

Intertek ETL SEMKO Korea Ltd.
Intertek Building, 3, Gongdan-ro
160beon-gil, Gunpo-si, Gyeonggi-do, 15845 Korea
Tel +82 2 567 7474
Fax +82 2 567 8482
intertek.com

TEST REPORT

Report Number 191000065SEL-EMC1(R1)

Applicant Name/Address KD Navien Co.,Ltd.

95, Suworam-gil, Seotan-myeon, Pyeongtaek-si, Gyeonggi-do,

Republic of Korea

Test Sample Description

- Product Bed warmer

- Model and/or Brand name: EQM580-KSUS

- Variant model name..... EQM580-QSUS, EQM580-SSUS

- Manufacturer Name / Address ..: KD Navien Co., Ltd.

95, Suworam-gil, Seotan-myeon, Pyeongtaek-si, Gyeonggi-do,

Republic of Korea

- Rating(s) AC 120 V, 60 Hz

Receipt of sample(s) 06 May 2020

Date of Test 10 Jun. 2020

Test Method(s) FCC Part 15 Subpart B (Class B)

Test Results & Uncertainty See EMC Results Conclusion

Issue date 11 Jun. 2020

Note 1. The results shown in this test report refer only to the sample(s) tested.

Note 2: This report shall not be reproduced except in full, without the written approval of Intertek.

Note 3: This laboratory is not accredited for the test results marked as $\ensuremath{^*}.$

Tested by; Approved by;

Name: Harry Jeon Name: Rina Bae

EMC Engineer EMC Technical Manager

Intertek ETL SEMKO Korea Ltd.

TRF No. FCC15B_A / Version: 24 Apr 2017

SECTION 1 CONTENTS

SECTION 2 EMC Results Conclusion (with Justification)	3
SECTION 3 Test environment and conditions	3
SECTION 4 EUT Information	4
SECTION 5 TEST CONFIGURATION, Operation mode and SET-UP	5
SECTION 6 EMISSION	6
SECTION 7 Appendix I	10
Photographs of Test Configurations	
SECTION 8 Appendix II	
Photographs of EUT	16
SECTION 9 Appendix III	18
REVISION HISTORY	

SECTION 2 EMC RESULTS CONCLUSION (WITH JUSTIFICATION)

We tested the Bed Warmer, Model: EQM580-KSUS, to determine if it was in compliance with the relevant US standards as marked on the test report.

We found that the unit met the requirement of FCC Part 15 Subpart B standard when tested as received.

			Resu	Results	
Test Items	Applied Standards	Comply	Not Comply	N/A	See Note
Disturbance Voltage	FCC Part 15 Subpart B	\boxtimes			\boxtimes
Radiated disturbance (Below 1 GHz)	FCC Part 15 Subpart B	\boxtimes			\boxtimes
Radiated disturbance (Above 1 GHz)	FCC Part 15 Subpart B	\boxtimes			\boxtimes

Note 1) When determining the test conclusion, the Measurement Uncertainty of test has been considered.

Measurement Uncertainty

Conducted Emission	150 kHz – 30 MHz	U = 3.3 [dB]	
	(Confidence level approximately 95 %, $k = 2$)		
	9 kHz – 30 MHz	<i>U</i> = 4.5 [dB]	
	30 MHz – 1 000 MHz	Horizontal: <i>U</i> = 4.3 [dB]	
		Vertical: <i>U</i> = 4.5 [dB]	
Radiated Emissions	1 GHz – 6 GHz	Horizontal: <i>U</i> = 5.6 [dB]	
Nadiated Lillissions	1 0112 - 0 0112	Vertical: <i>U</i> = 5.4 [dB]	
	6 GHz – 18 GHz	Horizontal: <i>U</i> = 5.8 [dB]	
	0 0112 - 18 0112	Vertical: <i>U</i> = 5.8 [dB]	
	(Confidence level approximately 95 %, $k = 2$)		

SECTION 3 TEST ENVIRONMENT AND CONDITIONS

Test Environment

Test Item	Test Site	Test date (MM-DD)	Temp (℃)	Humidity (% R.H.)	Pressure (kPa)
Disturbance Voltage	Shielded	06-10	23.4 ± 0.5	38.5 ± 0.5	
Disturbance voltage	Room #2	00-10	25.4 ± 0.5	36.5 ± 0.5	_
Radiated disturbance	10 m	06-10	23.6 ± 0.5	38.7 ± 0.5	_
(Below 1 GHz)	chamber	00-10	23.0 ± 0.3	36.7 ± 0.3	_
Radiated disturbance	10 m	06-10	23.6 ± 0.5	38.7 ± 0.5	
(Above 1 GHz)	chamber	06-10	23.0 ± 0.5	36.7 ± 0.5	

TRF No. FCC15B_A / Version: 24 Apr 2017

SECTION 4 EUT INFORMATION

Equipment Under Test (EUT): Bed warmer

Model: EQM580-KSUS

Variant Model: EQM580-QSUS, EQM580-SSUS

Serial No.:

Rated Voltage: AC 120 V, 60 Hz

Tested Voltage: AC 120 V, 60 Hz

Maximum clock frequency: 2 462 MHz

Variant model information: Mat Size Difference

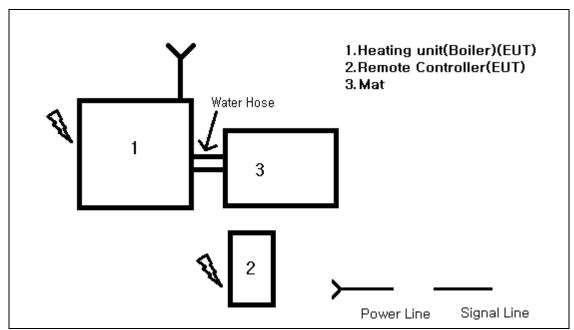
EQM580-KSUS: King size EQM580-QSUS: Queen size EQM580-SSUS: Single size

SECTION 5 TEST CONFIGURATION, OPERATION MODE AND SET-UP

Test Ancillary Equipment

Equipn	nent	Model No.	Serial No.	Manufacturer	Note
Pod warmer	Heating unit(Boiler)	EQM580-KSUS		KD Navien Co.,Ltd.	EUT
Bed warmer	Remote	EUNIS80-KSUS	-	KD Navien Co.,Ltd.	EUI
	Controller				

^{*}Note: Heating unit(Boiler) and Remote Controller are included in Bed warmer, the EUT.


Used cable description

Start		End		cal	able Information	
Name	I/O Port	Name	I/O Port	Length (m)	Shield	With Ferrite
EUT ((Heating unit(Boiler))	AC IN	AC Power Source	-	1.7	Unshielded	-
EUT (Remote Controller)	-	-	-	-	-	-

Test Operation Mode

- Maximum temperature operating mode: It was tested after setting the maximum temperature.

Test Setup

TRF No. FCC15B_A / Version: 24 Apr 2017

SECTION 6 EMISSION

Radiated disturbance test

Test Method and Summary

Test standard: FCC Part 15 Subpart B

Used Test Equipment

Control No.	Equipment	Manufacturer	Model No.	Serial No.	Next Cal.	Cal Int.
EMC002	EMI Test Receiver	R & S	ESU26	100590	2021.01.02	1Y
EMC025	Biconilog (Type7)	ETS-Lindgren	3142E	00203547	2021.02.25	2Y
EMC029	DRG Horn (Medium)	ETS-Lindgren	3117	00203763	2021.02.25	2Y
EMC074	AMP	R & S	SCU-01D	1904843	2020.06.28	1Y
EMC077	AMP	R & S	SCU-18D	1952128	2020.06.28	1Y

Operating Environment

Test Voltage: AC 120 V, 60 Hz

Test Setup and Procedure

The EUT along with its peripherals were placed on a non-conducted table with a height of 0.8 m in height table above the reference ground plane.

Rotate the EUT from 0° to 360° and position the receiving antenna at heights from 1 m to 4 m above the reference ground plane continuously to determine associated with higher emission levels and record them.

The measurement was made in both the vertical and horizontal polarization, and the maximum value is presented in the report.

For measurements above 1 GHz, place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.

The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal.

The final measurement antenna elevation shall be that which maximizes the emissions.

TRF No. FCC15B_A / Version: 24 Apr 2017

Limits

- The test frequency range of Radiated Disturbance measurements are listed below.

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 108	1 000
108 – 500	2 000
500 – 1 000	5 000
Above 1 000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

(1) Limit for Radiated Emission below 1 000 MHz

Frequency range (MHz)	Class A Equipment (10 m distance) Quasi-peak (dBµV/m)	Class B Equipment (3 m distance) Quasi-peak (dBµV/m)
30 to 88	39.0	40
88 to 216	43.5	43.5
216 to 960	46.4	46
960 to 1 000	49.5	54

Note 1) The lower limit shall apply at the transition frequency.

Note 2) Additional provisions may be required for cases where interference occurs.

Note 3) According to 15.109(g), as an alternative to the radiated emission limit shown above, digital devices may be shown to comply with the standards (CISPR), Pub. 22 shown as below.

Note 4) Result $(dB\mu V/m)$ = Reading $(dB\mu V)$ + Corr. (Ant. Factor (dB/m) + Cable Loss (dB) - Amp. Gain (dB)) Result: QuasiPeak, Reading: Receiver reading value, Corr.: Correction Factor Margin = Limit - Result

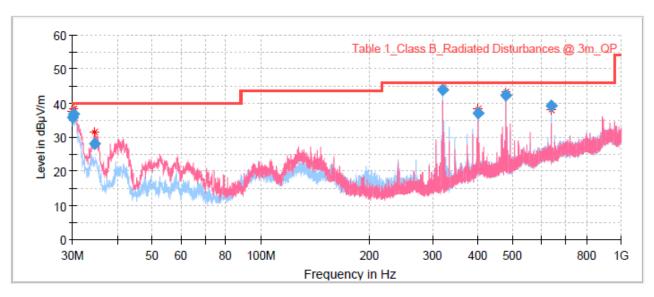
Frequency range (MHz)	Class A Equipment (10 m distance) Quasi-peak (dBµV/m)	Class B Equipment (10 m distance) Quasi-peak (dBµV/m)
30 to 230	40	30
230 to 1 000	47	37

(2) Limits for Radiated Emission above 1 000 MHz at a measuring distance of 3 m

Frequency	Class A E	quipment	Class B Equipment		
(GHz)	Peak (dBμV/m)	Average (dBμV/m)	Peak (dBμV/m)	Average (dBμV/m)	
1 to 40	80	60	74	54	

Note 1) Result (dBμV/m) = Reading (dBμV) + Corr. (Ant. Factor (dB/m) + Cable Loss (dB) – Amp. Gain (dB))
Result: Final value, Reading: Receiver reading value, Corr.: Correction Factor
Margin = Limit – Result

Note 2) If measured at a distance other than 3 m, apply the following formula to compensate the measured value.


Em = Edm + 20*log(d/3) (d: Measured distance)

Em: Result of measured distance correction, Edm: Measured value

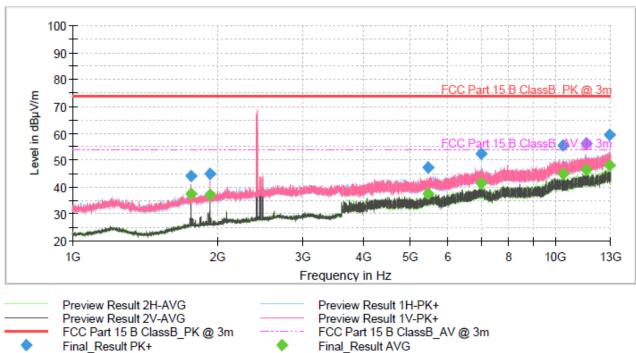
Test Data

[30 MHz ~ 1 GHz]

Preview Result 1H-PK+ Preview Result 1V-PK+

Critical_Freqs PK+
Table 1_Class B_Radiated Disturbances @ 3m_QP

Final_Result QPK


Final Result

Frequency	QuasiPeak	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(cm)		(deg)	(dB)
30.00	35.78	40.00	4.22	104.0	٧	0.00	-6.88
30.12	36.76	40.00	3.24	100.0	V	0.00	-6.95
34.45	28.21	40.00	11.79	102.0	٧	208.00	-9.44
320.00	43.83	46.00	2.17	220.0	Н	108.00	-7.33
400.01	37.14	46.00	8.86	104.0	V	166.00	-2.56
480.02	42.44	46.00	3.56	100.0	٧	170.00	-1.76
640.01	39.17	46.00	6.83	120.0	Н	45.00	1.59

[1 GHz ~ 13 GHz]

Final_Result

Frequency	MaxPeak	Average	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)		(deg)	(dB)
1759.94	-	37.56	54.00	16.44	100.0	V	294.00	1.11
1759.94	44.28		74.00	29.72	100.0	V	294.00	1.11
1919.86	-	37.16	54.00	16.84	100.0	V	292.00	2.77
1919.86	45.08	-	74.00	28.92	100.0	V	292.00	2.77
5428.89	47.51	-	74.00	26.49	125.0	V	236.00	10.99
5428.89	-	37.63	54.00	16.37	125.0	V	236.00	10.99
7024.77	52.37		74.00	21.63	184.0	Н	342.00	14.61
7024.77		41.33	54.00	12.67	184.0	Н	342.00	14.61
10345.56	55.68		74.00	18.32	111.0	V	126.00	18.36
10345.56	I	44.79	54.00	9.21	111.0	V	126.00	18.36
11561.20	56.23		74.00	17.77	125.0	Н	346.00	20.00
11561.20	-	46.67	54.00	7.33	125.0	Н	346.00	20.00
12898.61	59.24	-	74.00	14.76	225.0	Н	104.00	21.52
12898.61		48.04	54.00	5.96	225.0	Н	104.00	21.52

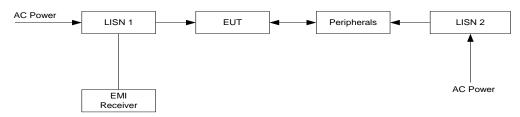
^{* 2.4} GHz EUT Frequency

Disturbance Voltage test

Test Method and Summary

Test standard: FCC Part 15 Subpart B

Used Test Equipment


Control No.	Equipment	Manufacturer	Model No.	Serial No.	Next Cal.	Cal Int.
EMC004	EMI Test Receiver	R & S	ESR7	101560	2021.01.02	1Y
EMC007	Two-Line V-Network	R & S	ENV216	101982	2020.10.15	1Y

Operating Environment

Test Voltage: AC 120 V, 60 Hz

Test Setup and Procedure

<u>Disturbance Voltage Test at Mains Terminal:</u>

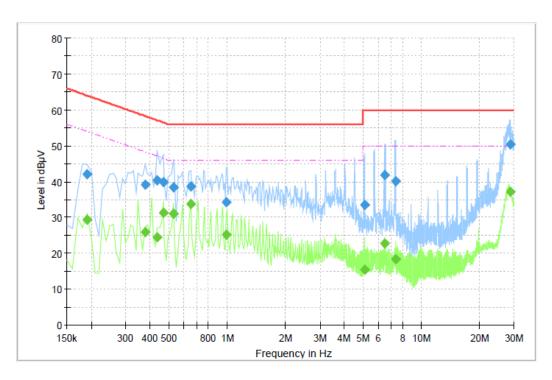
The EUT along with its peripherals were placed on a 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 m space from a vertical reference plane. The EUT was connected to power mains through a line impedance stabilization network (LISN), which provided 50 characteristic coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room. The excess power cable between the EUT and the LISN was bundled.

<u>Limits</u>

Eroguanov rango	Limits dB(μV)						
Frequency range (MHz)	Quas	i-peak	Average				
(IVIHZ)	Class A	Class B	Class A	Class B			
0.15 to 0.50	79	66 to 56	66	56 to 46			
0.50 to 5	73	56	60	46			
5 to 30	- /3	60	60	50			

Note 1) The lower limit shall apply at the transition frequencies.

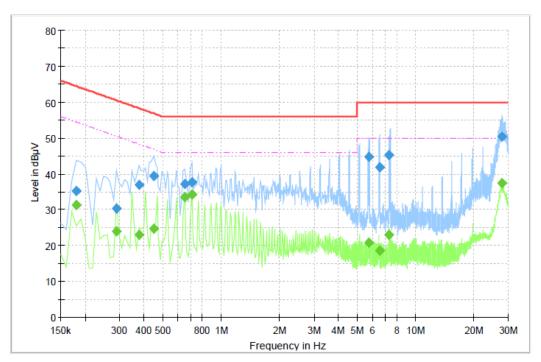
Note 2) The limit decreases linearly with the logarithm of the frequency in the range (0.15 \sim 0.5) MHz.


Note 3) Result (dB μ V) = Reading (dB μ V) + Corr. (Insertion Loss (dB) + Cable Loss (dB))

Result: QuasiPeak/CAverage, Reading: Receiver reading value, Corr.: Correction Factor Margin = Limit – Result

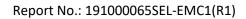
Test Data

[Live]



Final_Result

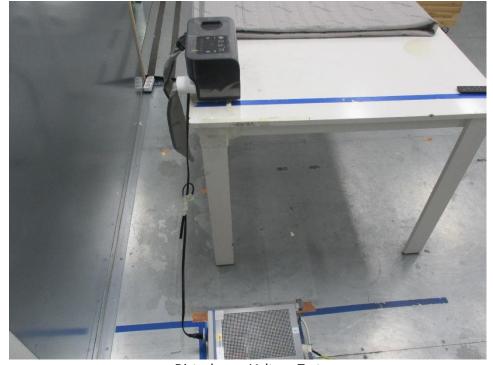
Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Line	Filter	Corr. (dB)
0.189800		29.32	54.05	24.73	L1	ON	10.0
0.189800	42.14		64.05	21.91	L1	ON	10.0
0.378850		26.01	48.31	22.30	L1	ON	10.0
0.378850	39.14		58.31	19.17	L1	ON	10.0
0.438550		24.51	47.09	22.57	L1	ON	10.0
0.438550	40.30		57.09	16.79	L1	ON	10.0
0.468400		31.37	46.54	15.17	L1	ON	10.0
0.468400	39.79		56.54	16.75	L1	ON	10.0
0.528100		31.08	46.00	14.92	L1	ON	10.0
0.528100	38.51		56.00	17.49	L1	ON	10.0
0.647500		33.86	46.00	12.14	L1	ON	9.9
0.647500	38.72		56.00	17.28	L1	ON	9.9
0.995750		25.18	46.00	20.82	L1	ON	9.9
0.995750	34.17	-	56.00	21.83	L1	ON	9.9
5.115050		15.35	50.00	34.65	L1	ON	9.8
5.115050	33.45	-	60.00	26.55	L1	ON	9.8
6.448350		22.80	50.00	27.20	L1	ON	9.9
6.448350	41.86		60.00	18.14	L1	ON	9.9
7.383650		18.28	50.00	31.72	L1	ON	9.9
7.383650	40.05		60.00	19.95	L1	ON	9.9
28.746300		37.21	50.00	12.79	L1	ON	10.1
28.746300	50.36		60.00	9.64	L1	ON	10.1



[Neutral]

Final_Result

Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Line	Filter	Corr. (dB)
0.179850		31.36	54.49	23.14	N	ON	10.0
0.179850	35.22		64.49	29.28	N	ON	10.0
0.289300		24.06	50.54	26.48	N	ON	9.8
0.289300	30.40		60.54	30.15	N	ON	9.8
0.378850		23.05	48.31	25.25	N	ON	10.0
0.378850	37.04		58.31	21.27	N	ON	10.0
0.448500		24.81	46.90	22.09	N	ON	10.0
0.448500	39.43		56.90	17.47	N	ON	10.0
0.647500	-	33.56	46.00	12.44	N	ON	9.9
0.647500	37.22		56.00	18.78	N	ON	9.9
0.707200		34.22	46.00	11.78	N	ON	9.9
0.707200	37.75		56.00	18.25	N	ON	9.9
5.781700		20.72	50.00	29.28	N	ON	9.9
5.781700	44.83		60.00	15.17	N	ON	9.9
6.537900		18.69	50.00	31.31	N	ON	9.8
6.537900	41.86		60.00	18.14	N	ON	9.8
7.333900		22.96	50.00	27.04	N	ON	9.9
7.333900	45.33		60.00	14.67	N	ON	9.9
27.940350		37.47	50.00	12.53	N	ON	10.0
27.940350	50.40		60.00	9.60	N	ON	10.0



SECTION 7 APPENDIX I

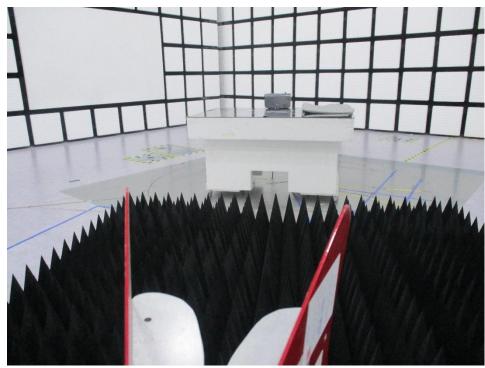
Photographs of Test Configurations



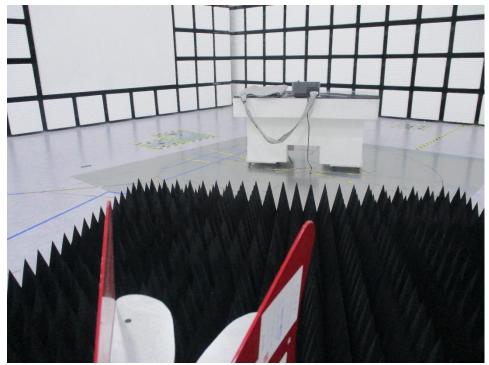
Disturbance Voltage Test



Disturbance Voltage Test



Radiated disturbance (30 MHz ~ 1 GHz)



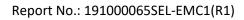
Radiated disturbance (30 MHz ~ 1 GHz)

Radiated disturbance (1 GHz ~ 13 GHz)

Radiated disturbance (1 GHz ~ 13 GHz)

SECTION 8 APPENDIX II

Photographs of EUT


[Heating unit(Boiler)]

Front

Rear

[Remote Controller]

Front

Rear

TRF No. FCC15B_A / Version: 24 Apr 2017

SECTION 9 APPENDIX III

REVISION HISTORY

No.	Date	Description of Revision	Revised by
	444	It has been revised from the report number 191000065SEL-EMC1 as below.	
1	11 Jun. 2020	 Main PCB, Power PCB, Panel PCB, and Waterbank have been changed. 	Rina Bae