

Test Report

Report No.: MTi240618014-05E2

Date of issue: 2024-07-05

Applicant: Zhuhai Quin Technology Co., Ltd.

Product name: Label Maker

P12 Pro, P12 PRO, P12Pro, P12PRO, P12 ProN, Model(s):

CP-P12 Pro, CP-P12Pro

FCC ID: 2ASRB-P12PR

Shenzhen Microtest Co., Ltd.

http://www.mtitest.cn

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China. Tel: (86-755) 88850135-1349

Fax: (86-755) 88850136

Web: http://www.mtitest.cn

E-mail: office@51mti.com

Table of contents

1	Gen	eral Description	5
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	5 7 7
2	Sum	nmary of Test Result	8
3	Test	Facilities and accreditations	9
	3.1	Test laboratory	9
4	List	of test equipment	10
5	Eval	luation Results (Evaluation)	11
	5.1	Antenna requirement	11
6	Radi	io Spectrum Matter Test Results (RF)	12
	6.1 6.2 6.3 6.4 6.5 6.6 6.7	Conducted Emission at AC power line Occupied Bandwidth Maximum Conducted Output Power Power Spectral Density RF conducted spurious emissions and band edge measurement Band edge emissions (Radiated) Radiated emissions (below 1GHz) Radiated emissions (above 1GHz)	15 17 18 19 20
Ph	otogr	aphs of the test setup	36
Ph	otogr	aphs of the EUT	37
Αp	pendi	ix A: DTS Bandwidth	38
Αp	pendi	ix B: Maximum conducted output power	41
Αp	pendi	ix C: Maximum power spectral density	44
Αp	pendi	ix D: Band edge measurements	47
Αp	pendi	ix E: Conducted Spurious Emission	49
Αp	pendi	ix F: Duty Cycle	55

Test Result Certification Applicant: Zhuhai Quin Technology Co., Ltd. ROOM 103-029(CENTRALIZED OFFICE AREA), 1F, BUILDING 1, NO. 18 Address: FUTIAN ROAD, XIANGZHOU DISTRICT, ZHUHAI CITY, CHINA Zhuhai Quin Technology Co., Ltd. Manufacturer: ROOM 103-029(CENTRALIZED OFFICE AREA), 1F, BUILDING 1, NO. 18 Address: FUTIAN ROAD, XIANGZHOU DISTRICT, ZHUHAI CITY, CHINA **Product description** Product name: Label Maker Trade mark: N/A Model name: P12 Pro P12 PRO, P12Pro, P12PRO, P12 ProN, CP-P12 Pro, CP-P12Pro Series Model(s): Standards: 47 CFR Part 15.247 KDB 558074 D01 15.247 Meas Guidance v05r02 Test Method: ANSI C63.10-2020 **Date of Test** Date of test: 2024-07-01 to 2024-07-05 Test result: **Pass**

Test Engineer	:	letter.lan.
		(Letter Lan)
Reviewed By	•••	David. Cee
		(David Lee)
Approved By	•••	leon chen
		(Leon Chen)

1 General Description

1.1 Description of the EUT

Product name:	Label Maker
Model name:	P12 Pro
Series Model(s):	P12 PRO, P12Pro, P12PRO, P12 ProN, CP-P12 Pro, CP-P12Pro
Model difference:	All the models are the same circuit and module, except the model name.
Electrical rating:	Input: 5VDC 2A Battery: 7.4VDC 1000mAh
Accessories:	Cable: USB-A to Type-c cable 0.3m
Hardware version:	Q113_A
Software version:	_1.0.0
Test sample(s) number:	MTi240618014-01S1001(RF Conducted test) MTi240618014-01S2001(Radiated test) MTi240618014-02S1001AC Conducted test)
RF specification	
Bluetooth version:	V5.3
Operating frequency range:	2402MHz to 2480MHz
Channel number:	40
Modulation type:	GFSK
Antenna(s) type:	PCB
Antenna(s) gain:	-0.58dBi

1.2 Description of test modes

No.	Emission test modes
Mode1	TX mode(GFSK-1M)
Mode2	TX mode(GFSK-2M)

1.2.1 Operation channel list

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China. Tel: (86-755) 88850135-1349 Fax: (86-755) 88850136 Web: http://www.mtitest.cn E-mail: office@51mti.com

Page 6 of 57 Report No.: MTi240618014-05E2

9 2420 19 2440 29 2460 39 2480	9		19	2440	29	2460	39	2480
--	---	--	----	------	----	------	----	------

Test Channel List

Operation Band: 2400-2483.5 MHz

Bandwidth	Lowest Channel (LCH)	Middle Channel (MCH)	Highest Channel (HCH)
(MHz)	(MHz)	(MHz)	(MHz)
2	2402	2440	2480

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software: FCC Assist 1.0.2.2

For power setting, refer to below table.

Mode	2402MHz	2440MHz	2480MHz
1M	default	default	default
2M	default	default	default

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Support equipment list						
Description	Model	Serial No.	Manufacturer			
MI CHARGE(18W)	MDY-08-EH	YJ2808215006999	MI			
Support cable list						
Description	Length (m)	From	То			
1	1	1	1			

1.5 Measurement uncertainty

Measurement	Uncertainty
Occupied channel bandwidth	±3 %
Conducted emissions (AMN 150kHz~30MHz)	±3.1dB
RF output power, conducted	±1 dB
Power Spectral Density, conducted	±1 dB
Unwanted Emissions, conducted	±1 dB
Radiated spurious emissions (above 1GHz)	±5.3dB
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Standard	Requirement	Result
1	Antenna requirement	47 CFR Part 15.247	47 CFR 15.203	Pass
2	Conducted Emission at AC power line	47 CFR Part 15.247	47 CFR 15.207(a)	Pass
3	Occupied Bandwidth	47 CFR Part 15.247	47 CFR 15.247(a)(2)	Pass
4	Maximum Conducted Output Power	47 CFR Part 15.247	47 CFR 15.247(b)(3)	Pass
5	Power Spectral Density	47 CFR Part 15.247	47 CFR 15.247(e)	Pass
6	RF conducted spurious emissions and band edge measurement	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
7	Band edge emissions (Radiated)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
8	Radiated emissions (below 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
9	Radiated emissions (above 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573
IC Registration No.:	21760
CABID:	CN0093

4 List of test equipment

No.	Equipment	3.6	l l		1	List of test equipment							
1		Manufacturer	Model	Serial No.	Cal. date	Cal. Due							
	Conducted Emission at AC power line												
1	EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2024-03-20	2025-03-19							
2	Artificial mains network	Schwarzbeck	NSLK 8127	183	2024-03-21	2025-03-20							
3	Artificial Mains Network	Rohde & Schwarz	ESH2-Z5	100263	2024-03-20	2025-03-19							
		Maximum Co	pied Bandwidth Inducted Output Spectral Density Irestricted freque	1									
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2024-03-20	2025-03-19							
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2024-03-21	2025-03-20							
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20							
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2024-03-21	2025-03-20							
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2024-03-21	2025-03-20							
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2024-03-21	2025-03-20							
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2024-03-21	2025-03-20							
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2024-03-20	2025-03-19							
9	DC Power Supply	Agilent	E3632A	MY40027695	2024-03-21	2025-03-20							
1		Band edge Emissions in frequ	emissions (Radi uency bands (ab										
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19							
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06-17	2025-06-16							
3	Amplifier	Agilent	8449B	3008A01120	2024-03-20	2025-03-19							
4	MXA signal analyzer	Agilent	N9020A	MY54440859	2024-03-21	2025-03-20							
5	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20							
6	Horn antenna	Schwarzbeck	BBHA 9170	00987	2023-06-17	2025-06-16							
7	Pre-amplifier	Space-Dtronics	EWLAN1840 G	210405001	2024-03-21	2025-03-20							
		Emissions in frequency		elow 1GHz)									
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19							
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10							
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03-23	2025-03-22							
4	Amplifier	Hewlett-Packard	8447F	3113A06184	2024-03-20	2025-03-19							

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
-------------------	---

5.1.1 Conclusion:

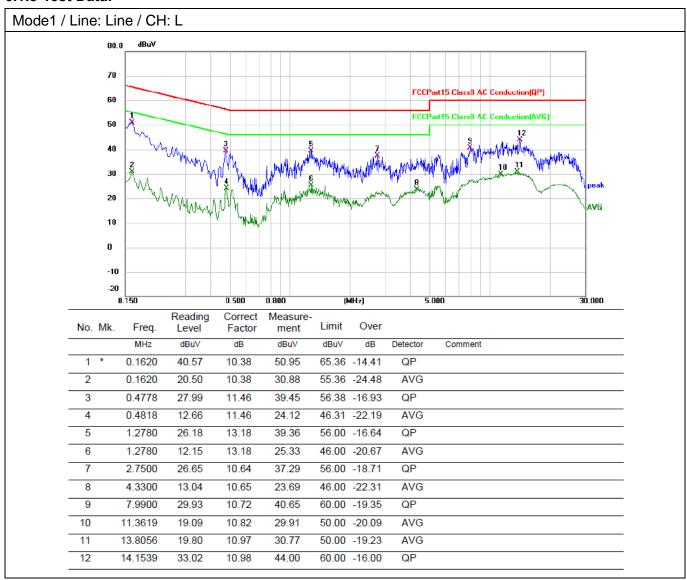
The antenna of the EUT is permanently attached.
The EUT complies with the requirement of FCC PART 15.203.

6 Radio Spectrum Matter Test Results (RF)

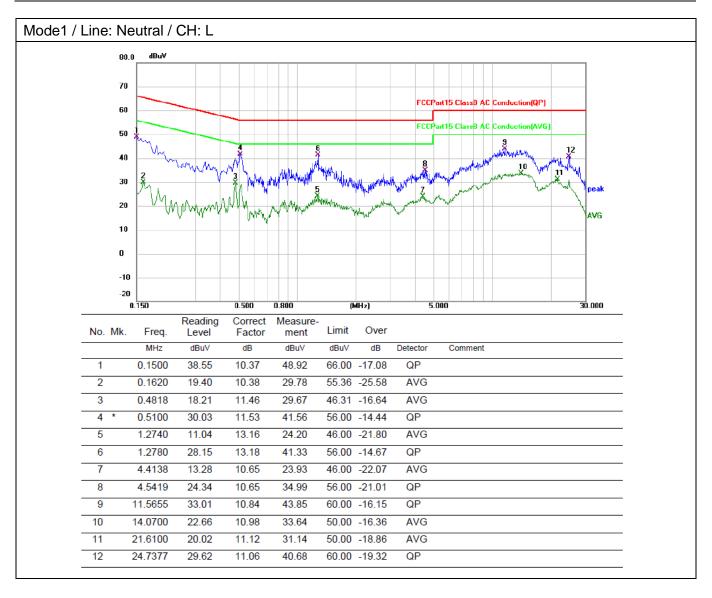
6.1 Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).					
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)				
		Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	*Decreases with the logarithm of the frequency.					
Test Method:	ANSI C63.10-2020 section 6.2					
Procedure:	Refer to ANSI C63.10-2020 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices					

6.1.1 E.U.T. Operation:

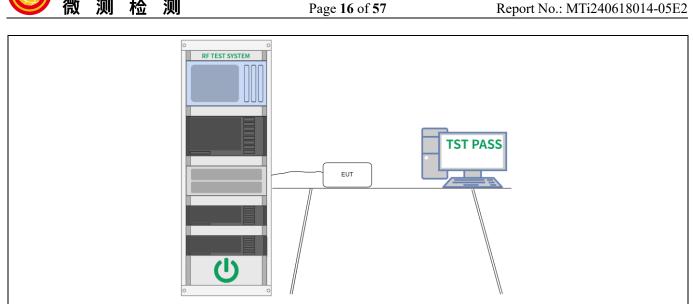

Operating Envi	Operating Environment:						
Temperature:	22.1 °C		Humidity:	57.2 %	Atmospheric Pressure:	101 kPa	
Pre test mode: Me			e1, Mode2				
i Final test mode.			•	re-test mode w ded in the repo	ere tested, only the data or	of the worst mode	

6.1.2 Test Setup Diagram:



6.1.3 Test Data:

Report No.: MTi240618014-05E2 Page 14 of 57


6.2 Occupied Bandwidth

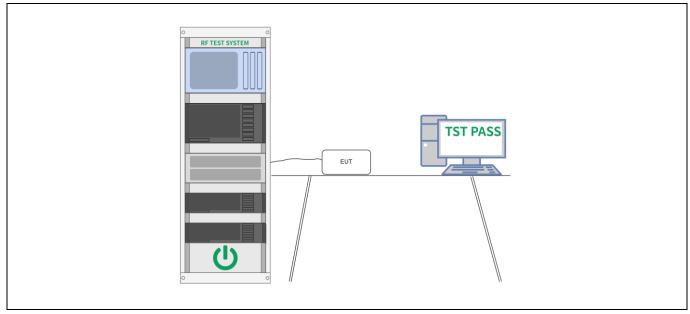
Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2020, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	11.8.1 Option 1 The steps for the first option are as follows: a) Set RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz. b) Set the VBW ≥ [3 × RBW]. c) Detector = peak. d) Trace mode = max-hold. e) Sweep = No faster than coupled (auto) time. f) Allow the trace to stabilize. g) Measure the maximum width of the emission by placing two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-6 dB down amplitude". If a marker is below this "-6 dB down amplitude" value, then it shall be as close as possible to this value. 11.8.2 Option 2 The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW ≥ 3 × RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.

6.2.1 E.U.T. Operation:

Operating Environment:						
Temperature: 25	°C	Humidity:	56 %	Atmospheric Pressure:	100 kPa	
Pre test mode:		e1, Mode2				
Final test mode: Mod		e1, Mode2				

6.2.2 Test Setup Diagram:

6.2.3 Test Data:


6.3 Maximum Conducted Output Power

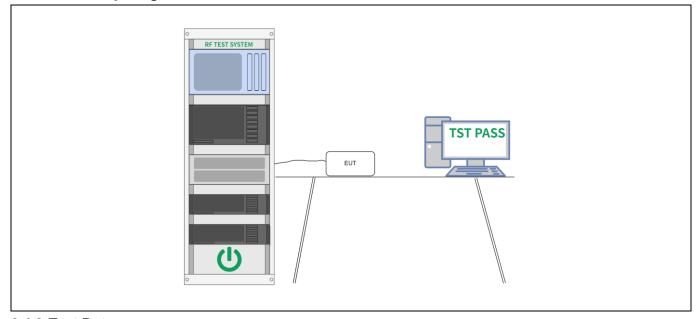
Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2020 section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.9.1 Maximum peak conducted output power

6.3.1 E.U.T. Operation:

Operating Envi	Operating Environment:						
Temperature:	25 °C		Humidity:	56 %	Atmospheric Pressure:	100 kPa	
Pre test mode:		Mode	e1, Mode2				
Final test mode: Mod		Mode	e1, Mode2				

6.3.2 Test Setup Diagram:

6.3.3 Test Data:


6.4 Power Spectral Density

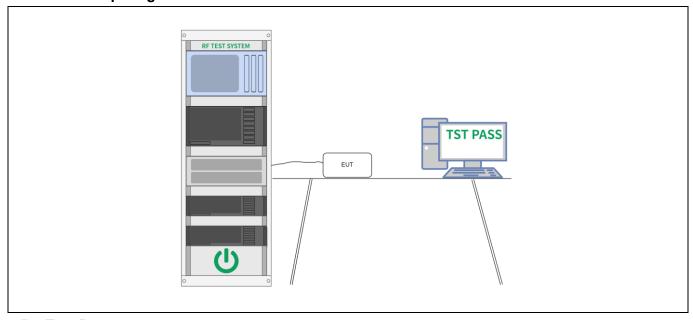
Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2020, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.10, Maximum power spectral density level in the fundamental emission

6.4.1 E.U.T. Operation:

Operating Envi	Operating Environment:						
Temperature:	25 °C		Humidity:	56 %	Atmospheric Pressure:	100 kPa	
Pre test mode:		Mode	e1, Mode2				
Final test mode: Mod		e1, Mode2					

6.4.2 Test Setup Diagram:

6.4.3 Test Data:


6.5 RF conducted spurious emissions and band edge measurement

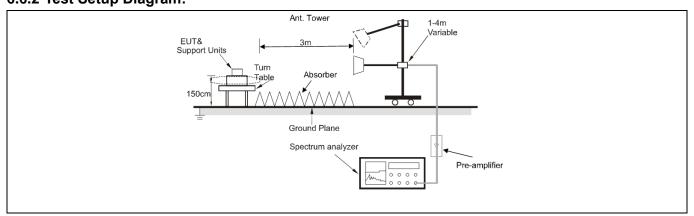
Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2020 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020 Section 11.11.1, Section 11.11.2, Section 11.11.3

6.5.1 E.U.T. Operation:

Operating Env	ironment:	ı i				
Temperature:	25 °C		Humidity:	56 %	Atmospheric Pressure:	100 kPa
Pre test mode:		Mode	e1, Mode2			
Final test mode	e:	Mode	e1, Mode2			

6.5.2 Test Setup Diagram:

6.5.3 Test Data:


6.6 Band edge emissions (Radiated)

Test Requirement:	restricted bands, as de	7(d), In addition, radiated emfined in § 15.205(a), must also specified in § 15.209(a)(see	so comply with the
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e. In the emission table a The emission limits she employing a CISPR qu kHz, 110–490 kHz and	n paragraph (g), fundamental perating under this section shows the perating under this section shows the perating under this section shows the peration of the	all not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2020 sec KDB 558074 D01 15.2	ction 6.10 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2020 sed	ction 6.10.5.2	

6.6.1 E.U.T. Operation:

Operating Envi	ironment					
Temperature:	24 °C		Humidity:	54 %	Atmospheric Pressure:	101 kPa
Pre test mode:	Pre test mode: Mode1, Mode2					
Final test mode	All of the listed pre-test mode were tested, only the data of the worst mode (Mode2) is recorded in the report					of the worst mode
Note: The amplitude reported.	of spurio	us em	issions whic	ch are attenuate	ed more than 20 dB below	v the limits are not

6.6.2 Test Setup Diagram:

6.6.3 Test Data:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2310.000	51.74	-12.92	38.82	74.00	-35.18	peak
2		2310.000	42.41	-12.92	29.49	54.00	-24.51	AVG
3		2390.000	58.08	-12.49	45.59	74.00	-28.41	peak
4	*	2390.000	48.18	-12.49	35.69	54.00	-18.31	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2310.000	52.20	-12.92	39.28	74.00	-34.72	peak
2		2310.000	42.40	-12.92	29.48	54.00	-24.52	AVG
3		2390.000	57.05	-12.49	44.56	74.00	-29.44	peak
4	*	2390.000	46.87	-12.49	34.38	54.00	-19.62	AVG

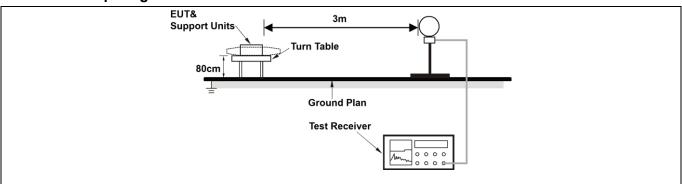
No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2483.500	62.98	-12.50	50.48	74.00	-23.52	peak
2		2483.500	45.49	-12.50	32.99	54.00	-21.01	AVG
3		2500.000	59.59	-12.41	47.18	74.00	-26.82	peak
4	*	2500.000	49.07	-12.41	36.66	54.00	-17.34	AVG

I	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		2483.500	58.67	-12.50	46.17	74.00	-27.83	peak
	2		2483.500	43.96	-12.50	31.46	54.00	-22.54	AVG
	3		2500.000	57.04	-12.41	44.63	74.00	-29.37	peak
	4	*	2500.000	46.29	-12.41	33.88	54.00	-20.12	AVG

6.7 Radiated emissions (below 1GHz)

Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`							
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
	intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e. In the emission table a The emission limits she employing a CISPR qu kHz, 110–490 kHz and	n paragraph (g), fundamental perating under this section shows the perating under this section shows the perating under this section shows the perating under the per	hall not be located in the MHz or 470-806 MHz. It is permitted under other at the band edges. It is assed on measurements the frequency bands 9–90 emission limits in these					
Test Method:	ANSI C63.10-2020 sec KDB 558074 D01 15.2	otion 6.6.4 47 Meas Guidance v05r02						
Procedure:	ANSI C63.10-2020 sed	ction 6.6.4						

6.7.1 E.U.T. Operation:

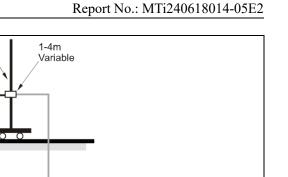

Operating Envi	ronment	ı				
Temperature:	24 °C		Humidity:	54 %	Atmospheric Pressure:	101 kPa
Pre test mode:	re test mode: Mode1, Mode2					
Final test mode	e:		•	re-test mode w ded in the repo	rere tested, only the data ort	of the worst mode
N.I. d						

Note:

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

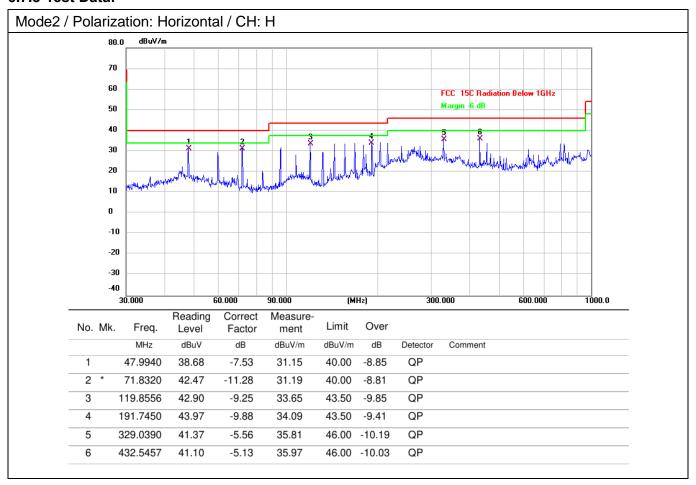
All modes of operation of the EUT were investigated, and only the worst-case results are reported. There were no emissions found below 30MHz within 20dB of the limit.

6.7.2 Test Setup Diagram:



3m

Turn Table


Ground Plane
Test Receiver

EUT& Support Units Ant. Tower

6.7.3 Test Data:

155.9101

191.7450

455.9058

4

5

6

45.25

45.35

38.66

-10.32

-9.88

-4.11

34.93

35.47

34.55

43.50

43.50

-8.57

-8.03

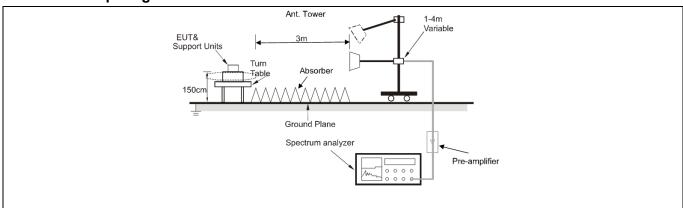
46.00 -11.45

QP

QP

QP

Report No.: MTi240618014-05E2 Mode2 / Polarization: Vertical / CH: H 80.0 70 60 FCC 15C Radi Margin -6 dB 50 40 30 20 10 0 -10 -20 -30 -40 (MHz) 600.000 30.000 60.000 90.000 300.000 1000.0 Reading Correct Measure-Over Limit No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m dBuV/m dB Detector Comment 47.9940 38.90 -7.53 31.37 40.00 -8.63 2 71.8320 38.61 -11.28 27.33 40.00 -12.67 QP 96.0986 QP 3 44.22 -10.56 33.66 43.50 -9.84


6.8 Radiated emissions (above 1GHz)

Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`							
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
	intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e. In the emission table a The emission limits she employing a CISPR qu kHz, 110–490 kHz and	n paragraph (g), fundamental perating under this section shows the perating under this section shows the perating under this section shows the perating under the per	hall not be located in the MHz or 470-806 MHz. It is permitted under other at the band edges. It is assed on measurements the frequency bands 9–90 emission limits in these					
Test Method:	ANSI C63.10-2020 sec KDB 558074 D01 15.2	otion 6.6.4 47 Meas Guidance v05r02						
Procedure:	ANSI C63.10-2020 sed	ction 6.6.4						

6.8.1 E.U.T. Operation:

Operating Envi	ironment:							
Temperature:	24 °C		Humidity:	54 %	Atmospheric Pressure:	101 kPa		
Pre test mode: Mode1, Mode2								
Final test mode	· ·	All of the listed pre-test mode were tested, only the data of the worst mode						
Fillal lest filode	5.	(Mod	(Mode2) is recorded in the report					
Note: Test freq	uency are	e from	1GHz to 25	GHz, the ampl	itude of spurious emissior	ns which are		
attenuated mo	re than 2	dB b	elow the lim	its are not repo	orted.			
All modes of o	peration o	of the	EUT were in	vestigated, and	d only the worst-case resu	ults are reported.		

6.8.2 Test Setup Diagram:

6.8.3 Test Data:

No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4804.000	59.88	-7.70	52.18	74.00	-21.82	peak
2	*	4804.000	54.06	-7.70	46.36	54.00	-7.64	AVG
3		7206.000	48.50	0.84	49.34	74.00	-24.66	peak
4		7206.000	42.40	0.84	43.24	54.00	-10.76	AVG
- 5		9608.000	48.15	1.81	49.96	74.00	-24.04	peak
6		9608.000	41.44	1.81	43.25	54.00	-10.75	AVG

Mode2 / Polarization: Vertical / CH: L Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m dBuV/m dΒ Detector 4804.000 55.99 -7.7048.29 74.00 -25.71 1 peak 2 4804.000 50.33 -7.70 42.63 54.00 -11.37 AVG 3 7206.000 46.47 47.31 74.00 -26.69 0.84 peak 4 7206.000 40.78 0.84 41.62 54.00 -12.38 AVG 5 9608.000 47.63 1.81 49.44 74.00 -24.56 peak 9608.000 41.42 1.81 43.23 54.00 -10.77 AVG 6

Mode2 / Polarization: Horizontal / CH: M Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dΒ dBuV/m dBuV/m dΒ Detector 4880.000 60.05 -7.8452.21 74.00 -21.791 peak 2 4880.000 53.98 -7.8446.14 -7.86 AVG 54.00 -26.00 3 7320.000 47.40 48.00 0.60 74.00 peak 4 7320.000 41.76 0.60 42.36 54.00 -11.64 AVG 5 9760.000 46.87 2.60 49.47 74.00 -24.53 peak 9760.000 40.61 2.60 43.21 54.00 -10.79 AVG 6

Mode2 / Polarization: Vertical / CH: M Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dΒ dBuV/m dBuV/m dΒ Detector 4880.000 59.36 -7.8451.52 74.00 -22.481 peak 2 4880.000 53.08 -7.8445.24 -8.76AVG 54.00 -25.23 3 7320.000 48.17 48.77 0.60 74.00 peak 4 7320.000 42.02 0.60 42.62 54.00 -11.38 AVG 5 9760.000 46.67 2.60 49.27 74.00 -24.73 peak 9760.000 40.61 2.60 43.21 54.00 -10.79 AVG 6

Mode2 / Polarization: Horizontal / CH: H Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment dBuV dΒ dBuV/m dBuV/m dΒ MHz Detector 4960.000 61.03 -7.7353.30 74.00 -20.701 peak 2 4960.000 -7.7348.32 -5.68AVG 56.05 54.00 3 49.50 0.78 -23.727440.000 50.28 74.00 peak 4 7440.000 44.54 0.78 45.32 54.00 -8.68 AVG 5 9920.000 49.00 2.47 51.47 74.00 -22.53peak 9920.000 43.88 2.47 46.35 54.00 -7.65AVG 6

Mode2 / Polarization: Vertical / CH: H Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m dBuV/m dΒ Detector 4960.000 59.83 -7.7352.10 74.00 -21.90 1 peak 2 4960.000 54.99 -7.7347.26 54.00 -6.74AVG 3 7440.000 0.78 -24.77 48.45 49.23 74.00 peak 4 7440.000 42.47 0.78 43.25 54.00 -10.75AVG 5 9920.000 48.73 2.47 51.20 74.00 -22.80peak 9920.000 44.11 2.47 46.58 54.00 -7.42AVG 6

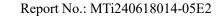
Photographs of the test setup

Refer to Appendix - Test Setup Photos

Photographs of the EUT

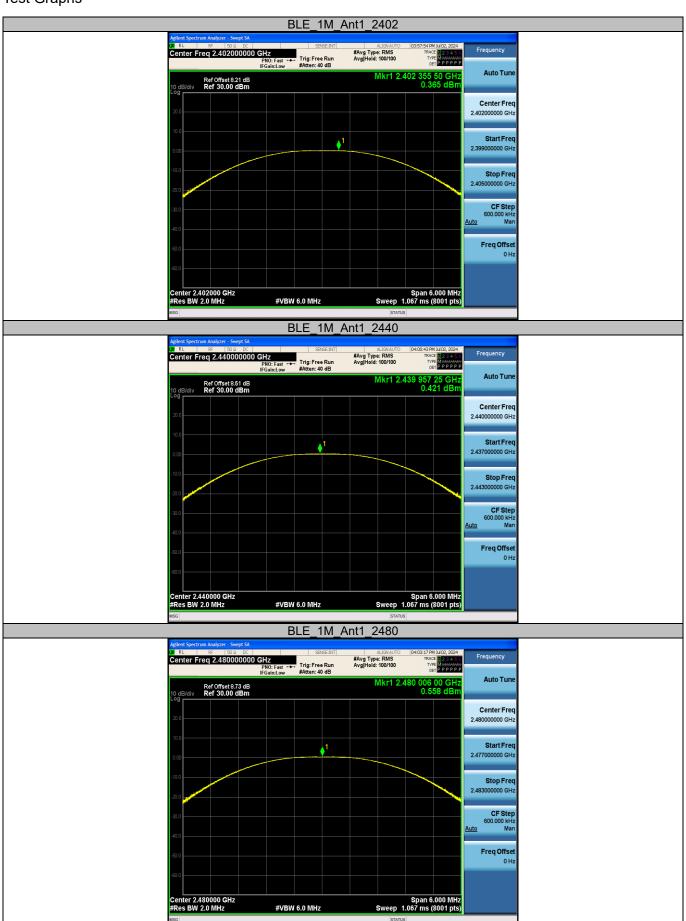
Refer to Appendix - EUT Photos

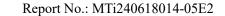
Appendix

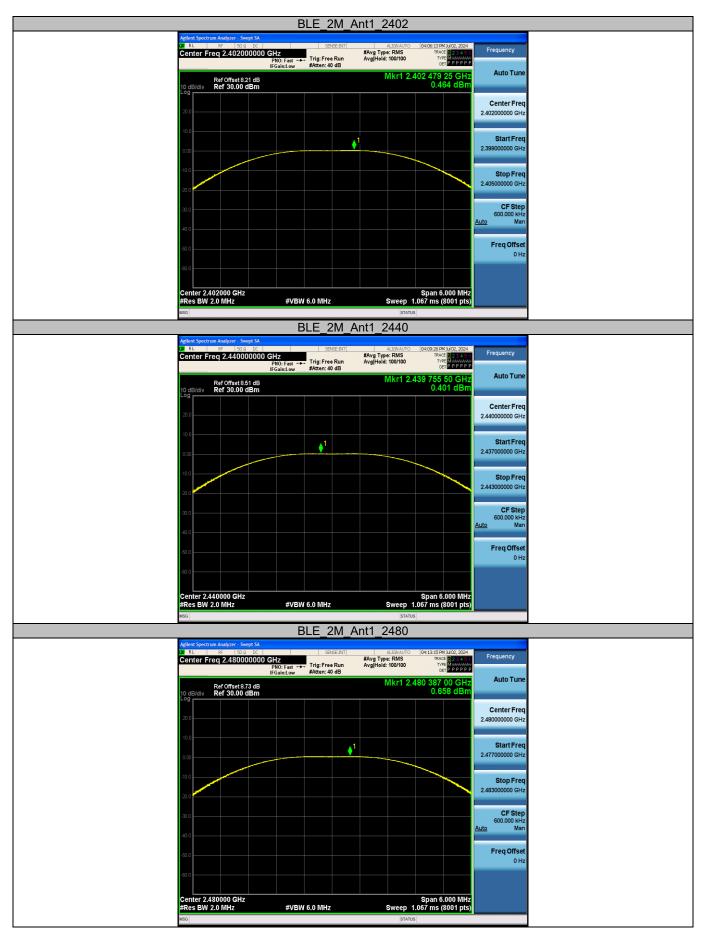

Appendix A: DTS Bandwidth

Test Result

Test Mode	Antenna	Frequency [MHz]	DTS BW [MHz]	Limit [MHz]	Verdict
BLE_1M	Ant1	2402	0.656	0.5	PASS
		2440	0.660	0.5	PASS
		2480	0.656	0.5	PASS
BLE_2M	Ant1	2402	1.220	0.5	PASS
		2440	1.232	0.5	PASS
		2480	1.200	0.5	PASS

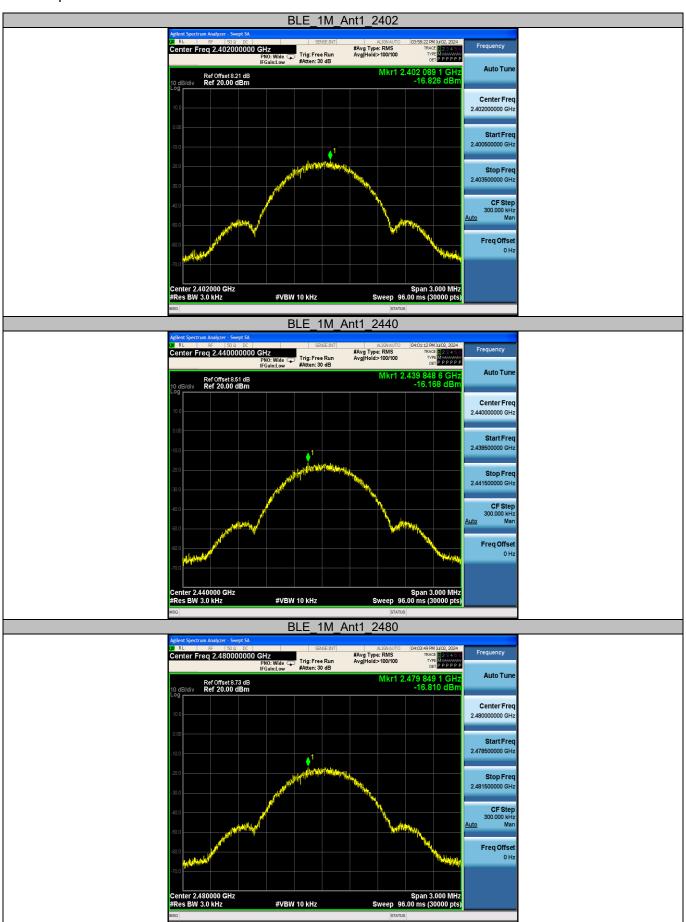


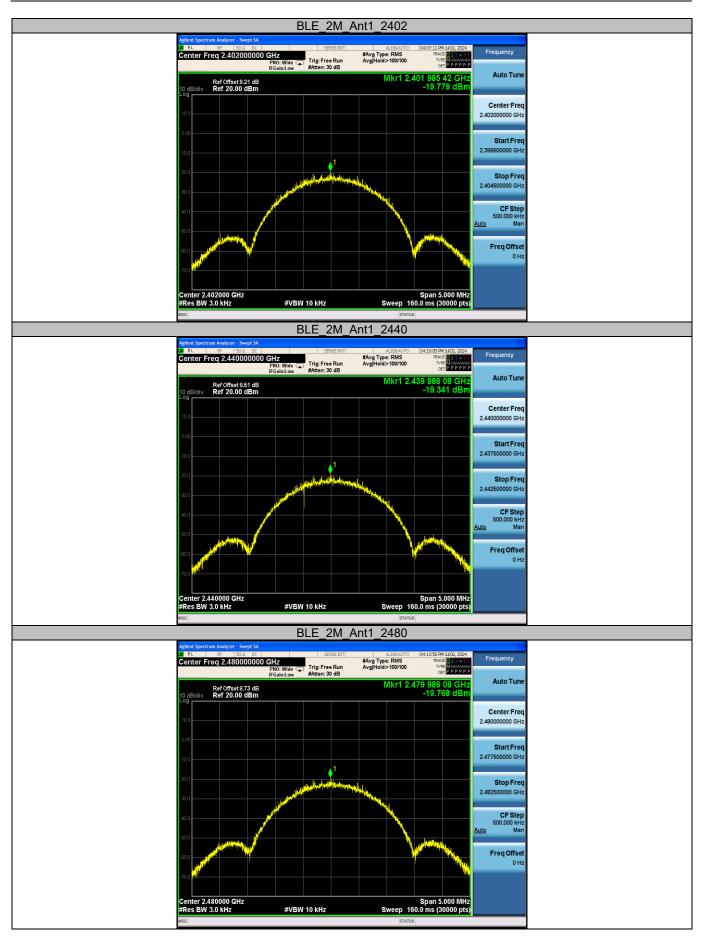



Appendix B: Maximum conducted output power

Test Result-Peak

Test Mode	Antenna	Frequency [MHz]	Conducted Peak Power [dBm]	Limit [dBm]	Verdict
BLE_1M	Ant1	2402	0.37	≤30	PASS
		2440	0.42	≤30	PASS
		2480	0.56	≤30	PASS
BLE_2M	Ant1	2402	0.46	≤30	PASS
		2440	0.40	≤30	PASS
		2480	0.66	≤30	PASS

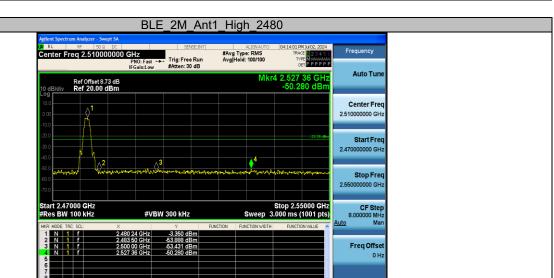


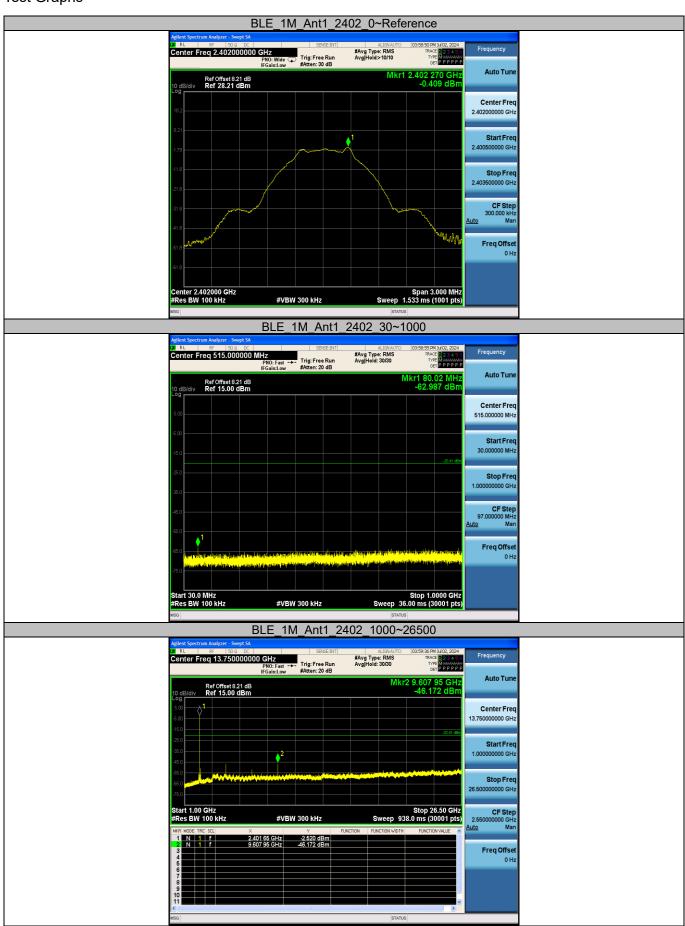


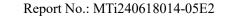
Appendix C: Maximum power spectral density

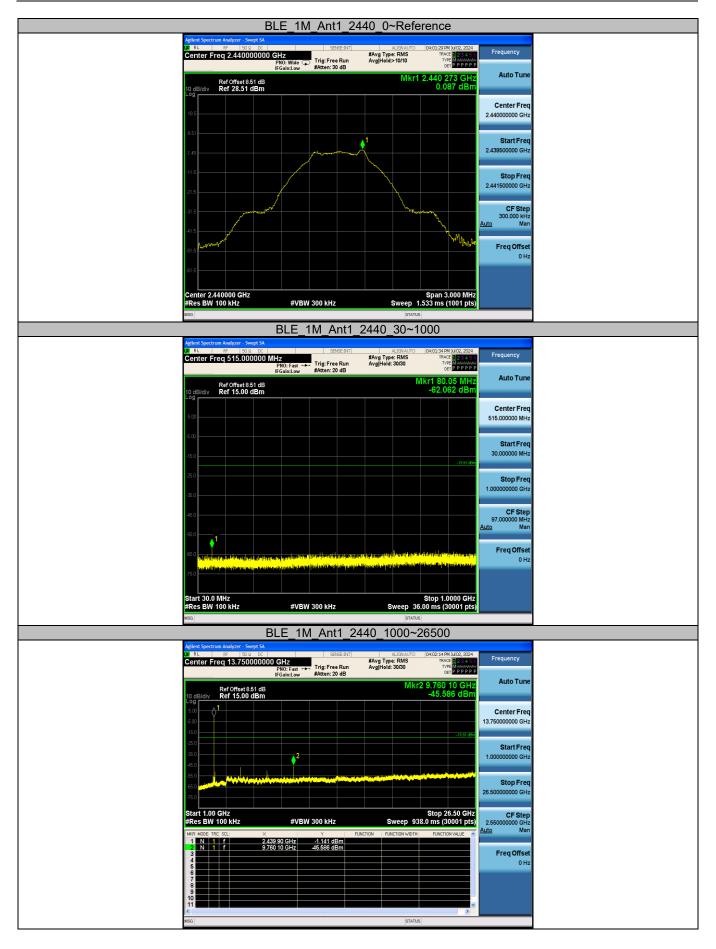
Test Result

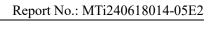
Test Mode	Antenna	Frequency [MHz]	Result [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE_1M	Ant1	2402	-16.83	≤8.00	PASS
		2440	-16.17	≤8.00	PASS
		2480	-16.81	≤8.00	PASS
BLE_2M	Ant1	2402	-19.78	≤8.00	PASS
		2440	-19.34	≤8.00	PASS
		2480	-19.77	≤8.00	PASS

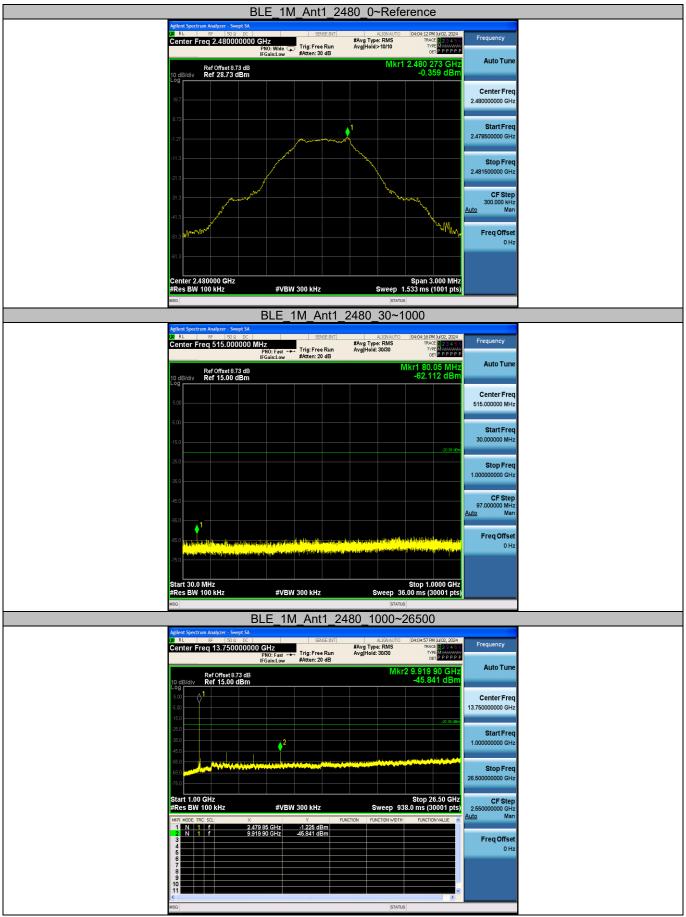


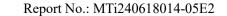

Appendix D: Band edge measurements

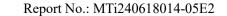


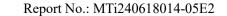





Appendix E: Conducted Spurious Emission







Appendix F: Duty Cycle

Test Result

Test Mode	Antenna	Frequency	ON Time	Period	Duty Cycle	Duty Cycle
		[MHz]	[ms]	[ms]	[%]	Factor[dB]
BLE_1M	Ant1	2402	2.13	2.50	85.20	0.70
		2440	2.13	2.50	85.20	0.70
		2480	2.13	2.50	85.20	0.70
BLE_2M	Ant1	2402	1.08	2.50	43.20	3.65
		2440	1.08	2.50	43.20	3.65
		2480	1.08	2.50	43.20	3.65

----End of Report----