

FCC PART 15 SUBPART C TEST REPORT **FCC PART 15.247**

Report Reference No.....: CTA24050902301 FCC ID.....:: 2ASRB-QF258

Compiled by

(position+printed name+signature)..: File administrators Jinghua Xiao

Jungtua xorano Lushan Kong

Supervised by

(position+printed name+signature)..: Test Engineer Lushan Kong

Approved by

(position+printed name+signature)..: Manager Eric Wang

Date of issue....: Apr. 27, 2024

Representative Laboratory Name.: Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Address

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name..... Zhuhai Quin Technology Co., Ltd

ROOM 103-029(CENTRALIZED OFFICE AREA), 1F, BUILDING 1, Address:

NO.18 FUTIAN ROAD, XIANGZHOU DISTRICT, ZHUHAI CITY,

CHINA

Test specification:

FCC Part 15.247: Operation within the bands 902-928 MHz, 2400-Standard:

2483.5 MHz and 5725-5850 MHz

TRF Originator..... Shenzhen Global Test Service Co., Ltd.

Master TRF..... Dated 2014-12

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description **Thermal Receipt Printer**

Trade Mark:: N/A

Manufacturer: Zhuhai Quin Technology Co., Ltd.

Model/Type reference: QF258

List Models: Q58, QY58, QF2, Q2, X258, X58, AM258, AM58, A2, AM2

Modulation Type: GFSK, π/4-DQPSK, 8-DPSK Operation Frequency.....: From 2402MHz to 2480MHz

Hardware Version: N/A Software Version:

DC 12V/2A by Adapter Rating:

Result: **PASS** Report No.: CTA24050902301 Page 2 of 36

TEST REPORT

Test Report No. :	CTA24050902301	Apr. 27, 2024
rest Report No	G1A24030902301	Date of issue

Equipment under Test : Thermal Receipt Printer

Model /Type : QF258

Listed model : Q58, QY58, QF2, Q2, X258, X58, AM258, AM58, A2, AM2

Applicant : Zhuhai Quin Technology Co., Ltd

ROOM 103-029(CENTRALIZED OFFICE AREA), 1F, BUILDING 1,

Address : NO.18 FUTIAN ROAD, XIANGZHOU DISTRICT, ZHUHAI CITY,

CHINA

Manufacturer : Zhuhai Quin Technology Co., Ltd

ROOM 103-029(CENTRALIZED OFFICE AREA), 1F, BUILDING 1,

Address : NO.18 FUTIAN ROAD, XIANGZHOU DISTRICT, ZHUHAI CITY,

CHINA

Test Result: PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1. TEST STANDARDS	4
2. SUMMARY	5
2.1. General Remarks	5
2.2. Product Description	5
2.3. Equipment Under Test	6
2.4. Short description of the Equipment under Test (EUT)	6
2.5. EUT operation mode	6
2.6. Block Diagram of Test Setup	7
2.7. Related Submittal(s) / Grant (s)	7
2.8. EUT Exercise Software	7
2.9. Special Accessories	7
2.10. External I/O Cable	7
2.11. Modifications	7
3. TEST ENVIRONMENT	8
3.1. Address of the test laboratory	8
3.2. Test Facility	
3.3. Environmental conditions	8
3.4. Statement of the measurement uncertainty	8
3.5. Summary of measurement results	9
3.6. Equipments Used during the Test	10
4. TEST CONDITIONS AND RESULTS	11
4.1. AC Power Conducted Emission	11
4.2. Radiated Emission	13
4.3. Maximum Peak Output Power	18
4.4. 99% and 20dB Bandwidth	
4.5. Frequency Separation	20
4.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission	21
4.7. Number of hopping frequency	23
4.8. Time Of Occupancy(Dwell Time)	24
4.9. Pseudorandom Frequency Hopping Sequence	25
4.10. Antenna Requirement	26
5. TEST SETUP PHOTOS OF THE EUT	27
6. EXTERNAL AND INTERNAL PHOTOS OF THE EUT	29
6.1. External photos of the EUT	_
6.2. Internal photos of the EUT	

Report No.: CTA24050902301 Page 4 of 36

1. TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2020</u>: American National Standard for Testing Unlicensed Wireless Devices <u>KDB 558074 D01 15.247 Meas Guidance v05r02</u>: Digital Transmission Systems (DTS) and Frequency Hopping measurement procedures Report No.: CTA24050902301 Page 5 of 36

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Mar. 20, 2024
Testing commenced on	:	Mar. 20, 2024
Testing concluded on	:	Apr. 26, 2024

2.2. Product Description

Product Name	Thermal Receipt Printer	
Trade Mark	N/A	
Model/Type reference	QF258	
List Models	Q58, QY58, QF2, Q2, X258, X58, AM258, AM58, A2, AM2	
Model Declaration	PCB board, structure and internal of these model(s) are the same, Only the model name different, So no additional models were tested.	
Power supply:	DC 12V/2A by Adapter	
Sample ID	CTA240509023-S0001-1# & CTA240509023-S0001-2#	
Bluetooth		
Operation frequency	2402-2480MHz	
Channel Number	79 channels for Bluetooth (DSS) 40 channels for Bluetooth (DTS)	
Channel Spacing	1MHz for Bluetooth (DSS) 2MHz for Bluetooth (DTS)	
Modulation Type	GFSK, π/4-DQPSK, 8-DPSK for Bluetooth (DSS) GFSK for Bluetooth (DTS)	
Antenna Description PCB Antenna, 2.07 dBi(Max.) for Bluetooth		

Report No.: CTA24050902301 Page 6 of 36

2.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V/ 50 Hz	0	120V/60Hz
		•	12 V DC	0	24 V DC
		0	Other (specified in blank below)		

DC 12.0V

2.4. Short description of the Equipment under Test (EUT)

This is a Thermal Receipt Printer.

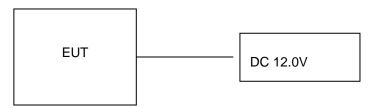
For more details, refer to the user's manual of the EUT.

2.5. EUT operation mode

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT. Channel 00/39/78 was selected to test.

Mode of Operations		icy Range IHz)	Data Rate (Mbps)			
	24	402	1/2/3			
(BDR/EDR)	2441		1/2/3			
	2480		1/2/3			
For Conducted Emission						
Test Mode			TX Mode			
For Radiated Emission						
Test Mode			TX Mode			

Channel	Frequency(MHz)	Channel	Frequency(MHz)
00	2402	40	2442
01	2403	41	2443
02	2404	42	2444
38	2440	78	2480
39	2441		


AC conducted emission pre-test at both at AC 120V/60Hz and AC 240V/50Hz modes, recorded worst case(AC 120V/60Hz).

Worst-case mode and channel used for 150 KHz-30 MHz power line conducted emissions was the mode and channel with the highest output power that was determined to be TX (1Mbps).

Worst-case mode and channel used for 9 KHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be TX(1Mbps-MCH).

Report No.: CTA24050902301 Page 7 of 36

2.6. Block Diagram of Test Setup

2.7. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2ASRB-QF258** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8. EUT Exercise Software

The system enters the engineering mode through the instructions provided by the application (FCC test tool v1.6), tests under continuous transmission conditions, and changes the test channel.

2.9. Special Accessories

Manufacturer	Description	Model	Serial Number	Certificate
XING YUAN ELECTRONICS CO LTD	AC Adapter	XY-1202000-UW		SDOC

2.10. External I/O Cable

I/O Port Description	Quantity	Cable
DC IN Port	1	1.0M, Unscreened Cable
CASH Port	1	N/A
USB Port	1	N/A

2.11. Modifications

No modifications were implemented to meet testing criteria.

Report No.: CTA24050902301 Page 8 of 36

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Baoʻan District, Shenzhen, China

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	/	0.57 dB	(1)
Spectrum bandwidth	/	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: CTA24050902301 Page 9 of 36

3.5. Summary of measurement results

	Applied Standard: FCC Part 15 Subpart C						
FCC Rules	Description of Test	Test Sample	Result	Remark			
§15.247(b)(1)	Maximum Conducted Output Power	CTA240509023-S0001-1#	Compliant	Appendix A			
§15.247(c)	Frequency Separation	CTA240509023-S0001-1#	Compliant	Appendix A			
§15.247(c)	99% and 20 dB Bandwidth	CTA240509023-S0001-1#	Compliant	Appendix A			
§15.247(a)(1)(ii)	Number of Hopping Frequency	CTA240509023-S0001-1#	Compliant	Appendix A			
§15.247(a)(1)(iii)	Time Of Occupancy (Dwell Time)			Appendix A			
§15.209, §15.205	Conducted Spurious Emissions and Band Edges Test	CTA240509023-S0001-1#	Compliant	Appendix A			
§15.209, §15.247(d)	Radiated Spurious Emissions	CTA240509023-S0001-1# CTA240509023-S0001-2#	Compliant	Note 1			
§15.205	Emissions at Restricted Band	CTA240509023-S0001-1#	Compliant	Appendix A			
§15.207(a)	AC Conducted Emissions	CTA240509023-S0001-2#	Compliant	Note 1			
§15.203 §15.247(c)	Antenna Requirements	CTA240509023-S0001-1#	Compliant	Note 1			
§15.247(i)§2.10 91	RF Exposure	/	Compliant	Note 2			

Remark:

- The measurement uncertainty is not included in the test result.

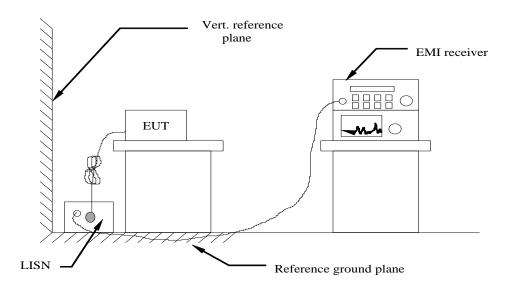
 NA = Not Applicable; NP = Not Performed

 Note 1 Test results inside test report; 1.
- 2.
- 3.
- Note 2 Test results in other test report (MPE Report). 4.
- We tested all test mode and recorded worst case in report

Report No.: CTA24050902301 Page 10 of 36

3.6. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	CTA-308	2023/08/02	2024/08/01
LISN	R&S	ENV216	CTA-314	2023/08/02	2024/08/01
EMI Test Receiver	R&S	ESPI	CTA-307	2023/08/02	2024/08/01
EMI Test Receiver	R&S	ESCI	CTA-306	2023/08/02	2024/08/01
Spectrum Analyzer	Agilent	N9020A	CTA-301	2023/08/02	2024/08/01
Spectrum Analyzer	R&S	FSP	CTA-337	2023/08/02	2024/08/01
Vector Signal generator	Agilent	N5182A	CTA-305	2023/08/02	2024/08/01
Analog Signal Generator	R&S	SML03	CTA-304	2023/08/02	2024/08/01
Universal Radio Communication	CMW500	R&S	CTA-302	2023/08/02	2024/08/01
Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2023/08/02	2024/08/01
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12
Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
Antenna Tower	Suzhou Keletuo electronic Technology Co., LTD	BK-*AT-BS	N/A	N/A	N/A
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/01
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/01
Directional coupler	NARDA	4226-10	CTA-303	2023/08/02	2024/08/01
High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/01
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/01
Automated filter bank	Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/01
Power Sensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/01
Amplifier	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/01


Note: The Cal.Interval was one year.

Report No.: CTA24050902301 Page 11 of 36

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2020.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2020.
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2020.
- 4 The EUT received DC 5.0V power, the adapter received AC120V/60Hz or AC 240V/50Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

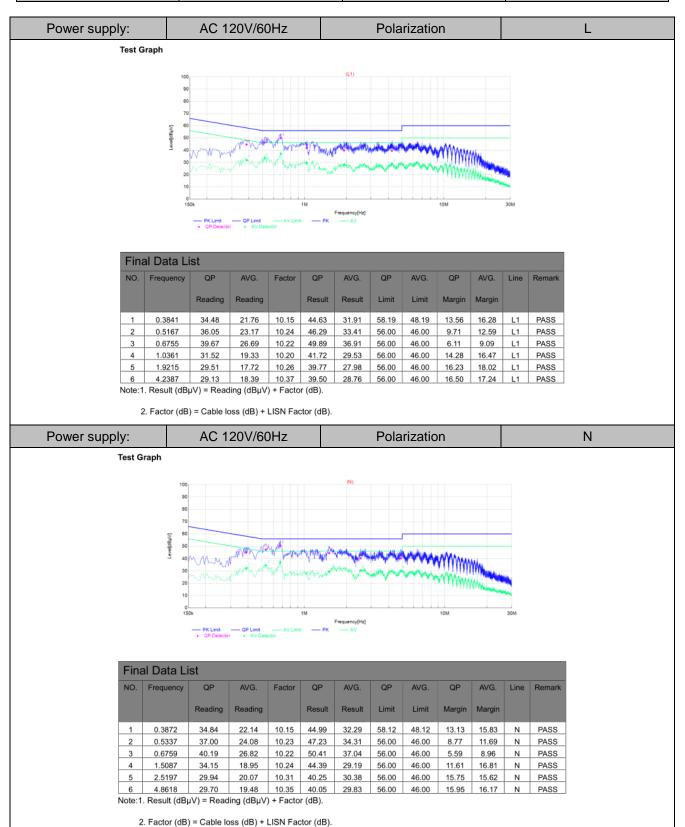
For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Frequency range (MHz)	Limit (dBuV)				
Frequency range (Wiriz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
* Decreases with the logarithm of the frequency.					

DISTURBANCE Calculation

The AC mains conducted disturbance is calculated by adding the 10dB Pulse Limiter and Cable Factor and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

CD (dBuV) = RA (dBuV) + PL (dB) + CL (dB)

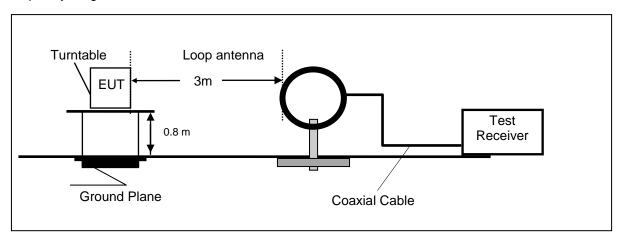

Where CD = Conducted Disturbance	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	PL = 10 dB Pulse Limiter Factor

Report No.: CTA24050902301 Page 12 of 36

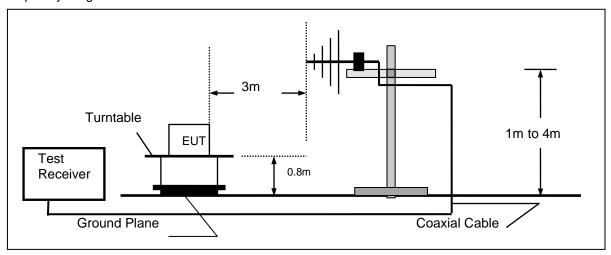
TEST RESULTS

Remark: We measured Conducted Emission at GFSK, $\pi/4$ -DQPSK and 8-DPSK mode in AC 120V/60Hz and AC 240V/50Hz, the worst case was recorded(GFSK 1Mbps-MCH).

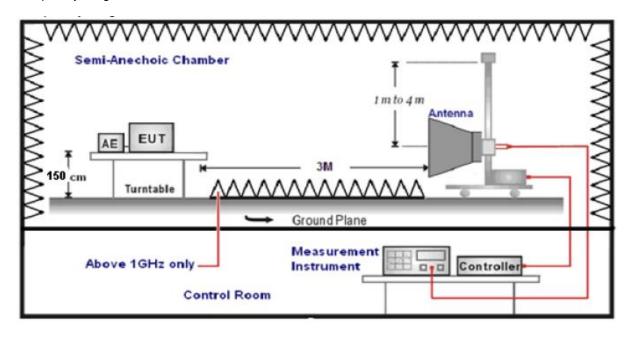
Temperature	25 ℃	Humidity	60%
Test Engineer	Lushan Kong	Configurations	BT



Report No.: CTA24050902301 Page 13 of 36


4.2. Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Report No.: CTA24050902301 Page 14 of 36

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test	Frequency	Test Receiver/Spectrum Setting	Detector
range			
9KHz-1	50KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz	z-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz	·1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
		Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-4	∩C⊔ -	Sweep time=Auto	Peak
IGHZ-4	ОСПИ	Average Value: RBW=1MHz/VBW=10Hz,	reak
		Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

Report No.: CTA24050902301 Page 15 of 36

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBμV/m)	Radiated (μV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Remark: We measured Radiated Emission at GFSK, $\pi/4$ -DQPSK and 8-DPSK mode from 9KHz to 25GHz and recorded worst case at GFSK(1Mbps-MCH) mode.

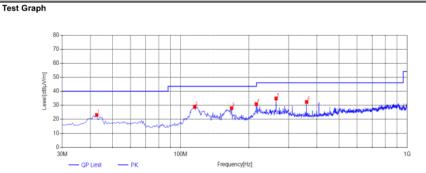
Temperature	25℃	Humidity	60%
Test Engineer	Lushan Kong	Configurations	BT

For 9 KHz~30MHz

Freq.	Level	Over Limit	Over Limit	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	•	See Note

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.


Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

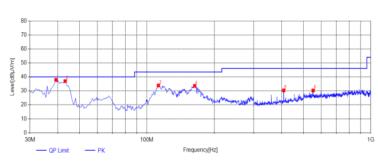
Limit line = specific limits (dBuV) + distance extrapolation factor.

Report No.: CTA24050902301 Page 16 of 36

For 30MHz-1GHz

Horizontal

QP Detector


Susp	Suspected List										
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark
		[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	42.61	34.57	-11.56	23.01	40.00	16.99	100	299	PK	Horizonta	PASS
2	115.36	41.01	-12.13	28.88	43.50	14.62	100	13	PK	Horizonta	PASS
3	167.74	40.75	-12.79	27.96	43.50	15.54	100	60	PK	Horizonta	PASS
4	215.755	40.56	-9.74	30.82	43.50	12.68	100	238	PK	Horizonta	PASS
5	263.77	42.95	-8.12	34.83	46.00	11.17	100	90	PK	Horizonta	PASS
6	359.8	38.29	-5.94	32.35	46.00	13.65	100	93	PK	Horizonta	PASS

Note:1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical

Test Graph

QP Detector

Suspected List											
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark
	[]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	39.215	49.83	-11.97	37.86	40.00	2.14	100	326	PK	Vertical	PASS
2	43.095	48.49	-11.52	36.97	40.00	3.03	100	353	PK	Vertical	PASS
3	112.45	45.74	-11.88	33.86	43.50	9.64	100	282	PK	Vertical	PASS
4	163.375	46.59	-12.98	33.61	43.50	9.89	100	358	PK	Vertical	PASS
5	408.3	35.41	-5.04	30.37	46.00	15.63	100	23	PK	Vertical	PASS
6	552.345	31.73	-1.43	30.30	46.00	15.70	100	2	PK	Vertical	PASS

Note:1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Report No.: CTA24050902301 Page 17 of 36

For 1GHz to 25GHz

GFSK /Channel 0 / 2402 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4804.00	50.70	32.44	30.25	7.95	60.84	74.00	-13.16	Peak	Horizontal
4804.00	34.83	32.44	30.25	7.95	44.97	54.00	-9.03	Average	Horizontal
4804.00	51.14	31.60	36.50	7.00	53.24	74.00	-20.76	Peak	Vertical
4804.00	35.86	31.60	36.50	7.00	37.96	54.00	-16.04	Average	Vertical

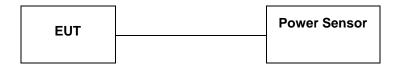
Channel 39 / 2441 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4882.00	49.29	32.52	30.31	8.12	59.62	74.00	-14.38	Peak	Horizontal
4882.00	36.49	32.52	30.31	8.12	46.82	54.00	-7.18	Average	Horizontal
4882.00	49.65	31.02	36.50	7.60	51.77	74.00	-22.23	Peak	Vertical
4882.00	35.29	31.02	36.50	7.60	37.41	54.00	-16.59	Average	Vertical

Channel 78 / 2480 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4960.00	50.41	32.68	30.27	7.88	60.70	74.00	-13.30	Peak	Horizontal
4960.00	36.96	32.68	30.27	7.88	47.25	54.00	-6.75	Average	Horizontal
4960.00	51.22	31.58	36.20	7.82	54.42	74.00	-19.58	Peak	Vertical
4960.00	37.89	31.58	36.20	7.82	41.09	54.00	-12.91	Average	Vertical

Notes:


- 1). Measuring frequencies from 9 KHz~10th harmonic or 26.5GHz (which is less), No emission found between lowest internal used/generated frequency to 30MHz.
- 2). Radiated emissions measured in frequency range from 9 KHz~10th harmonic or 26.5GHz (which is less) were made with an instrument using Peak detector mode.
- 3). Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4). Measured= Reading- Pre. Fac.+ Ant. Fac.+ Cab. Loss
- 5). Margin = Measured- Limit

NOTE: All the modes have been tested and recorded worst mode in the report.

Report No.: CTA24050902301 Page 18 of 36

4.3. Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to ANSI C63.10:2013 Maximum peak conducted output power for HFSS devices:

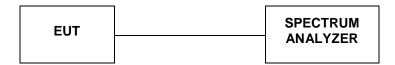
The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the HFSS bandwidth and shall utilize a fast-responding diode detector.

The maximum Average conducted output power may be measured using a wideband RF power meter with a thermocouple derector or equivalent. The power meter shall have a video bandwidth that is greater than or equal to the HFSS bandwidth and shall utilize a fast-responding diode detector.

LIMIT

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

TEST RESULTS


For reporting purpose only.

Please refer to Appendix A.3.

Report No.: CTA24050902301 Page 19 of 36

4.4. 99% and 20dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30KHz and VBW=100KHz. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

LIMIT

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwith.

TEST RESULTS

For reporting purpose only.

Please refer to Appendix A.1.

Please refer to Appendix A.2.

Report No.: CTA24050902301 Page 20 of 36

4.5. Frequency Separation

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=100KHz and VBW=300KHz.

LIMIT

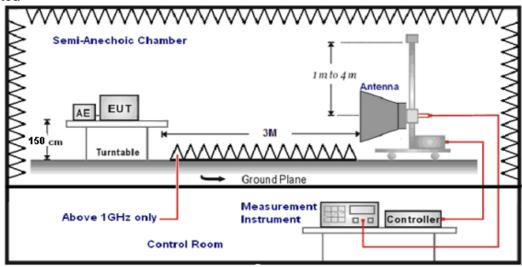
According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

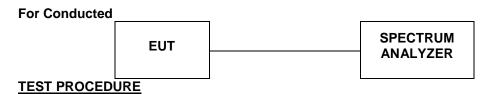
TEST RESULTS

For reporting purpose only.

Please refer to Appendix A.4.

Report No.: CTA24050902301 Page 21 of 36


4.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission


TEST REQUIREMENT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

For Radiated

- 1. The EUT was placed on a turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed...
- 5. The distance between test antenna and EUT was 3 meter:
- 6. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

LIMIT

Below -20dB of the highest emission level in operating band.

Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)

Report No.: CTA24050902301 Page 22 of 36

TEST RESULTS

4.6.1 For Conducted at Restricted Band Measurement

For reporting purpose only.

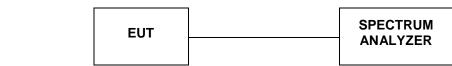
Please refer to Appendix A.9.

4.6.2 For Conducted Bandedge Measurement

For reporting purpose only.

Please refer to Appendix A.7.

4.6.3 For Conducted Spurious Emissions Measurement


For reporting purpose only.

Please refer to Appendix A.8.

Report No.: CTA24050902301 Page 23 of 36

4.7. Number of hopping frequency

TEST CONFIGURATION

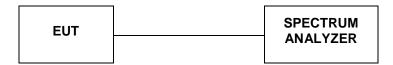
TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with RBW=100KHz and VBW=300KHz.

LIMIT

Frequency hopping systems in the 2400–2483.5MHz band shall use at least 15 channels.

TEST RESULTS


For reporting purpose only.

Please refer to Appendix A.6.

Report No.: CTA24050902301 Page 24 of 36

4.8. Time Of Occupancy(Dwell Time)

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with RBW=1MHz and VBW=3MHz,Span=0Hz.

LIMIT

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

TEST RESULTS

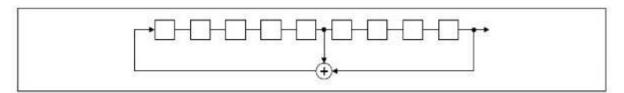
For reporting purpose only.

Please refer to Appendix A.5.

Report No.: CTA24050902301 Page 25 of 36

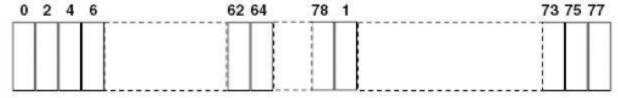
4.9. Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE


For 47 CFR Part 15C section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier fre-quencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Al-ternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier fre-quencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo ran-domly ordered list of hopping fre-quencies. Each frequency must be used equally on the average by each trans-mitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their cor-responding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement


The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the frist stage. The sequence begins with the frist one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An explame of pseudorandom frequency hopping sequence as follows:

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

Report No.: CTA24050902301 Page 26 of 36

4.10. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The antenna used for this product is PCB Antenna and that no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is only 2.07dBi.

Reference to the Internal photos.

5. TEST SETUP PHOTOS OF THE EUT

Photo of Radiated Emissions Measurement

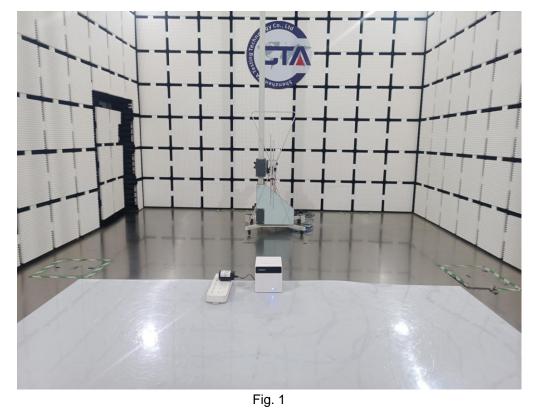


Fig. 2

Photo of Conducted Emission Measurement

Fig. 3

6. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

6.1. External photos of the EUT

Fig. 1

Fig. 2

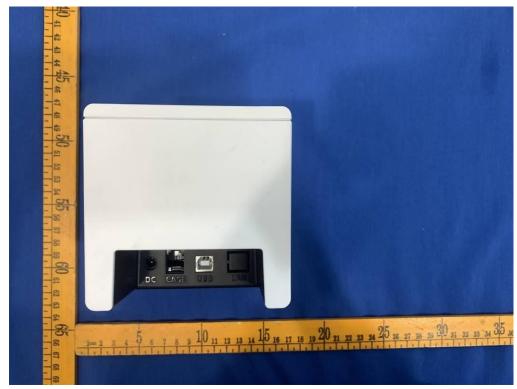


Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Report No.: CTA24050902301 Page 33 of 36

Fig. 9

6.2.Internal photos of the EUT

Fig. 10

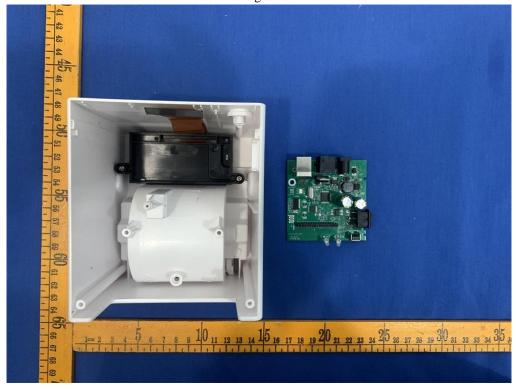


Fig. 11

Report No.: CTA24050902301 Page 35 of 36

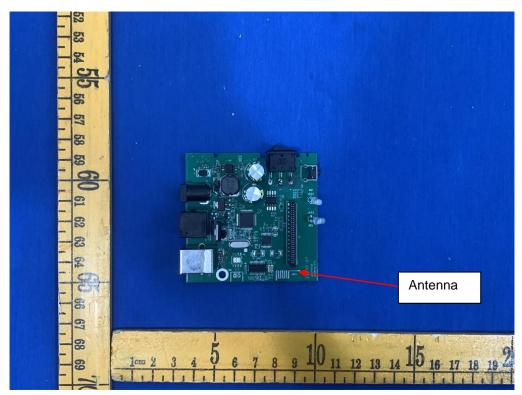


Fig. 12

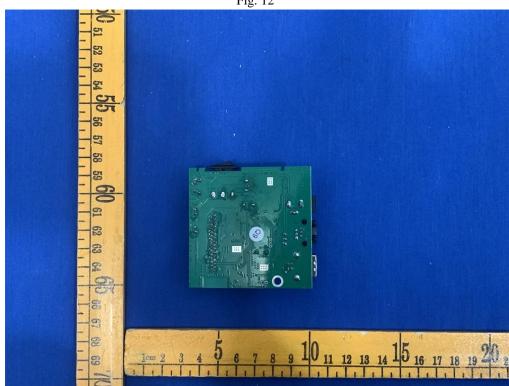


Fig. 13

Report No.: CTA24050902301 Page 36 of 36

Fig. 14

Fig. 15

.....End of Report.....