDong, 518112	Applicant	: American Time & Signal Co.	
Address #412-1, Bld #A, DanLi Industrial Park, 16th KangZheng Rd. NanW LongGang, ShenZhen GuangDong, 518112	Address	: 140 Third Street South Dass	el MN 55325 United States
LongGang, ShenZhen GuangDong, 518112	Manufacturer	: Parado Enterprises Co.,Ltd	
Test Result: PASS	Address		
Test Result: PASS		O STATES.	GIANG
	Test Re	esult:	PASS

CTA TESTING

Report No.: CTA23050900101

Contents

<u>1</u>	TEST STANDARDS	
	CT STIN	
2	SUMMARY	<u>5</u>
2.1	General Remarks Product Description Equipment Under Test	5
2.2	Product Description	5
2.2	Equipment Under Test	5
2.3 2.4	Short description of the Equipment under Test (EUT)	5 5 5 6
		3
2.5	3 EUT operation mode	5
2.6	Block Diagram of Test Setup	
2.7	Related Submittal(s) / Grant (s)	6
2.8	Modifications	6
	TESI	
<u>3</u>	TEST ENVIRONMENT	
<u> </u>	TES'	
2.4	Address of the test leberatery	
3.1	Address of the test laboratory	STA
3.2	Test Facility	TEST
3.3	Environmental conditions	CIP 7
3.4	Summary of measurement results	8
3.5	Statement of the measurement uncertainty	CTATES 7 8 8
3.6	Equipments Used during the Test	9
<u>4</u>	TEST CONDITIONS AND RESULTS	
4.1	AC Power Conducted Emission	10
4.1	Radiated Emission	SG 13
	Radiated Emission	13
4.3	AC Power Conducted Emission Radiated Emission Maximum Peak Output Power 20dB Bandwidth and 99% Bandwidth Frequency Separation Number of hopping frequency Time of Occupancy (Dwell Time)	19
4.4	20dB Bandwidth and 99% Bandwidth	20
4.5	Frequency Separation	27
4.6	Number of hopping frequency	29
4.7	Time of Occupancy (Dwell Time)	31
4.8	Out-of-band Emissions	35
4.9	Pseudorandom Frequency Hopping Sequence	44
4.10	Antenna Requirement	45
	-NG	
<u>5</u>	TEST SETUP PHOTOS OF THE EUT	
<u>5</u>		
•	CINC	
<u>6</u>	PHOTOS OF THE EUT	<u></u>
	CTA .	GA CTATESTING
	CTA .	TESI
		TAIL
		Carlo C.
	CTATESTING	
	CTATES. CTATESTING	
	TED	
		-S1"
	The second secon	
	GIA CTATES	

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

RSS-247-Issue 2: Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-

Exempt Local Area Network (LE-LAN) Devices

ANSI C63.10: 2013: American National Standard for Testing Unlicensed Wireless Devices

ANSI C63.4: 2014: –American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz Range of 9 kHz to 40GHz

RSS-Gen Issue 5, April 2018+Amendment 1, March 2019+Amendment 2, February 2021: General Requirements for Compliance of Radio Apparatus

2 SUMMARY

2.1 General Remarks

TATES		
2.1 General Remarks		
Date of receipt of test sample		May 09, 2023
Testing commenced on	A CONTRACTOR	May 09, 2023
Testing concluded on	:	May 15, 2023

2.2 Product Description

Testing commenced on		May 09, 2023	- CIA	
Testing concluded on	:	May 15, 2023	G	CTA C
2.2 Product Descrip	tion			
Product Name:	Dynamic D	Display		
Model/Type reference:	EADV3	10		
Power supply:	DC 12.0V	From external circuit	GTING	
Adapter information:	Input: AC	20300B911 100-240V 50/60Hz C 12.0V 3.0A	ATES	TESTING
Hardware version:	V1.0	Constant of the second s	C	(A)
Software version:	Z33-TM-9.	.0T-21.5-SW0.7-180-2	20230313	
Testing sample ID:)9001-1# (Engineer sa)9001-2# (Normal sam		
Bluetooth :				
Supported Type:	Bluetooth	BR/EDR		
Modulation:	GFSK, π/4	4DQPSK, 8DPSK	TING	
Operation frequency:	2402MHz-	~2480MHz	TATES	
Channel number:	79		GIA CI.	
Channel separation:	1MHz			Con C
Antenna type:	FPC anter	าทล		Constant of
Antenna gain:	2.50 dBi	G		

2.3 Equipment Under Test

Power supply system utilised

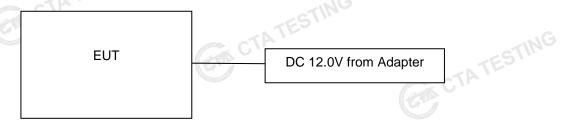
2.3 Equipment Under Test					
Power supply system utilised	I				
Power supply voltage	: 0	230V / 50 Hz	0	120V / 60Hz 🤍 🗸	
		12 V DC	0	24 V DC	
	0	Other (specified in b	lank below		

DC 12.0V From external circuit

2.4 Short description of the Equipment under Test (EUT)

This is a Dynamic Display.

For more details, refer to the user's manual of the EUT.


EUT operation mode 2.5

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing . There are 79 channels

Operation Frequency:

CTA I	Channel	G Frequency (MHz)	
	00	2402	
and the second sec	01 CTA	2403	
		TES	
	38	G 2440	
	39	2441	- 1
	40	2442	CIA
.NG	:		
STIN	77	2479	
	78	2480	

2.6 Block Diagram of Test Setup

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 Modifications

No modifications were implemented to meet testing criteria.

TEST ENVIRONMENT 3

Address of the test laboratory 3.1

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement

CAB identifier: CN0127 ISED#: 27890

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

GA CTATESTING During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

Temperature:	24 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

AC Power Conducted Emission:

Temperature:	25 ° C]
Humidity:	46 %	-
	40 /0	STING
Atmospheric pressure:	950-1050mbar	ATES
Conducted testing:		
Temperature:	25 ° C	

Conducted testina:

25 ° C
44 %
950-1050mbar
TESTING
-

3.4 Summary of measurement results

		-IN C	
(.	RSS 247&FCC 15.247		
	RSS-Gen 8.8 FCC 15.207	AC Power Conducted Emission	PASS
	RSS 247 5.1 (1) RSS-Gen 4.6 15.247(a)(1)	20dB Bandwidth& 99% Bandwidth	PASS
	RSS 247 5.5 15.247(d)	Spurious RF Conducted Emission	PASS
TES	RSS 247 5.4 (2) 15.247(b)(1)	Maximum Peak Output Power	PASS
CTA	RSS 247 5.1 (1) 15.247(a)(1)	Pseudorandom Frequency Hopping Sequence	PASS
	RSS 247 5.1 (4) 15.247(a)(1)	Number of hopping frequency& Time of Occupancy	PASS
	RSS 247 5.1 (2) 15.247(a)(1)	Frequency Separation	PASS
	RSS-Gen 8.9 FCC 15.209(a)	Radiated Emissions	PASS
G	RSS-Gen 8.10 15.247(d)	Band Edge Compliance of RF Emission	PASS
-	RSS-Gen Issue 5 FCC 15.203	Antenna Requirement	PASS

Remark:

The measurement uncertainty is not included in the test result. 1

We tested all test mode and recorded worst case in report 2.

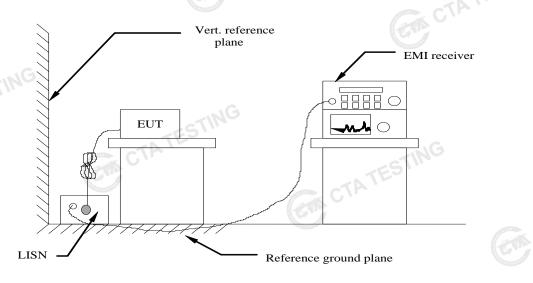
3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd. :

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.


3.6 Equipments Used during the Test

	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2022/08/03	2023/08/02
	LISN	R&S	ENV216	CTA-314	2022/08/03	2023/08/02
	EMI Test Receiver	R&S	ESPI	CTA-307	2022/08/03	2023/08/02
	EMI Test Receiver	R&S	ESCI	CTA-306	2022/08/03	2023/08/02
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2022/08/03	2023/08/02
	Spectrum Analyzer	R&S	FSP	CTA-337	2022/08/03	2023/08/02
	Vector Signal generator	Agilent	N5182A	CTA-305	2022/08/03	2023/08/02
	Analog Signal Generator	R&S	SML03	CTA-304	2022/08/03	2023/08/02
	Universal Radio Communication	CMW500	R&S	CTA-302	2022/08/03	2023/08/02
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2022/08/03	2023/08/02
	Ultra-Broadband Antenna	G Schwarzbeck	VULB9163	CTA-310	2021/08/07	2024/08/06
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2024/08/06
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2021/08/07	2024/08/06
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2022/08/03	2023/08/02
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2022/08/03	2023/08/02
	Directional coupler	NARDA	4226-10	CTA-303	2022/08/03	2023/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2022/08/03	2023/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2022/08/03	2023/08/02
CTATE	Automated filter bank	Tonscend	JS0806-F	CTA-404	2022/08/03	2023/08/02
	Power Sensor	Agilent	U2021XA	CTA-405	2022/08/03	2023/08/02
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2022/08/03	2023/08/02
	6.		BBV9719	TEC	e 1	ATESTING
G						

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

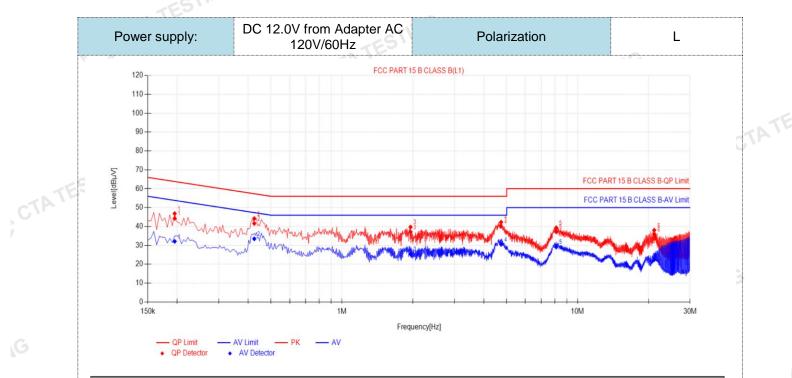
8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

Eroquonov rongo (MHz)	Limit	(dBuV)						
Frequency range (MHz)	Quasi-peak	Average						
0.15-0.5	66 to 56*	56 to 46*						
0.5-5	56	46						
5-30	60	50						
* Decomposition with the lange of the foregroup of								

* Decreases with the logarithm of the frequency

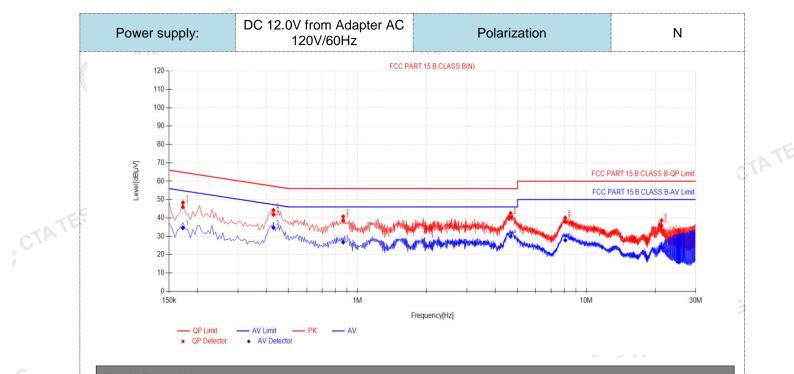

TEST RESULTS

Remark:

1. All modes of GFSK, Π/4 DQPSK and 8DPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

Page 11 of 53

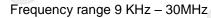

Final Data List

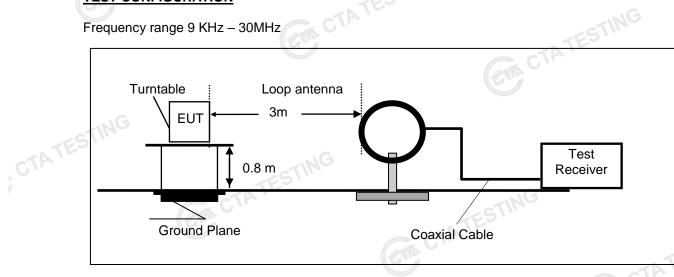
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
1	0.195	10.50	33.75	44.25	63.82	19.57	21.60	32.10	53.82	21.72	PASS	
2	0.4245	10.50	31.10	41.60	57.36	15.76	22.99	33.49	47.36	13.87	PASS	
3	1.9545	10.50	26.60	37.10	56.00	18.90	14.88	25.38	46.00	20.62	PASS	
4	4.7355	10.50	29.58	40.08	56.00	15.92	20.04	30.54	46.00	15.46	PASS	
5	8.115	10.50	26.71	37.21	60.00	22.79	18.63	29.13	50.00	20.87	PASS	1
6	21.147	10.50	25.40	35.90	60.00	24.10	11.95	22.45	50.00	27.55	PASS	~ <p `<="" td=""></p>
).QP Value tor (dB)=ir	,		•	• •			-	-	-	C	

Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB) 3). QPMargin(dB) = QP Limit (dB μ V) - QP Value (dB μ V) 4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V) CTATESTING

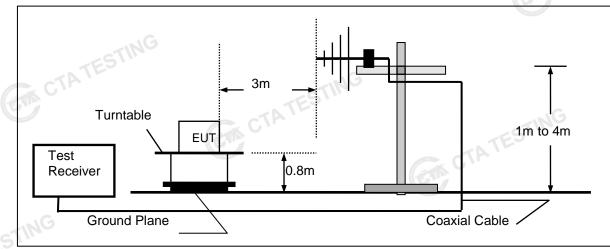
Report No.: CTA23050900101

Page 12 of 53

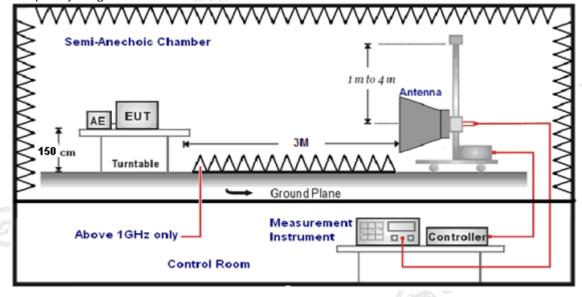

Final Data List


	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
	1	0.1725	10.50	35.43	45.93	64.84	18.91	24.08	34.58	54.84	20.26	PASS	
	2	0.429	10.50	31.29	41.79	57.27	15.48	24.24	34.74	47.27	12.53	PASS	
	3	0.8655	10.50	28.23	38.73	56.00	17.27	16.27	26.77	46.00	19.23	PASS	
	4	4.668	10.50	29.75	40.25	56.00	15.75	19.40	29.90	46.00	16.10	PASS	
	5	8.088	10.50	27.38	37.88	60.00	22.12	17.37	27.87	50.00	22.13	PASS	
	6	21.3	10.50	25.17	35.67	60.00	24.33	13.76	24.26	50.00	25.74	PASS	
2)). Fact	.QP Value or (dB)=in /largin(dB)	sertion lo	oss of LIS	6N (dB) -	⊦ Cable I	oss (dB)						-
	4).	AVMargin	$(dB) = A^{T}$	V Limit (o	lΒμV) - A	AV Value	e (dBµV)						

Note:1).QP Value $(dB\mu V) = QP$ Reading $(dB\mu V) +$ Factor (dB)2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB) 3). QPMargin(dB) = QP Limit (dB μ V) - QP Value (dB μ V) 4). AVMargin(dB) = AV Limit (dBμV) - AV Value (dBμV) CTA TESTING


4.2 **Radiated Emission**

TEST CONFIGURATION



Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

6.

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed. 4.
- Radiated emission test frequency band from 9KHz to 25GHz. 5.

The distance between test antenna and EUT as following table states:								
Test Frequency range	Test Antenna Type	Test Distance						
9KHz-30MHz	Active Loop Antenna	3						
30MHz-1GHz	Ultra-Broadband Antenna	3						
1GHz-18GHz	Double Ridged Horn Antenna	3						
18GHz-25GHz	Horn Anternna	1						

Setting test receiver/spectrum as following table states: 7.

Setting test receiver/sp	letting test receiver/spectrum as following table states.							
Test Frequency range	Test Receiver/Spectrum Setting	Detector						
9KHz-150KHz	QP							
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP						
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP						
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak						

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

sample calculation is as follows.					
FS = RA + AF + CL - AG	CTATES				
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)				
RA = Reading Amplitude	AG = Amplifier Gain				
AF = Antenna Factor					

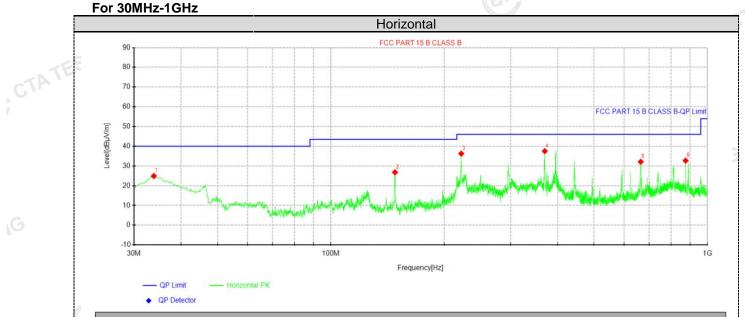
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	(Meters)		Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500


Report No.: CTA23050900101

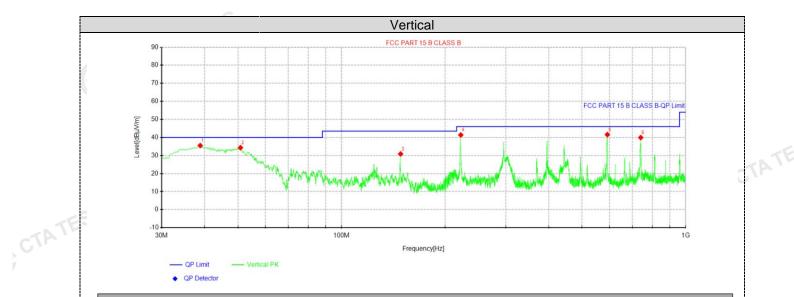
CTATESTING

TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X 1. position.
- We measured Radiated Emission at GFSK,π/4 DQPSK and 8DPSK mode from 9 KHz to 25GHz and 2. recorded worst case at GFSK DH5 mode.
- For below 1GHz testing recorded worst at GFSK DH5 middle channel. 3.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found 4. except system noise floor in 9 KHz to 30MHz and not recorded in this report.

Suspected	Data	List	


- 1	ouspe	Joica Data	LIST								
	NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity	
	NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Folanty	
	1	33.88	42.95	24.90	-18.05	40.00	15.10	100	60	Horizontal	
	2	147.976	48.54	26.78	-21.76	43.50	16.72	100	90	Horizontal	
	3	221.938	54.99	36.24	-18.75	46.00	9.76	100	210	Horizontal	
	4	369.985	53.40	37.52	-15.88	46.00	8.48	100	290	Horizontal	
	5	664.865	44.11	32.12	-11.99	46.00	13.88	100	50	Horizontal	
	6	874.991	42.26	32.69	-9.57	46.00	13.31	100	130	Horizontal	

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

COM CTATE

Suspected Data List

NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity	
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polanty	
1	38.8512	52.81	35.50	-17.31	40.00	4.50	100	160	Vertical	
2	50.855	50.58	34.33	-16.25	40.00	5.67	100	0	Vertical	
3	148.461	52.63	30.87	-21.76	43.50	12.63	100	20	Vertical	
4	222.06	60.12	41.38	-18.74	46.00	4.62	100	320	Vertical	
5	592.115	54.04	41.58	-12.46	46.00	4.42	100	10	Vertical	
6	740.403	50.86	39.94	-10.92	46.00	6.06	100	310	Vertical	

Note:1).Level ($dB\mu V/m$) = Reading ($dB\mu V$) + Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

For 1GHz to 25GHz

Note: GFSK , $\pi/4$ DQPSK and 8DPSK all have been tested, only worse case GFSK is reported. GFSK (above 1GHz)

Freque	ncy(MHz)	:	24	02	Pola	arity:	HORIZONTAL						
Frequency (MHz)	Emis Lev (dBu)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)				
4804.00	60.61	PK	74	13.39	64.88	32.33	5.12	41.72	-4.27				
4804.00	45.16	AV	54	8.84	49.43	32.33	5.12	41.72	-4.27				
7206.00	54.07	PK	74	19.93	54.59	36.6	6.49	43.61	-0.52				
7206.00	43.32	AV	54	10.68	43.84	36.6	6.49	43.61	-0.52				

Frequency(MHz):		2402		Polarity:		VERTICAL			
Frequency (MHz)	-	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	60.40	PK	74	13.60	64.67	32.33	5.12	41.72	-4.27
4804.00	42.14	AV	54	11.86	46.41	32.33	5.12	41.72	-4.27
7206.00	52.46	PK	74	21.54	52.98	36.6	6.49	43.61	-0.52
7206.00	40.22	AV	54	13.78	40.74	36.6	6.49	43.61	-0.52

Frequency(MHz):			2441		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	61.30	PK	74	12.70	65.18	32.6	5.34	41.82	-3.88
4882.00	45.36	AV	54	8.64	649.24	32.6	5.34	41.82	-3.88
7323.00	53.81	PK	74	20.19	53.92	36.8	6.81	43.72	-0.11
7323.00	43.23	AV	54	10.77	43.34	36.8	6.81	343.72	-0.11
							GTIN		

Frequency(MHz):			2441		Polarity:		VERTICAL		
Frequency (MHz)	-	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	59.82	PK	74	14.18	63.70	32.6	5.34	41.82	-3.88
4882.00	43.26	AV	54	10.74	47.14	32.6	5.34	41.82	-3.88
7323.00	51.01	PK	74	22.99	51.12	36.8	6.81	43.72	-0.11
7323.00	40.74	AV	54	13.26	40.85	36.8	6.81	43.72	-0.11
	ES.								

Frequency(MHz):			2480		Polarity:		HORIZONTAL		
Frequency (MHz)	-	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	60.62	PK	74	13.38	63.70	32.73	5.66	41.47	-3.08
4960.00	45.83	AV	54	8.17	48.91	32.73	5.66	41.47	-3.08
7440.00	54.59	PK	74	19.41	54.14	37.04	7.25	43.84	0.45
7440.00	42.51	PK	54	11.49	42.06	37.04	7.25	43.84	0.45

Frequency(MHz):			2480		Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	G Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	59.03	PK	74	14.97	62.11	32.73	5.66	41.47	-3.08
4960.00	42.50	AV	54	11.50	45.58	32.73	5.66	41.47	-3.08
7440.00	52.92	PK	74	21.08	52.47	37.04	7.25	43.84	0.45
7440.00	40.62	PK	54	13.38	40.17	37.04	7.25	43.84	0.45
REMARKS	; ;					Constant of the second second			CTP
			Shenzhen	CTA Testing	Technology	Co., I td.			

Report No.: CTA23050900101

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Note: GFSK, Pi/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

				GFS	Κ				
Freque	ncy(MHz)	:	24	02	Pola	arity:	н	IORIZONT A	AL.
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	60.53	PK	74 G	13.47	70.95	27.42	4.31	42.15	-10.42
2390.00	44.80	AV	54	9.20	55.22	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.68	PK	74	14.32	70.10	27.42	4.31	42.15	-10.42
2390.00	42.39	AV	54	11.61	52.81	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	80	Pola	arity:	HORIZONTAL		AL.
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	60.68	PK	74	13.32	70.79	27.7	4.47	42.28	-10.11
2483.50	42.74	AV	54	11.26	52.85	27.7	4.47	42.28	-10.11
Freque	ncy(MHz)	:	24	80	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	59.14	PK	74	14.86	69.25	27.7	4.47	42.28	-10.11
2483.50	42.28	AV	54	11.72	52.39	27.7	4.47	42.28	-10.11

REMARKS:

1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)

2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier

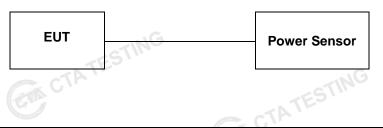
Margin value = Limit value- Emission level.

4. -- Mean the PK detector measured value is below average limit. GA CTATESTING

5. The other emission levels were very low against the limit.

4.3 Maximum Peak Output Power

Limit


The Maximum Peak Output Power Measurement is 125mW (20.97).

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the powersensor.

<u>Test Configuration</u>

Test Configuration

Test Results

Channel	Output power (dPm)		
Channel	Output power (dBm)	Limit (dBm)	Result
00	-0.48	C'	
39	0.19	20.97	Pass
78	0.79		
00	-0.46		
39	0.19	20.97	Pass
78	0.79	TING	
00	-0.48	TESI	
39	0.19	20.97	Pass
78	0.88		Co Lid
ir	39 78	39 0.19	39 0.19 20.97 78 0.88 20.97

Note: 1.The test results including the cable lose.

20dB Bandwidth and 99% Bandwidth 4.4

Limit

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 43 KHz RBW and 150 KHz VBW record the 99% bandwidth.

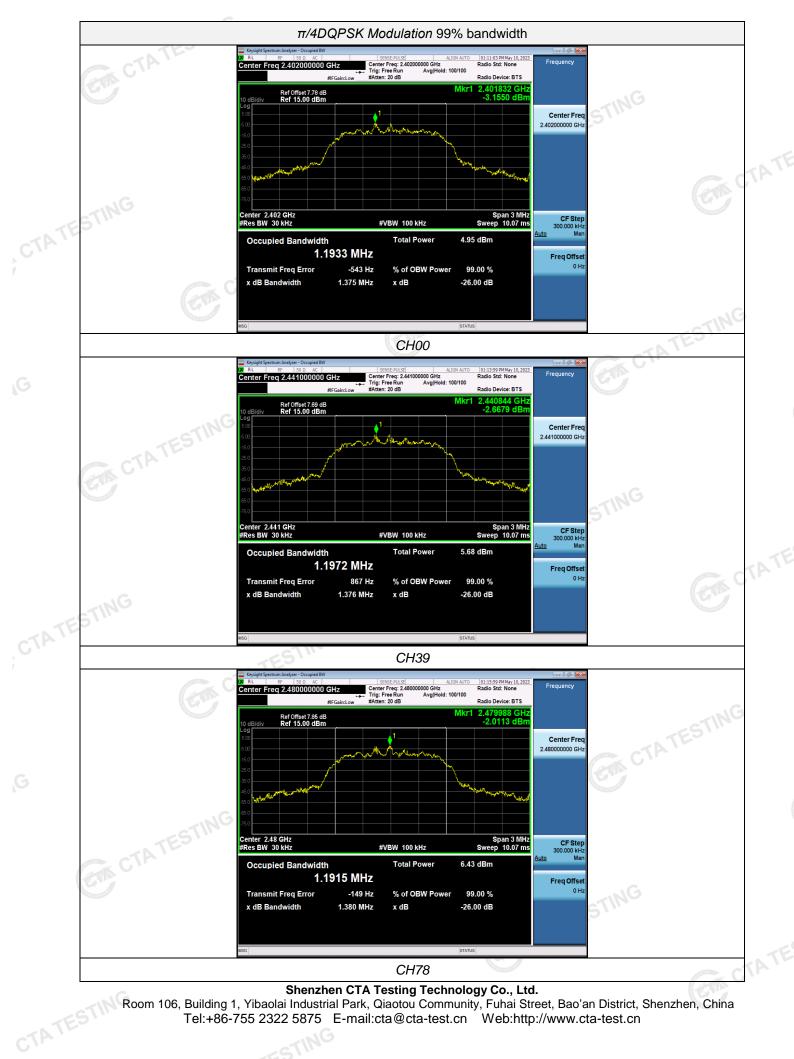
Test Configuration

SPECTRUM ANALYZER

Modul	ation	Channel	20dB bandwidth (MHz)	99% bandwidth (MHz)	Result
		CH00	1.005	0.89589	rtoout
GFS	sk –	CH39	0.990	0.89450	
		CH78	1.011	0.88548	
TING		CH00	1.287	1.1933	
π/4DQ	PSK	CH39	1.305	1.1972	Pass
		CH78	1.320	1.1915	
		CH00	1.287	1.1934	
8DP	SK	CH39	1.314	1.1922	
	Construction of the second	CH78	1.290	1.1893	TING

Report No.: CTA23050900101

Report No.: CTA23050900101



Report No.: CTA23050900101

Report No.: CTA23050900101

Report No.: CTA23050900101

Frequency Separation 4.5

LIMIT

According to 15.247(a)(1)& RSS 247 5.1 (2), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with100 KHz RBW and 300 KHz VBW.

TEST CONFIGURATION

TEST RESULTS

C					
TEST RESULTS				TATESTING	
Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result	
GFSK	CH38	1.328	25KHz or 2/3*20dB	Pass	
Grok	CH39	1.520	bandwidth	1 033	
	CH38	1.296	25KHz or 2/3*20dB	Pass	
π/4DQPSK	CH39	-ES1.290	bandwidth	Fass	
8DPSK	CH38	1.312	25KHz or 2/3*20dB	Daga	
ODESK	CH39	1.312	bandwidth	Pass	

Note:

We have tested all mode at high, middle and low channel, and recorded worst case at middle

Test plot as follows: CTATES

Report No.: CTA23050900101

Page 28 of 53

Number of hopping frequency 4.6

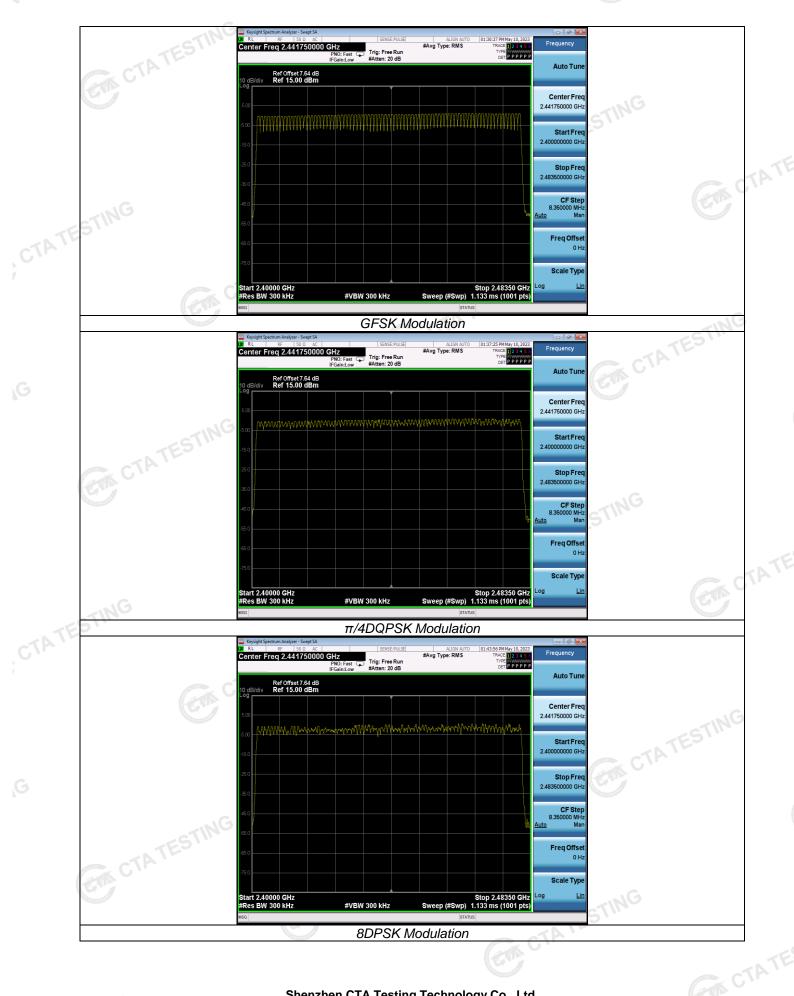
Limit C

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure

GTA CTATE The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.

Test Configuration CTATES


Test Results

Test Results			
Modulation	Number of Hopping Channel	Limit	Result
GFSK	79	6	A.C.
π/4DQPSK	79	≥15	Pass
8DPSK	79		

Test plot as follows:

Report No.: CTA23050900101

Page 30 of 53

Time of Occupancy (Dwell Time) 4.7

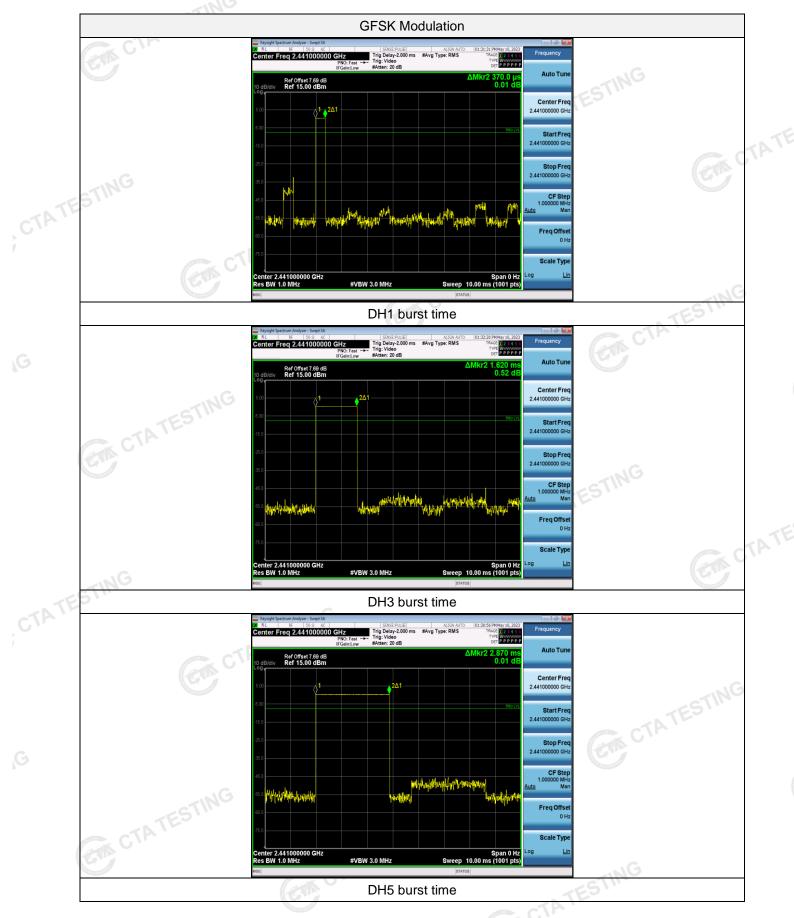
Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

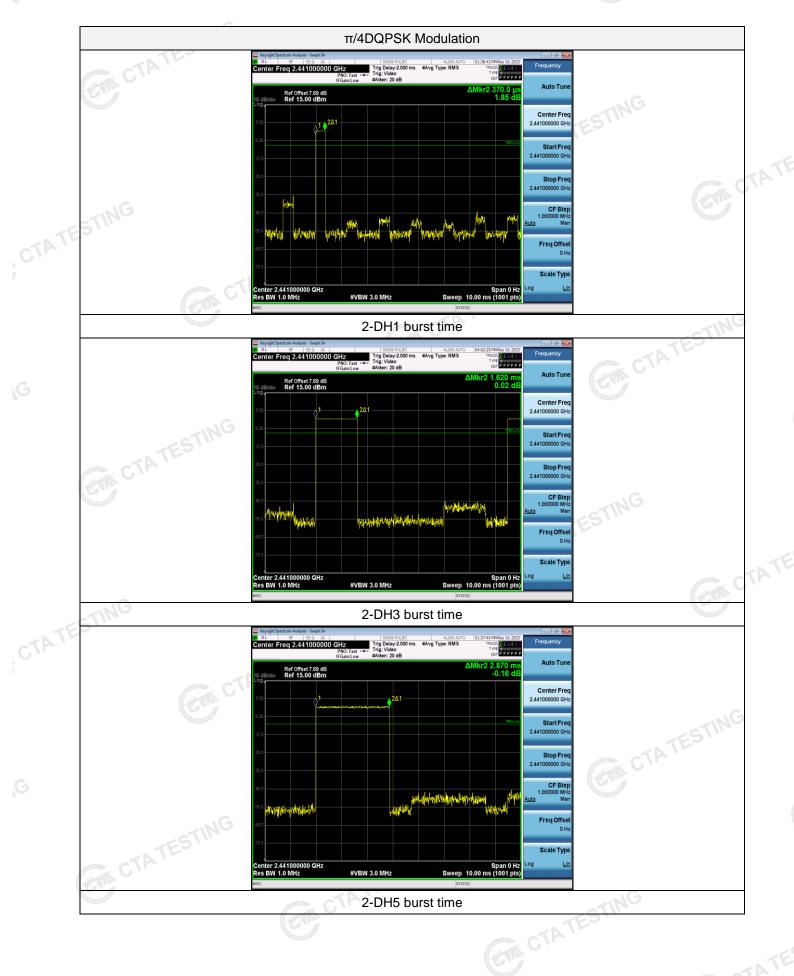
Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

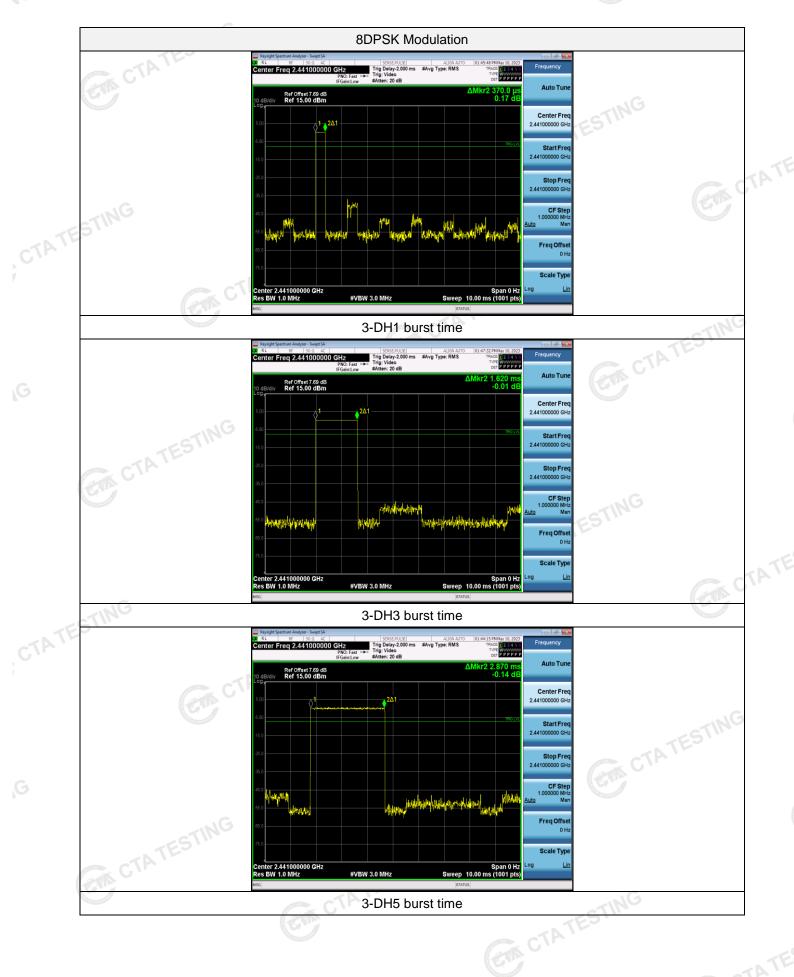
Test Configuration


Test Results

		G			TES
Modulation	Packet	Burst time (ms)	Dwell time (s)	Limit (s)	Result
	DH1	0.37	0.118		
GFSK	GDH3	1.62	0.259	0.40	Pass
TES	DH5	2.87	0.306		
CIL	2-DH1	0.37	0.118		
π/4DQPSK	2-DH3	1.62	0.259	0.40	Pass
	2-DH5	2.87	0.306	TESTIN	
	3-DH1	0.37	0.118	CTA '	
8DPSK	3-DH3	1.62	0.259	0.40	Pass
	3-DH5	2.87	0.306		C


Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel. Dwell time=Pulse time (ms) x (1600 \div 2 \div 79) x31.6 Second for DH1, 2-DH1, 3-DH1 Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second for DH3, 2-DH3, 3-DH3 Dwell time=Pulse time (ms) x (1600 ÷ 6 ÷ 79) x31.6 Second for DH5, 2-DH5, 3-DH5

Report No.: CTA23050900101


Test plot as follows:

Out-of-band Emissions 4.8

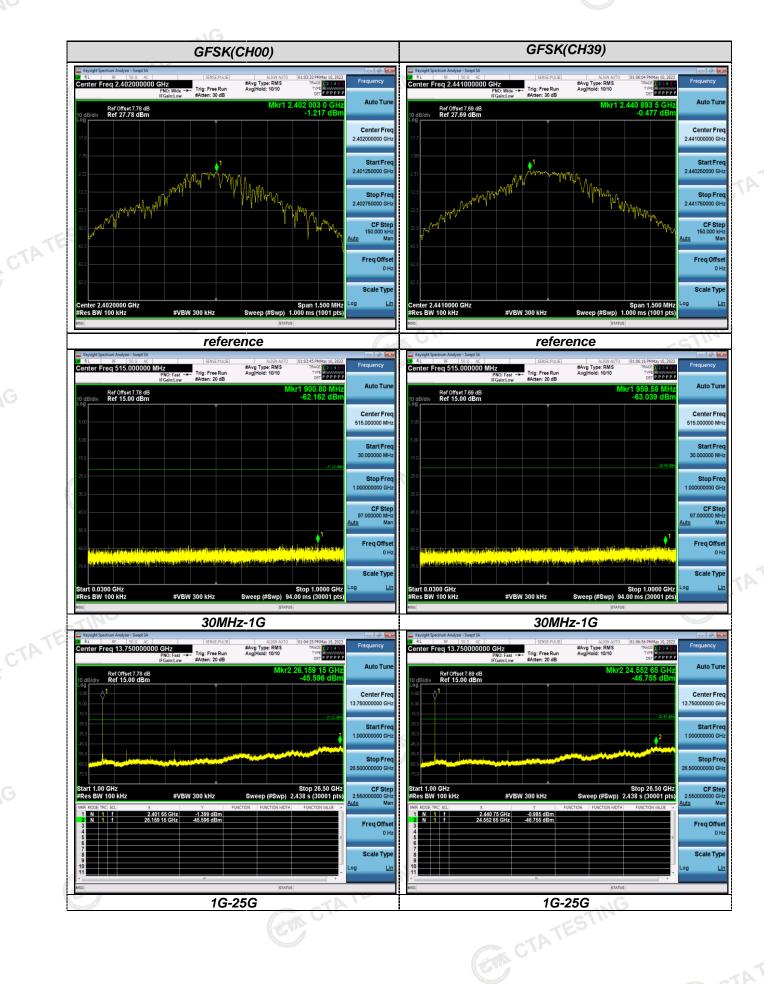
Limit C

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are GTA TESTING made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration



Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5

Test plot as follows:

