

# Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202206069F03

# **TEST Report**

Applicant: Vela Optoelectronics (Suzhou) Co., Ltd

Address of Applicant: Building B, Advanced Laser (Equipment) Industrial Park,

Xinchuang Road, Daxin Zhen, Zhangjiagang, Suzhou, Jiangsu

province, China

Manufacturer: Vela Optoelectronics (Suzhou) Co., Ltd

Address of Building B, Advanced Laser (Equipment) Industrial Park,

Manufacturer: Xinchuang Road, Daxin Zhen, Zhangjiagang, Suzhou, Jiangsu

province, China

**Equipment Under Test (EUT)** 

Product Name: HANDHELD LIBS

Model No.: P-1

Series model: P-1PLUS, P-1PRO, P-1CUSTOM, P-2, P-2PLUS, P-2PRO,

P-2CUSTOM, P-3, P-3PLUS, P-3PRO, P-3CUSTOM

Trade Mark: PEGASUSLIBS

FCC ID: 2ASU3-P-1

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Jun.14,2022

**Date of Test:** Jun.14,2022~Jul.13,2022

Date of report issued: Jul.13,2022

Test Result: PASS \*

<sup>\*</sup> In the configuration tested, the EUT complied with the standards specified above.



# 1. Version

| Version No. | Date        | Description |
|-------------|-------------|-------------|
| 00          | Jul.13,2022 | Original    |
|             |             |             |
|             |             |             |
|             |             |             |
|             |             |             |

| Tested/ Prepared By | Ervin Xu             | Date: | Jul.13,2022 |
|---------------------|----------------------|-------|-------------|
|                     | Project Engineer     |       |             |
| Check By:           | Bruce Zhu            | Date: | Jul.13,2022 |
|                     | Reviewer             |       |             |
| Approved By :       | Kerin Yang           | Date: | Jul.13,2022 |
|                     | Authorized Signature |       |             |



# 2. Contents

|          |              |                                        | Page |
|----------|--------------|----------------------------------------|------|
| 1.       | VER          | RSION                                  | 2    |
| 2.       | CON          | NTENTS                                 | 3    |
| 3.       | TES          | ST SUMMARY                             | 4    |
| ٥.<br>4. |              | NERAL INFORMATION                      |      |
| 4.       |              |                                        |      |
|          | 4.1.         | GENERAL DESCRIPTION OF EUT             |      |
|          | 4.2.         | TEST MODE                              |      |
|          | 4.3.<br>4.4. | DESCRIPTION OF SUPPORT UNITS           |      |
|          | 4.4.<br>4.5. | ABNORMALITIES FROM STANDARD CONDITIONS |      |
|          | 4.6.         | TEST FACILITY                          |      |
|          | 4.7.         | TEST LOCATION                          |      |
|          | 4.8.         | ADDITIONAL INSTRUCTIONS                |      |
| 5.       | TES          | ST INSTRUMENTS LIST                    | 8    |
| 6.       |              | ST RESULTS AND MEASUREMENT DATA        |      |
|          | 6.1.         | CONDUCTED EMISSIONS                    | ۵    |
|          | 6.2.         | CONDUCTED PEAK OUTPUT POWER            |      |
|          | 6.3.         | CHANNEL BANDWIDTH                      | _    |
|          | 6.4.         | POWER SPECTRAL DENSITY                 | 13   |
|          | 6.5.         | BAND EDGE                              |      |
|          | 6.5.         |                                        |      |
|          |              | 2. Radiated Emission Method            |      |
|          | 6.6.         | Spurious Emission                      |      |
|          | 6.6.         |                                        |      |
|          |              | 2. Radiated Emission Method            |      |
| 7.       | TES          | ST SETUP PHOTO                         | 30   |
| 8.       | EUT          | CONSTRUCTIONAL DETAILS                 | 30   |



# 3. Test Summary

| - 1001 Odinima. y                |                            |        |  |  |
|----------------------------------|----------------------------|--------|--|--|
| Test Item                        | Section                    | Result |  |  |
| Antenna requirement              | FCC part 15.203/15.247 (c) | Pass   |  |  |
| AC Power Line Conducted Emission | FCC part 15.207            | N/A    |  |  |
| Conducted Peak Output Power      | FCC part 15.247 (b)(3)     | Pass   |  |  |
| 6dB Bandwidth                    | FCC part 15.247 (a)(2)     | Pass   |  |  |
| Power Spectral Density           | FCC part 15.247 (e)        | Pass   |  |  |
| Band Edge                        | FCC part 15.247(d)         | Pass   |  |  |
| Spurious Emission                | FCC part 15.205/15.209     | Pass   |  |  |

Remark: Test according to ANSI C63.10:2013 and RSS-Gen

Pass: The EUT complies with the essential requirements in the standard.

### **Measurement Uncertainty**

| •                             |                                      |                                   |       |  |  |  |
|-------------------------------|--------------------------------------|-----------------------------------|-------|--|--|--|
| Test Item                     | Frequency Range                      | Measurement Uncertainty           | Notes |  |  |  |
| Radiated Emission             | 30~1000MHz                           | 3.45 dB                           | (1)   |  |  |  |
| Radiated Emission             | 1~6GHz                               | 3.54 dB                           | (1)   |  |  |  |
| Radiated Emission             | 6~40GHz                              | 5.38 dB                           | (1)   |  |  |  |
| Conducted Disturbance         | 0.15~30MHz                           | 2.66 dB                           | (1)   |  |  |  |
| Note (1): The measurement unc | ertainty is for coverage factor of k | =2 and a level of confidence of 9 | 95%.  |  |  |  |



# 4. General Information

# 4.1. General Description of EUT

| •                      |                                                                                              |
|------------------------|----------------------------------------------------------------------------------------------|
| Product Name:          | HANDHELD LIBS                                                                                |
| Model No.:             | P-1                                                                                          |
| Series model:          | P-1PLUS, P-1PRO, P-1CUSTOM, P-2, P-2PLUS, P-2PRO, P-2CUSTOM, P-3, P-3PLUS, P-3PRO, P-3CUSTOM |
| Test sample(s) ID:     | HTT202206069-1(Engineer sample) HTT202206069-2(Normal sample)                                |
| Frequency range:       | 2412-2462MHz                                                                                 |
| Channel numbers:       | 802.11b: 11                                                                                  |
| Channel separation:    | 5MHz                                                                                         |
| Modulation technology: | 802.11b: Direct Sequence Spread Spectrum (DSSS)                                              |
| Antenna Type:          | PCB Antenna                                                                                  |
| Antenna gain:          | 0 dBi                                                                                        |
| Power supply:          | DC 14.8V From Battery                                                                        |
| Adapter Information    | Mode: vela 1608-2<br>Input: AC100-240V, 50/60Hz, 1.5A<br>Output: DC 16.8, 2000mA             |



| Operation Frequency each of channel |           |         |           |         |           |         |           |
|-------------------------------------|-----------|---------|-----------|---------|-----------|---------|-----------|
| Channel                             | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
| 1                                   | 2412MHz   | 4       | 2427MHz   | 7       | 2442MHz   | 10      | 2457MHz   |
| 2                                   | 2417MHz   | 5       | 2432MHz   | 8       | 2447MHz   | 11      | 2462MHz   |
| 3                                   | 2422MHz   | 6       | 2437MHz   | 9       | 2452MHz   |         |           |

#### Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

| Test showed     | Frequency (MHz) |
|-----------------|-----------------|
| Test channel    | 802.11b         |
| Lowest channel  | 2412MHz         |
| Middle channel  | 2437MHz         |
| Highest channel | 2462MHz         |



#### 4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the dutycycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

| Mode      | 802.11b | 802.11g | 802.11n(HT20) | 802.11n(HT40) |
|-----------|---------|---------|---------------|---------------|
| Data rate | 1Mbps   | 6Mbps   | 6.5Mbps       | 13Mbps        |

#### 4.3. Description of Support Units

None.

#### 4.4. Deviation from Standards

None.

#### 4.5. Abnormalities from Standard Conditions

None.

#### 4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

# FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

#### 4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

#### 4.8. Additional Instructions

| Test Software     | Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode |
|-------------------|---------------------------------------------------------------------------------------------------------------------|
| Power level setup | Default                                                                                                             |

Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201



# 5. Test Instruments list

| Э.   | Lest Instruments list              |                                        |                    |          |                |               |  |  |
|------|------------------------------------|----------------------------------------|--------------------|----------|----------------|---------------|--|--|
| Item | Test Equipment                     | Manufacturer                           | Model No.          | No.      | (mm-dd-yy)     | (mm-dd-yy)    |  |  |
|      | 2m Cami Anashais                   | Chanzhan C.D.T                         |                    | NO.      | (IIIIII-dd-yy) | (IIIII-dd-yy) |  |  |
| 1    | 3m Semi- Anechoic<br>Chamber       | Shenzhen C.R.T technology co., LTD     | 9*6*6              | HTT-E028 | Aug. 10 2020   | Aug. 09 2024  |  |  |
| 2    | Control Room                       | Shenzhen C.R.T technology co., LTD     | 4.8*3.5*3.0        | HTT-E030 | Aug. 10 2020   | Aug. 09 2024  |  |  |
| 3    | EMI Test Receiver                  | Rohde&Schwar                           | ESCI7              | HTT-E022 | May 23 2022    | May 22 2023   |  |  |
| 4    | Spectrum Analyzer                  | Rohde&Schwar                           | FSP                | HTT-E037 | May 23 2022    | May 22 2023   |  |  |
| 5    | Coaxial Cable                      | ZDecl                                  | ZT26-NJ-NJ-0.6M    | HTT-E018 | May 23 2022    | May 22 2023   |  |  |
| 6    | Coaxial Cable                      | ZDecl                                  | ZT26-NJ-SMAJ-2M    | HTT-E019 | May 23 2022    | May 22 2023   |  |  |
| 7    | Coaxial Cable                      | ZDecl                                  | ZT26-NJ-SMAJ-0.6M  | HTT-E020 | May 23 2022    | May 22 2023   |  |  |
| 8    | Coaxial Cable                      | ZDecl                                  | ZT26-NJ-SMAJ-8.5M  | HTT-E021 | May 23 2022    | May 22 2023   |  |  |
| 9    | Composite logarithmic antenna      | Schwarzbeck                            | VULB 9168          | HTT-E017 | Aug. 22 2021   | Aug. 21 2022  |  |  |
| 10   | Horn Antenna                       | Schwarzbeck                            | BBHA9120D          | HTT-E016 | Aug. 22 2021   | Aug. 21 2022  |  |  |
| 11   | Loop Antenna                       | Zhinan                                 | ZN30900C           | HTT-E039 | Aug. 22 2021   | Aug. 21 2022  |  |  |
| 12   | Horn Antenna                       | Beijing Hangwei Dayang                 | OBH100400          | HTT-E040 | Aug. 22 2021   | Aug. 21 2022  |  |  |
| 13   | low frequency<br>Amplifier         | Sonoma Instrument                      | 310                | HTT-E015 | May 23 2022    | May 22 2023   |  |  |
| 14   | high-frequency Amplifier           | HP                                     | 8449B              | HTT-E014 | May 23 2022    | May 22 2023   |  |  |
| 15   | Variable frequency power supply    | Shenzhen Anbiao<br>Instrument Co., Ltd | ANB-10VA           | HTT-082  | May 23 2022    | May 22 2023   |  |  |
| 16   | EMI Test Receiver                  | Rohde & Schwarz                        | ESCS30             | HTT-E004 | May 23 2022    | May 22 2023   |  |  |
| 17   | Artificial Mains                   | Rohde & Schwarz                        | ESH3-Z5            | HTT-E006 | May 23 2022    | May 22 2023   |  |  |
| 18   | Artificial Mains                   | Rohde & Schwarz                        | ENV-216            | HTT-E038 | May 23 2022    | May 22 2023   |  |  |
| 19   | Cable Line                         | Robinson                               | Z302S-NJ-BNCJ-1.5M | HTT-E001 | May 23 2022    | May 22 2023   |  |  |
| 20   | Attenuator                         | Robinson                               | 6810.17A           | HTT-E007 | May 23 2022    | May 22 2023   |  |  |
| 21   | Variable frequency power<br>supply | Shenzhen Yanghong<br>Electric Co., Ltd | YF-650 (5KVA)      | HTT-E032 | May 23 2022    | May 22 2023   |  |  |
| 22   | Control Room                       | Shenzhen C.R.T technology co., LTD     | 8*4*3.5            | HTT-E029 | May 23 2022    | May 22 2023   |  |  |
| 23   | DC power supply                    | Agilent                                | E3632A             | HTT-E023 | May 23 2022    | May 22 2023   |  |  |
| 24   | EMI Test Receiver                  | Agilent                                | N9020A             | HTT-E024 | May 23 2022    | May 22 2023   |  |  |
| 25   | Analog signal generator            | Agilent                                | N5181A             | HTT-E025 | May 23 2022    | May 22 2023   |  |  |
| 26   | Vector signal generator            | Agilent                                | N5182A             | HTT-E026 | May 23 2022    | May 22 2023   |  |  |
| 27   | Power sensor                       | Keysight                               | U2021XA            | HTT-E027 | May 23 2022    | May 22 2023   |  |  |
| 28   | Temperature and humidity meter     | Shenzhen Anbiao<br>Instrument Co., Ltd | TH10R              | HTT-074  | May 23 2022    | May 22 2023   |  |  |
| 29   | Radiated Emission Test<br>Software | Farad                                  | EZ-EMC             | N/A      | N/A            | N/A           |  |  |
| 30   | Conducted Emission Test Software   | Farad                                  | EZ-EMC             | N/A      | N/A            | N/A           |  |  |
| 31   | RF Test Software                   | panshanrf                              | TST                | N/A      | N/A            | N/A           |  |  |



# 6. Test results and Measurement Data

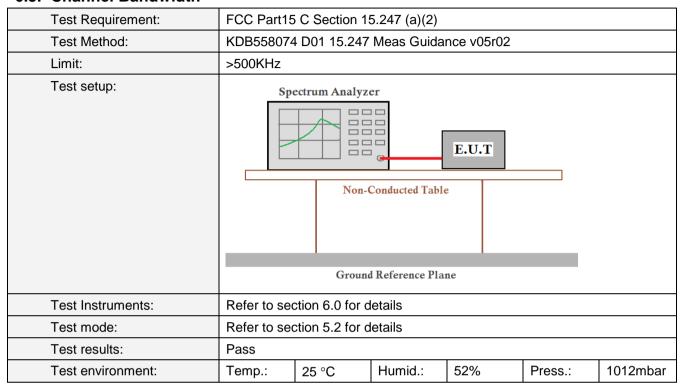
# 6.1. Conducted Emissions

| Test Requirement:     | FCC Part15 C Section 15.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |          |          |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------|----------|--|--|
| Test Method:          | ANSI C63.10:2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |          |          |  |  |
| Test Frequency Range: | 150KHz to 30MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |          |          |  |  |
| Class / Severity:     | Class B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |          |          |  |  |
| Receiver setup:       | RBW=9KHz, VBW=30KHz, S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | weep time=auto                             |          |          |  |  |
| Limit:                | Fragues of range (MILIT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Limi                                       | t (dBuV) |          |  |  |
|                       | Frequency range (MHZ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Frequency range (MHz)  Quasi-peak  Average |          |          |  |  |
|                       | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 66 to 56*                                  | 56 t     | o 46*    |  |  |
|                       | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 56                                         |          | 46       |  |  |
|                       | 5-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60                                         |          | 50       |  |  |
| Test setup:           | * Decreases with the logarithn                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                          |          |          |  |  |
| Test procedure:       | Reference Plane  LISN  40cm  80cm  Filter  AC power  Remark  EU.T. Equipment Under Test  LISN: Line Impedence Stabilization Network  Test table height=0.8m  1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment.  2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm |                                            |          |          |  |  |
| Took looks we aske.   | termination. (Please refer to the block diagram of the test setup and photographs).  3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.                                                                                                                                                     |                                            |          |          |  |  |
| Test Instruments:     | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |          |          |  |  |
| Test mode:            | Refer to section 5.2 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | T        |          |  |  |
| Test environment:     | Temp.: 25 °C Hun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nid.: 52%                                  | Press.:  | 1012mbar |  |  |
| Test voltage:         | AC 120V, 60Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            |          |          |  |  |
| Test results:         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |          |          |  |  |

The EUT is powered by the Battery, So this test item is not applicable for the EUT.



# 6.2. Conducted Peak Output Power


| Test Requirement: | FCC Part15                                                     | FCC Part15 C Section 15.247 (b)(3)   |            |            |  |  |  |  |  |
|-------------------|----------------------------------------------------------------|--------------------------------------|------------|------------|--|--|--|--|--|
| Test Method:      | KDB558074                                                      | 4 D01 15.247                         | Meas Guida | nce v05r02 |  |  |  |  |  |
| Limit:            | 30dBm                                                          |                                      |            |            |  |  |  |  |  |
| Test setup:       | Power sensor and Spectrum analyzer  E.U.T  Non-Conducted Table |                                      |            |            |  |  |  |  |  |
|                   |                                                                | Ground Reference Pla                 | ane        |            |  |  |  |  |  |
| Test Instruments: | Refer to se                                                    | ction 6.0 for c                      | letails    |            |  |  |  |  |  |
| Test mode:        | Refer to se                                                    | Refer to section 5.2 for details     |            |            |  |  |  |  |  |
| Test results:     | Pass                                                           | Pass                                 |            |            |  |  |  |  |  |
| Test environment: | Temp.:                                                         | Temp.:25 °CHumid.:52%Press.:1012mbar |            |            |  |  |  |  |  |

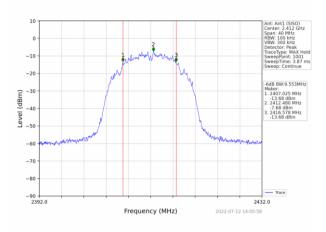
#### **Measurement Data**

| Test CH | Peak Output Power (dBm)<br>802.11b | Limit(dBm) | Result |
|---------|------------------------------------|------------|--------|
| Lowest  | 7.12                               |            |        |
| Middle  | 6.78                               | 30.00      | Pass   |
| Highest | 6.53                               |            |        |

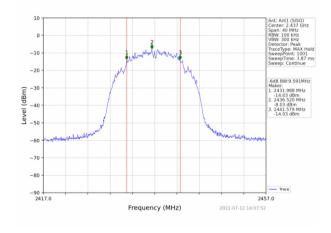


#### 6.3. Channel Bandwidth

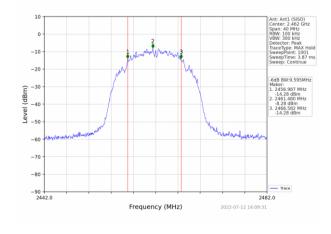



#### **Measurement Data**

| Test CH | Channel Bandwidth (MHz) 802.11b | Limit(KHz) | Result |
|---------|---------------------------------|------------|--------|
| Lowest  | 9.553                           |            |        |
| Middle  | 9.591                           | >500       | Pass   |
| Highest | 9.595                           |            |        |




# Test plot as follows:


# 802.11b



#### Lowest channel



#### Middle channel



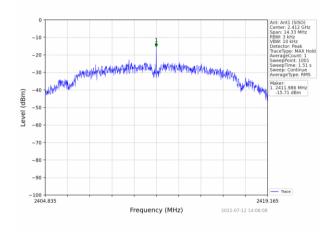
Highest channel



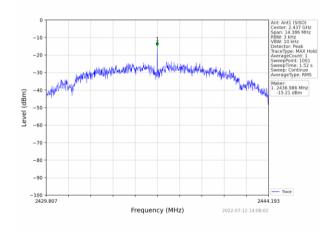
# 6.4. Power Spectral Density

| Tost Poquiroment: | FCC Part15 C Section 15.247 (e)                                       |                                           |            |            |         |          |  |  |
|-------------------|-----------------------------------------------------------------------|-------------------------------------------|------------|------------|---------|----------|--|--|
| Test Requirement: |                                                                       | KDB558074 D01 15.247 Meas Guidance v05r02 |            |            |         |          |  |  |
| Test Method:      | KDB55807                                                              | 4 D01 15.247                              | Meas Guida | nce v05r02 |         |          |  |  |
| Limit:            | 8dBm/3kH                                                              | Z                                         |            |            |         |          |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |                                           |            |            |         |          |  |  |
| Test Instruments: | Refer to se                                                           | ection 6.0 for o                          | details    |            |         |          |  |  |
| Test mode:        | Refer to section 5.2 for details                                      |                                           |            |            |         |          |  |  |
| Test results:     | Pass                                                                  |                                           |            |            |         |          |  |  |
| Test environment: | Temp.:                                                                | 25 °C                                     | Humid.:    | 52%        | Press.: | 1012mbar |  |  |

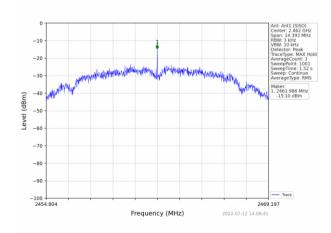
#### **Measurement Data**


| Test CH | Power Spectral Density (dBm/3kHz) 802.11b | Limit<br>(dBm/3kHz) | Result |
|---------|-------------------------------------------|---------------------|--------|
| Lowest  | -15.71                                    |                     |        |
| Middle  | -15.21                                    | 8.00                | Pass   |
| Highest | -15.10                                    |                     |        |

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle




Test plot as follows:


| 1 802 11h |  |  |
|-----------|--|--|
| 802.11b   |  |  |



### Lowest channel

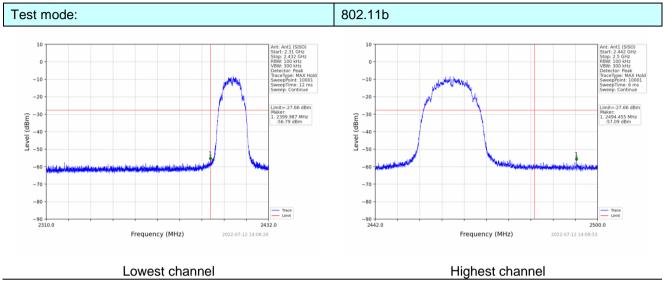


### Middle channel



Highest channel




# 6.5. Band Edge

# 6.5.1. Conducted Emission Method

| Test Requirement: | FCC Part15                                             | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                         |                 |     |         |          |  |  |
|-------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----|---------|----------|--|--|
| Test Method:      | KDB558074                                              | KDB558074 D01 15.247 Meas Guidance v05r02                                                                                                                                                                                                                                                                                                                                               |                 |     |         |          |  |  |
| Limit:            | spectrum in<br>produced by<br>100 kHz ba<br>desired po | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |                 |     |         |          |  |  |
| Test setup:       | Speci                                                  |                                                                                                                                                                                                                                                                                                                                                                                         | E.U ucted Table | Т   |         |          |  |  |
| Test Instruments: | Refer to sec                                           | ction 6.0 for d                                                                                                                                                                                                                                                                                                                                                                         | etails          |     |         |          |  |  |
| Test mode:        | Refer to section 5.2 for details                       |                                                                                                                                                                                                                                                                                                                                                                                         |                 |     |         |          |  |  |
| Test results:     | Pass                                                   |                                                                                                                                                                                                                                                                                                                                                                                         |                 |     |         |          |  |  |
| Test environment: | Temp.:                                                 | 25 °C                                                                                                                                                                                                                                                                                                                                                                                   | Humid.:         | 52% | Press.: | 1012mbar |  |  |



# Test plot as follows:





# 6.5.2. Radiated Emission Method

|                       | LIIII33IUII IVICI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |              |              |         |                       |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|--------------|---------|-----------------------|--|--|
| Test Requirement:     | FCC Part15 C Section 15.209 and 15.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |              |              |         |                       |  |  |
| Test Method:          | ANSI C63.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ANSI C63.10: 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |              |              |         |                       |  |  |
| Test Frequency Range: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |              |              |         |                       |  |  |
| Test site:            | Measuremer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nt Distance:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3m       |              |              |         |                       |  |  |
| Receiver setup:       | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | RBW          | VBW          |         | emark                 |  |  |
|                       | Above 1GF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Iz Pea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 1MHz<br>1MHz | 3MH:<br>10Hz |         | ak Value<br>age Value |  |  |
| Limit:                | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | quency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L        | _imit (dBu\  |              |         | emark                 |  |  |
|                       | Abov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /e 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 54.0<br>74.0 |              |         | age Value<br>ak Value |  |  |
| Test setup:           | Turn Table*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Test Antenna.    Compared to the control of the con |          |              |              |         |                       |  |  |
| Test Procedure:       | <ol> <li>The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.</li> <li>The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</li> <li>The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</li> <li>For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.</li> <li>The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.</li> <li>If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the</li> </ol> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |              |              |         |                       |  |  |
| Took hooks and the    | average n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ould be re-tenethod as sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pecified |              |              |         |                       |  |  |
| Test Instruments:     | Refer to sect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |              |              |         |                       |  |  |
| Test mode:            | Refer to sect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | uon 5.2 tor c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | etalis   |              |              |         |                       |  |  |
| Test results:         | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ا ممدد   | d.   F00     | /            | Dross : | 1010mba-              |  |  |
| Test environment:     | Temp.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Humi     | d.: 529      | <b>′</b> 0   | Press.: | 1012mbar              |  |  |



#### **Measurement Data**

Report No.: HTT202206069F03

| Test mode: | 802.11b | Test channel:   | Lowest |
|------------|---------|-----------------|--------|
| rest mode. | 002.110 | 1 63t Grianner. | Lowest |

Horizontal (Worst case)

|   |          | <u> </u>      |                   |            |                  |                |          |        |          |
|---|----------|---------------|-------------------|------------|------------------|----------------|----------|--------|----------|
| F | requency | Meter Reading | Antenna<br>Factor | Cable Loss | Preamp<br>Factor | Emission Level | Limits   | Margin | Detector |
|   | (MHz)    | (dBµV)        | (dB/m)            | (dB)       | (dB)             | (dBµV/m)       | (dBµV/m) | (dB)   | Type     |
|   | 2390     | 61.35         | 26.20             | 5.72       | 33.30            | 59.97          | 74.00    | -14.03 | peak     |
|   | 2390     | 45.02         | 26.20             | 5.72       | 33.30            | 43.64          | 54.00    | -10.36 | AVG      |

### Vertical:

| Frequency | Meter Reading | Antenna<br>Factor | Cable Loss | Preamp<br>Factor | Emission Level | Limits   | Margin | Detector |
|-----------|---------------|-------------------|------------|------------------|----------------|----------|--------|----------|
| (MHz)     | (dBµV)        | (dB/m)            | (dB)       | (dB)             | (dBµV/m)       | (dBµV/m) | (dB)   | Туре     |
| 2390      | 60.34         | 26.20             | 5.72       | 33.30            | 58.96          | 74.00    | -15.04 | peak     |
| 2390      | 45.63         | 26.20             | 5.72       | 33.30            | 44.25          | 54.00    | -9.75  | AVG      |

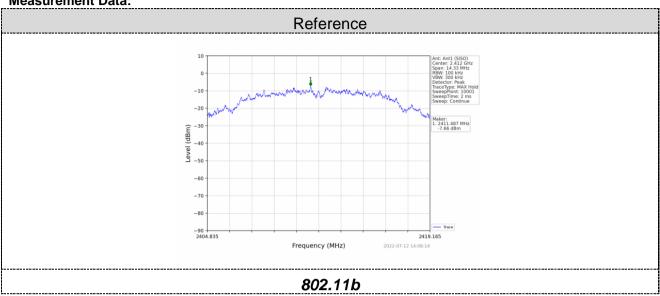
Horizontal (Worst case)

| Frequency | Meter Reading | Antenna<br>Factor | Cable Loss | Preamp<br>Factor | Emission Level | Limits   | Margin | Detector |
|-----------|---------------|-------------------|------------|------------------|----------------|----------|--------|----------|
| (MHz)     | (dBµV)        | (dB/m)            | (dB)       | (dB)             | (dBµV/m)       | (dBµV/m) | (dB)   | Туре     |
| 2483.5    | 57.16         | 28.60             | 6.97       | 32.70            | 60.03          | 74.00    | -13.97 | peak     |
| 2483.5    | 43.15         | 28.60             | 6.97       | 32.70            | 46.02          | 54.00    | -7.98  | AVG      |

#### Vertical:

| Frequency | Meter Reading | Antenna<br>Factor | Cable Loss | Preamp<br>Factor | Emission Level | Limits   | Margin | Detector |
|-----------|---------------|-------------------|------------|------------------|----------------|----------|--------|----------|
| (MHz)     | (dBµV)        | (dB/m)            | (dB)       | (dB)             | (dBµV/m)       | (dBµV/m) | (dB)   | Type     |
| 2483.5    | 57.16         | 28.60             | 6.97       | 32.70            | 60.03          | 74.00    | -13.97 | peak     |
| 2483.5    | 42.36         | 28.60             | 6.97       | 32.70            | 45.23          | 54.00    | -8.77  | AVG      |

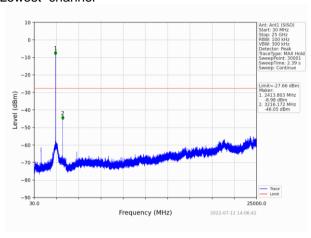



# 6.6. Spurious Emission

# 6.6.1. Conducted Emission Method

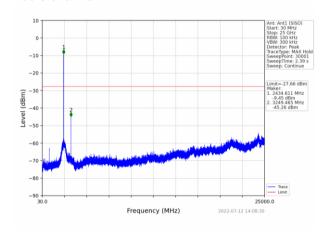
| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Test Method:      | KDB558074 D01 15.247 Meas Guidance v05r02                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| Test mode:        | Refer to section 5.2 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
| Test environment: | Temp.: 25 °C Humid.: 52% Press.: 1012mbar                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |




### **Measurement Data:**

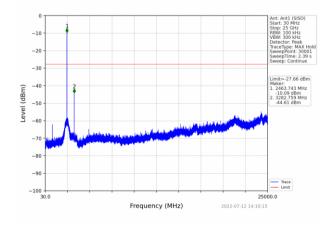





### 802.11b

#### Lowest channel




30MHz~25GHz

#### Middle channel



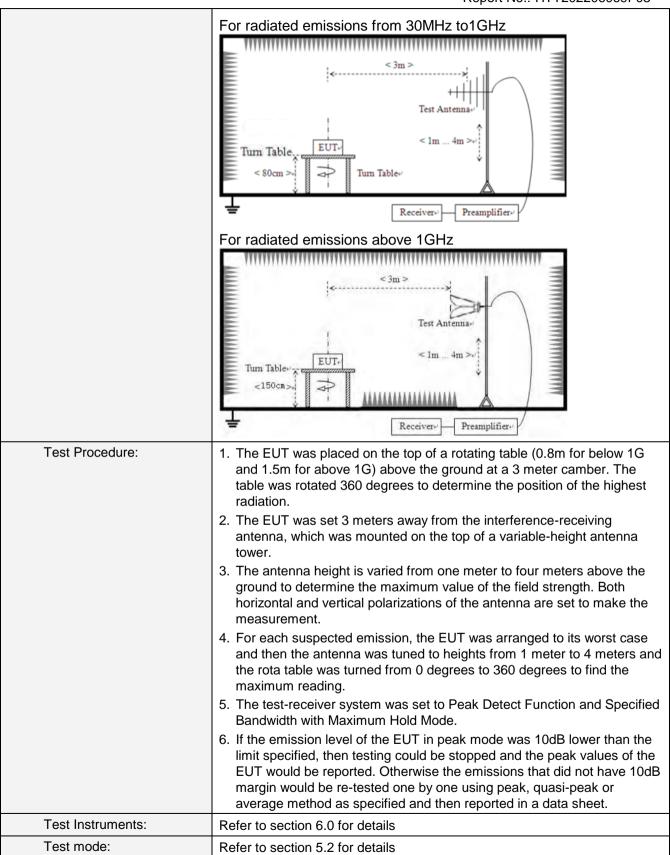
30MHz~25GHz

# Highest channel



Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201




### 30MHz~25GHz

### 6.6.2. Radiated Emission Method

| 6.6.2. Radiated E     | mission wethod                        |          |                  |            |     |       |    |                      |
|-----------------------|---------------------------------------|----------|------------------|------------|-----|-------|----|----------------------|
| Test Requirement:     | FCC Part15 C Section                  | on 15    | 5.209            |            |     |       |    |                      |
| Test Method:          | ANSI C63.10:2013                      |          |                  |            |     |       |    |                      |
| Test Frequency Range: | 9kHz to 25GHz                         |          |                  |            |     |       |    |                      |
| Test site:            | Measurement Distar                    | nce: (   | 3m               |            |     |       |    |                      |
| Receiver setup:       | Frequency                             |          | Detector         | RB\        | W   | VBW   | ′  | Value                |
|                       | 9KHz-150KHz                           | Qı       | ıasi-peak        | 200        | Hz  | 600H  | z  | Quasi-peak           |
|                       | 150KHz-30MHz                          | Qı       | ıasi-peak        | 9KF        | Ηz  | 30KH  | Z  | Quasi-peak           |
|                       | 30MHz-1GHz                            | Qι       | ıasi-peak        | 120k       | Ήz  | 300KF | łz | Quasi-peak           |
|                       | Above 1GHz                            |          | Peak             | 1MF        | Ηz  | 3MHz  | Z  | Peak                 |
|                       | Above 10112                           |          | Peak             | 1MH        | Ηz  | 10Hz  | 7  | Average              |
| Limit:                | Frequency                             |          | Limit (u\        | //m)       | >   | 'alue | N  | Measurement Distance |
|                       | 0.009MHz-0.490MHz 2400/F(KHz) QP 300m |          |                  |            |     |       |    |                      |
|                       | 0.490MHz-1.705M                       | lHz      | 24000/F(         | KHz)       |     | QP    |    | 30m                  |
|                       | 1.705MHz-30MH                         | lz       | 30               |            |     | QP    |    | 30m                  |
|                       | 30MHz-88MHz                           |          | 100              |            |     | QP    |    |                      |
|                       | 88MHz-216MHz                          | <u> </u> | 150              |            |     | QP    |    |                      |
|                       | 216MHz-960MH                          | Z        | 200              |            |     | QP    |    | 3m                   |
|                       | 960MHz-1GHz                           |          | 500              |            |     | QP    |    |                      |
|                       | Above 1GHz                            |          | 500              |            | Av  | erage |    |                      |
|                       |                                       |          | 5000             | )          | F   | Peak  |    |                      |
| Test setup:           | For radiated emiss                    | sions    | from 9kH         | z to 30    | MMC | Z     |    | _                    |
|                       | Tum Table EUT                         |          | < 3m ><br>Test A | Im Receive |     |       |    |                      |





Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201

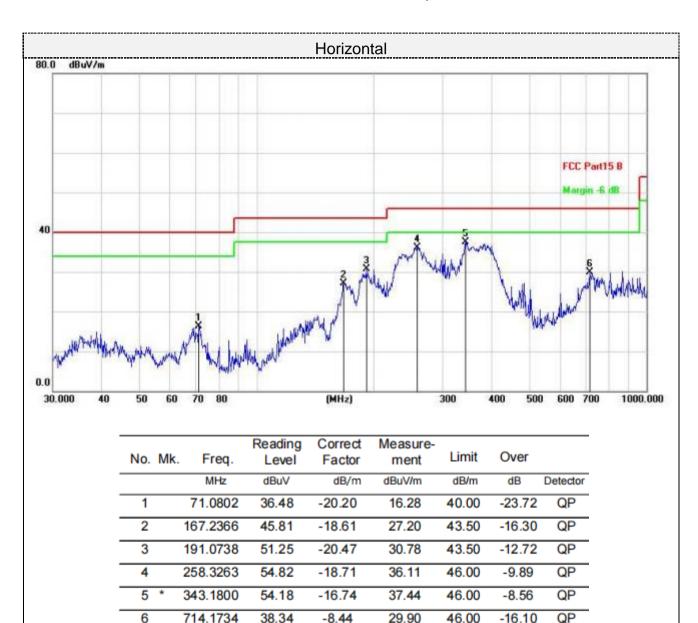


| Test environment: | Temp.:     | 25 °C | Humid.: | 52% | Press.: | 1012mbar |
|-------------------|------------|-------|---------|-----|---------|----------|
| Test voltage:     | AC 120V, 6 | 0Hz   |         |     |         |          |
| Test results:     | Pass       |       |         |     |         |          |

#### Remarks:

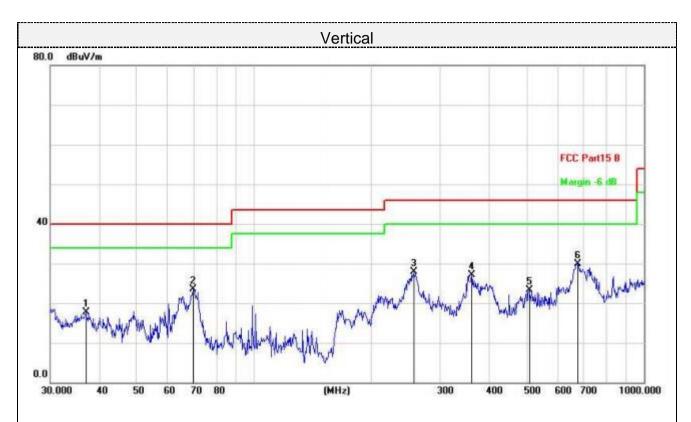
- 1. Only the worst case Main Antenna test data.
- 2.Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

#### Measurement data:


#### ■ 9kHz~30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.




#### ■ Below 1GHz

Pre-scan all test modes, found worst case at 802.11b 2437MHz, and so only show the test result of 802.11b 2437MHz



Final Level = Receiver Read level + Correct Factor





| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|-------|--------|----------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dB/m  | dB     | Detector |
| 1   |     | 37.0248  | 35.56            | -17.81            | 17.75            | 40.00 | -22.25 | QP       |
| 2   |     | 69.6003  | 43.45            | -19.89            | 23.56            | 40.00 | -16.44 | QP       |
| 3   |     | 256.5210 | 46.59            | -18.72            | 27.87            | 46.00 | -18.13 | QP       |
| 4   |     | 361.7139 | 44.05            | -16.91            | 27.14            | 46.00 | -18.86 | QP       |
| 5   |     | 508.2581 | 35.95            | -12.67            | 23.28            | 46.00 | -22.72 | QP       |
| 6   | *   | 675.2078 | 39.07            | -9.11             | 29.96            | 46.00 | -16.04 | QP       |

Final Level = Receiver Read level + Correct Factor



#### ■ Above 1-25GHz

# 802.11b:Lowest

### Horizontal:

|           |               | Antenna |            | Preamp |                |          |        |                  |
|-----------|---------------|---------|------------|--------|----------------|----------|--------|------------------|
| Frequency | Meter Reading | Factor  | Cable Loss | Factor | Emission Level | Limits   | Margin |                  |
| (MHz)     | (dBµV)        | (dB/m)  | (dB)       | (dB)   | (dBµV/m)       | (dBµV/m) | (dB)   | Detector<br>Type |
| 4824      | 52.30         | 31.40   | 8.18       | 31.50  | 60.38          | 74.00    | -13.62 | peak             |
| 4824      | 37.15         | 31.40   | 8.18       | 31.50  | 45.23          | 54.00    | -8.77  | AVG              |
| 7236      | 45.22         | 35.80   | 10.83      | 31.40  | 60.45          | 74.00    | -13.55 | peak             |
| 7236      | 28.64         | 35.80   | 10.83      | 31.40  | 43.87          | 54.00    | -10.13 | AVG              |
|           |               |         |            |        |                |          |        |                  |
|           |               |         |            |        |                |          |        |                  |

# Vertical:

|           |               | Antenna |            | Preamp |                |          |        |          |
|-----------|---------------|---------|------------|--------|----------------|----------|--------|----------|
| Frequency | Meter Reading | Factor  | Cable Loss | Factor | Emission Level | Limits   | Margin |          |
|           |               |         |            |        |                |          |        | Detector |
| (MHz)     | (dBµV)        | (dB/m)  | (dB)       | (dB)   | (dBµV/m)       | (dBµV/m) | (dB)   | Type     |
| 4824      | 51.63         | 31.40   | 8.18       | 31.50  | 59.71          | 74.00    | -14.29 | peak     |
| 4824      | 36.84         | 31.40   | 8.18       | 31.50  | 44.92          | 54.00    | -9.08  | AVG      |
| 7236      | 44.26         | 35.80   | 10.83      | 31.40  | 59.49          | 74.00    | -14.51 | peak     |
| 7236      | 29.07         | 35.80   | 10.83      | 31.40  | 44.30          | 54.00    | -9.70  | AVG      |
|           |               |         |            |        |                |          |        |          |
|           |               |         |            |        |                |          |        |          |



### 802.11b:Middle

### Horizontal:

|           |               | Antenna |            | Preamp |                |          |        |                  |
|-----------|---------------|---------|------------|--------|----------------|----------|--------|------------------|
| Frequency | Meter Reading | Factor  | Cable Loss | Factor | Emission Level | Limits   | Margin |                  |
| (MHz)     | (dBµV)        | (dB/m)  | (dB)       | (dB)   | (dBµV/m)       | (dBµV/m) | (dB)   | Detector<br>Type |
| 4874      | 52.31         | 31.40   | 9.17       | 32.10  | 60.78          | 74.00    | -13.22 | peak             |
| 4874      | 37.41         | 31.40   | 9.17       | 32.10  | 45.88          | 54.00    | -8.12  | AVG              |
| 7311      | 44.15         | 35.80   | 10.83      | 31.40  | 59.38          | 74.00    | -14.62 | peak             |
| 7311      | 28.81         | 35.80   | 10.83      | 31.40  | 44.04          | 54.00    | -9.96  | AVG              |
|           |               |         |            |        |                |          |        |                  |
|           |               |         |            |        |                |          |        |                  |

# Vertical:

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

|           | Tiloui.       | A m4 m m m | ı          | Draaman | 1 1            |          |        |          |
|-----------|---------------|------------|------------|---------|----------------|----------|--------|----------|
| _         |               | Antenna    |            | Preamp  |                |          |        |          |
| Frequency | Meter Reading | Factor     | Cable Loss | Factor  | Emission Level | Limits   | Margin |          |
|           |               |            |            |         |                |          |        | Detector |
| (MHz)     | (dBµV)        | (dB/m)     | (dB)       | (dB)    | (dBµV/m)       | (dBµV/m) | (dB)   | Type     |
|           |               |            |            |         |                |          |        |          |
| 4874      | 51.36         | 31.40      | 9.17       | 32.10   | 59.83          | 74.00    | -14.17 | peak     |
|           |               |            |            |         |                |          |        |          |
| 4874      | 36.04         | 31.40      | 9.17       | 32.10   | 44.51          | 54.00    | -9.49  | AVG      |
|           |               |            |            |         |                |          |        |          |
| 7311      | 42.96         | 35.80      | 10.83      | 31.40   | 58.19          | 74.00    | -15.81 | peak     |
|           |               |            |            |         |                |          |        |          |
| 7311      | 29.30         | 35.80      | 10.83      | 31.40   | 44.53          | 54.00    | -9.47  | AVG      |
|           |               |            |            |         |                |          |        |          |
|           |               |            |            |         |                |          |        |          |
|           |               |            |            |         |                |          |        |          |
|           |               |            |            |         |                |          |        |          |



# 802.11b:Highest

#### Horizontal:

|           |               | Antenna |            | Preamp |                |          |        |                  |
|-----------|---------------|---------|------------|--------|----------------|----------|--------|------------------|
| Frequency | Meter Reading | Factor  | Cable Loss | Factor | Emission Level | Limits   | Margin |                  |
| (MHz)     | (dBµV)        | (dB/m)  | (dB)       | (dB)   | (dBµV/m)       | (dBµV/m) | (dB)   | Detector<br>Type |
| 4924      | 50.23         | 31.40   | 9.17       | 32.10  | 58.7           | 74       | -15.3  | peak             |
| 4924      | 35.64         | 31.40   | 9.17       | 32.10  | 44.11          | 54       | -9.89  | AVG              |
| 7386      | 44.25         | 35.80   | 10.83      | 31.40  | 59.48          | 74       | -14.52 | peak             |
| 7386      | 29.61         | 35.80   | 10.83      | 31.40  | 44.84          | 54       | -9.16  | AVG              |
|           |               |         |            |        |                |          |        |                  |
|           |               |         |            |        |                |          |        |                  |

#### Vertical:

|           |               | Antenna |            | Preamp |                |          |        |          |
|-----------|---------------|---------|------------|--------|----------------|----------|--------|----------|
| Frequency | Meter Reading | Factor  | Cable Loss | Factor | Emission Level | Limits   | Margin |          |
|           |               |         |            |        |                |          |        | Detector |
| (MHz)     | (dBµV)        | (dB/m)  | (dB)       | (dB)   | (dBµV/m)       | (dBµV/m) | (dB)   | Type     |
| 4924      | 48.67         | 31.40   | 9.17       | 32.10  | 57.14          | 74       | -16.86 | peak     |
| 4924      | 35.29         | 31.40   | 9.17       | 32.10  | 43.76          | 54       | -10.24 | AVG      |
| 7386      | 44.08         | 35.80   | 10.83      | 31.40  | 59.31          | 74       | -14.69 | peak     |
| 7386      | 28.57         | 35.80   | 10.83      | 31.40  | 43.8           | 54       | -10.2  | AVG      |
|           |               |         |            |        |                |          |        |          |
|           |               |         |            |        |                |          |        |          |

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.



# 7. Test Setup Photo

Reference to the appendix I for details.

# 8. EUT Constructional Details

Reference to the appendix II for details.

-----End-----