
Test Report

- **Report No.:** MTi231219003-05E2
- Date of issue: 2024-01-29
- Applicant: Zhuhai Quin Technology Co., Ltd.
- Product: Portable Printer
- Model(s): M08FS, H831, H832, H833, H834, H835, H836, M08ES, M08AS, H831S, H832S, H833S, H834S, H835S, H836S
- FCC ID: 2ASRB-M08FS

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

The test report is only used for customer scientific research, teaching, internal quality control and other purposes, and is for internal reference only.

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of contents

1	Gene	ral Description	5
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	5 7 7
2	Sumr	nary of Test Result	8
3	Test F	Facilities and accreditations	9
	3.1	Test laboratory	9
4	List o	f test equipment	10
5	Evalu	ation Results (Evaluation)	11
	5.1	Antenna requirement	11
6	Radio	o Spectrum Matter Test Results (RF)	12
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	Conducted Emission at AC power line Occupied Bandwidth Maximum Conducted Output Power Power Spectral Density RF conducted spurious emissions and band edge measurement Band edge emissions (Radiated) Radiated emissions (below 1GHz) Radiated emissions (above 1GHz)	15 16 17 18 19 24
Pho	otogra	phs of the test setup	35
Pho	otogra	phs of the EUT	36
Ар	pendix	A: DTS Bandwidth	37
Ар	pendix	B: Maximum conducted output power	40
Ар	pendix	C: Maximum power spectral density	43
Ар	pendix	CD: Band edge measurements	46
Ар	pendix	E: Conducted Spurious Emission	48
Арр	pendix	F: Duty Cycle	54

Test Result Certification			
Applicant: Zhuhai Quin Technology Co., Ltd.			
Address:	ROOM 103-029(CENTRALIZED OFFICE AREA), 1F, BUILDING 1, NO. 18 FUTIAN ROAD, XIANGZHOU DISTRICT, ZHUHAI CITY, CHINA		
Manufacturer:	Zhuhai Quin Technology Co., Ltd.		
Address:	ROOM 103-029(CENTRALIZED OFFICE AREA), 1F, BUILDING 1, NO. 18 FUTIAN ROAD, XIANGZHOU DISTRICT, ZHUHAI CITY, CHINA		
Product description			
Product name:	Portable Printer		
Trade mark:	N/A		
Model name:	M08FS		
Series Model(s):	H831, H832, H833, H834, H835, H836, M08ES, M08AS, H831S, H832S, H833S, H834S, H835S, H836S		
Standards:	47 CFR Part 15.247		
Test Method:	ANSI C63.10-2020 KDB 558074 D01 15.247 Meas Guidance v05r02		
Date of Test			
Date of test:	2024-01-18 to 2024-01-25		
Test result:	Pass		

Test Engineer	••	Letter. Jan.
		(Letter Lan)
Reviewed By	• •	leon chen
		(Leon Chen)
Approved By	:	Tom Kne
		(Tom Xue)

1 General Description

1.1 Description of the EUT

Product name:	Portable Printer
Model name:	M08FS
Series Model(s):	H831, H832, H833, H834, H835, H836, M08ES, M08AS, H831S, H832S, H833S, H834S, H835S, H836S
Model difference:	All the models are the same circuit and module, except the model name appearance and color.
Electrical rating:	Input: 5Vdc 2A Battery: 7.4Vdc 1200mAh
Accessories:	Cable: USB-A to Type-C cable (0.8m)
Hardware version:	Q289_A
Software version:	V1.0.6
Test sample(s) number:	MTi231219003-01S1001 MTi231219003-01S1002 MTi231219003-02S1001
RF specification	
Bluetooth version:	V5.3
Operating frequency range:	2402MHz to 2480MHz
Channel number: 40	
Modulation type:	GFSK
Antenna(s) type:	FPC Antenna
Antenna(s) gain:	2.33dBi
1.0 Decemination of test	

1.2 Description of test modes

No.	Emission test modes
Mode1	TX mode(GFSK-1M)
Mode2	TX mode(GFSK-2M)

1.2.1 Operation channel list

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476

Page 6 of 57

8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

Test Channel List Operation Band: 2400-2483.5 MHz

Bandwidth Lowest Channel (LCH)		Middle Channel (MCH)	Highest Channel (HCH)
(MHz) (MHz)		(MHz)	(MHz)
2	2402	2440	2480

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software: FCC Assist 1.0.2.2

For power setting, refer to below table.

Mode	2402MHz	2440MHz	2480MHz
1M	DFT	DFT	DFT
2M	DFT	DFT	DFT

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Support equipment list					
Description	Model	Serial No.	Manufacturer		
MI CHARGE(18W) MDY-08-EH YJ2808215006999 MI			MI		
Support cable list					
Description	Length (m)	From	То		
/	1	/	1		

1.5 Measurement uncertainty

Measurement	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	±3.1dB
Occupied channel bandwidth	±3 %
RF output power, conducted	±1 dB
Power Spectral Density, conducted	±1 dB
Unwanted Emissions, conducted	±1 dB
Radiated spurious emissions (above 1GHz)	±5.3dB
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Standard	Requirement	Result
1	Antenna requirement	47 CFR Part 15.247	47 CFR 15.203	Pass
2	Conducted Emission at AC power line	47 CFR Part 15.247	47 CFR 15.207(a)	Pass
3	Occupied Bandwidth	47 CFR Part 15.247	47 CFR 15.247(a)(2)	Pass
4	Maximum Conducted Output Power	47 CFR Part 15.247	47 CFR 15.247(b)(3)	Pass
5	Power Spectral Density	47 CFR Part 15.247	47 CFR 15.247(e)	Pass
6	RF conducted spurious emissions and band edge measurement	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
7	Band edge emissions (Radiated)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
8	Radiated emissions (below 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
9	Radiated emissions (above 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.						
Test site location:101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong,							
Telephone:	(86-755)88850135						
Fax:	(86-755)88850136						
CNAS Registration No.:	CNAS L5868						
FCC Registration No.:	448573						
IC Registration No.:	21760						
CABID:	CN0093						

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due		
		Conducted En	nission at AC po	wer line				
1	EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2023-04-26	2024-04-25		
2	Artificial mains network	Schwarzbeck	NSLK 8127	183	2023-05-05	2024-05-04		
3	Artificial Mains Network	Rohde & Schwarz	ESH2-Z5	100263	2023-06-03	2024-06-02		
	RF conc	Maximum Co	pied Bandwidth inducted Output Spectral Density issions and band	/	ent			
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2023-04-26	2024-04-25		
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2023-04-25	2024-04-24		
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2023-04-25	2024-04-24		
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2023-04-25	2024-04-24		
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2023-04-26	2024-04-25		
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2023-04-26	2024-04-25		
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2023-05-05	2024-05-04		
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2023-04-25	2024-04-24		
9	DC Power Supply	Agilent	E3632A	MY40027695	2023-05-05	2024-05-04		
			emissions (Radi hissions (above ´					
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2023-04-26	2024-04-25		
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06-17	2025-06-16		
3	Amplifier	Agilent	8449B	3008A01120	2023-06-26	2024-06-25		
4	Multi-device Controller	TuoPu	TPMDC	/	2023-05-04	2024-05-03		
5	MXA signal analyzer	Agilent	N9020A	MY54440859	2023-06-01	2024-05-31		
	Radiated emissions (below 1GHz)							
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2023-04-26	2024-04-25		
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10		
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2023-06-11	2025-06-10		
4	Amplifier	Hewlett-Packard	8447F	3113A06184	2023-04-25	2024-04-24		
5	Multi-device Controller	TuoPu	TPMDC	/	2023-05-04	2024-05-03		

5 Evaluation Results (Evaluation)

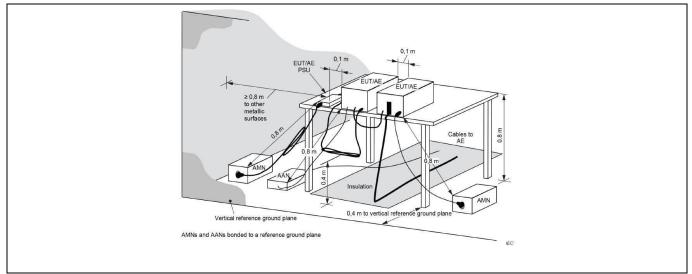
5.1 Antenna requirement

Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be
	considered sufficient to comply with the provisions of this section.

5.1.1 Conclusion:

The antenna of the EUT is permanently attached. The EUT complies with the requirement of FCC PART 15.203.

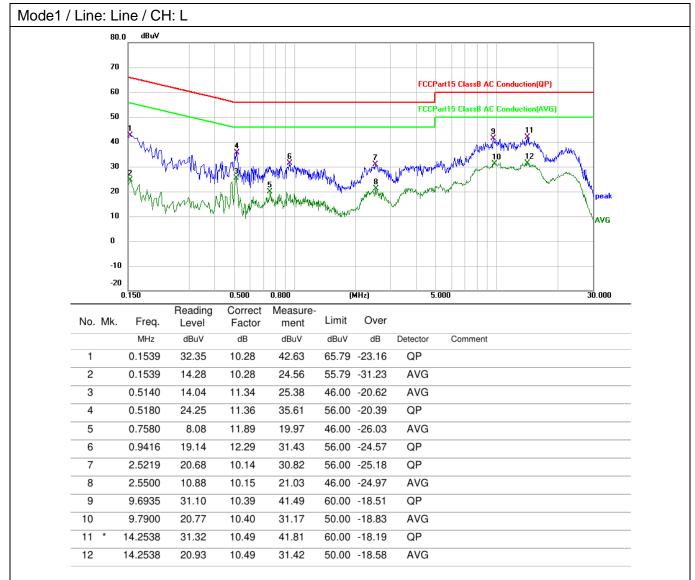
6 Radio Spectrum Matter Test Results (RF)

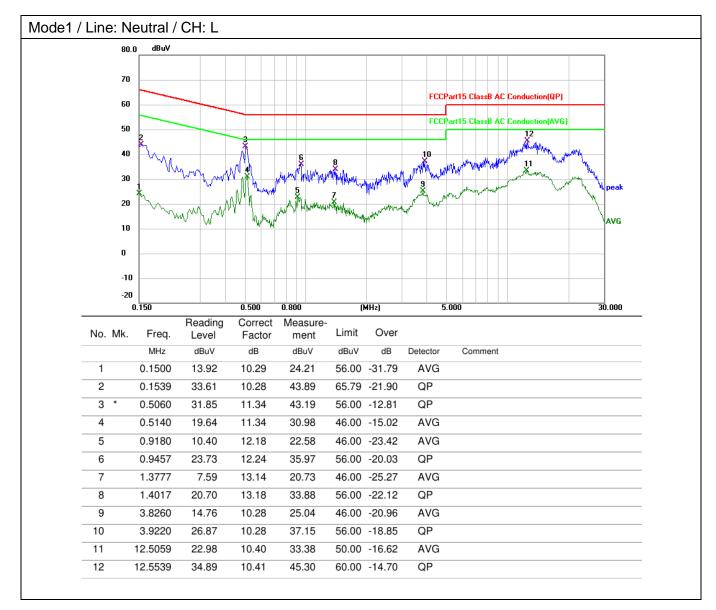

6.1 Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).					
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)				
		Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30 60 50					
	*Decreases with the logarithm of	the frequency.		-		
Test Method:	ANSI C63.10-2020 section 6.2					
Procedure:	Refer to ANSI C63.10-2020 section 6.2, standard test method for ac power- line conducted emissions from unlicensed wireless devices					

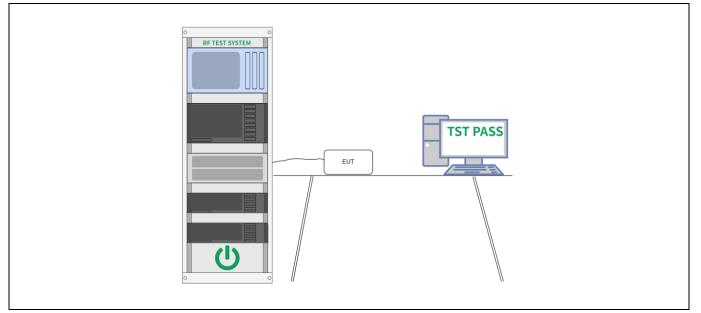
6.1.1 E.U.T. Operation:

Operating Environment:									
Temperature:	28.5 °C		Humidity:	73.7 %	Atmospheric Pressure:	101 kPa			
Pre test mode:	Mode1, Mode2								
Final test mode		•	re-test mode w ded in the repo	vere tested, only the data o ort	of the worst mode				


6.1.2 Test Setup Diagram:



6.1.3 Test Data:


6.2 Occupied Bandwidth

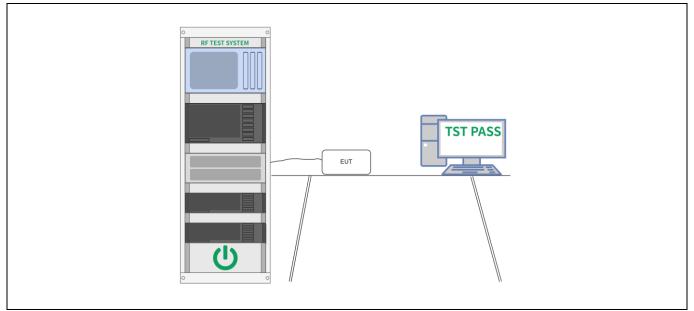
Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2020, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW >= [3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.2.1 E.U.T. Operation:

Operating Environment:								
Temperature: 26 °C Humidity: 56 % Atmospheric Pressure: 100 kPa						100 kPa		
Pre test mode:	Mode	e1, Mode2						
Final test mode:		Mode	e1, Mode2					

6.2.2 Test Setup Diagram:

6.2.3 Test Data:


6.3 Maximum Conducted Output Power

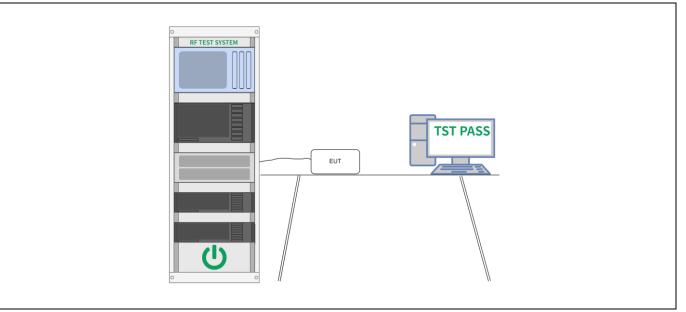
Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2020, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.9.1 Maximum peak conducted output power

6.3.1 E.U.T. Operation:

Operating Environment:								
Temperature:	Temperature: 26 °C Humidity: 56 % Atmospheric Pressure: 100 kPa							
Pre test mode:	Mode	e1, Mode2						
Final test mode:		Mode	e1, Mode2					

6.3.2 Test Setup Diagram:

6.3.3 Test Data:


6.4 Power Spectral Density

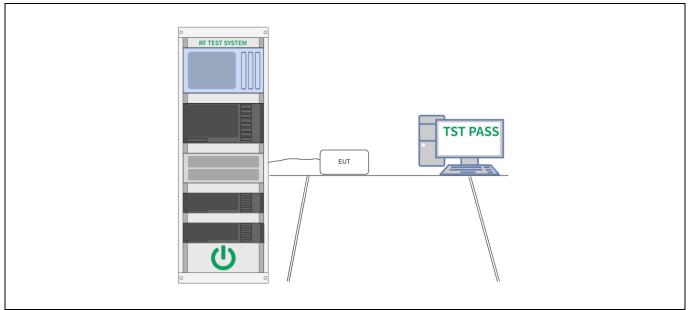
Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2020, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.10, Maximum power spectral density level in the fundamental emission

6.4.1 E.U.T. Operation:

Operating Environment:									
Temperature:	Temperature: 26 °C			56 %	Atmospheric Pressure:	100 kPa			
Pre test mode:	Mode	e1, Mode2							
Final test mode:		Mode	e1, Mode2						

6.4.2 Test Setup Diagram:

6.4.3 Test Data:


6.5 RF conducted spurious emissions and band edge measurement

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2020 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020 Section 11.11.1, Section 11.11.2, Section 11.11.3

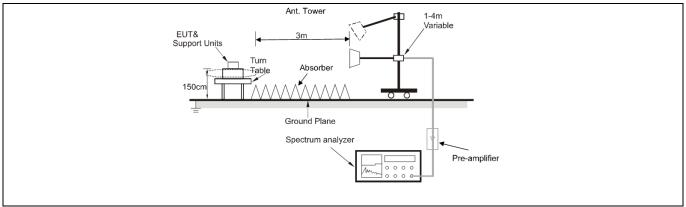
6.5.1 E.U.T. Operation:

Operating Environment:								
Temperature: 26 °C Humidity: 56 % Atmospheric Pressure: 100 kPa								
Pre test mode:		Mode	e1, Mode2					
Final test mode	Mode	e1, Mode2						

6.5.2 Test Setup Diagram:

6.5.3 Test Data:

6.6 Band edge emissions (Radiated)


Test Requirement:	restricted bands, as de	7(d), In addition, radiated em fined in § 15.205(a), must als s specified in § 15.209(a)(se	so comply with the
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e. In the emission table a The emission limits sho employing a CISPR qu kHz, 110–490 kHz and	in paragraph (g), fundamenta perating under this section sh 2 MHz, 76-88 MHz, 174-216 thin these frequency bands is g., §§ 15.231 and 15.241. bove, the tighter limit applies own in the above table are ba asi-peak detector except for above 1000 MHz. Radiated on measurements employin	all not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2020 sec KDB 558074 D01 15.2	ction 6.10 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2020 sec	ction 6.10.5.2	

6.6.1 E.U.T. Operation:

Operating Environment:								
Temperature: 26 °C	Humidity: 54 % Atmospheric Pressure: 101 kPa							
Pre test mode: Mode1, Mode2								
Final test mode: All of the listed pre-test mode were tested, only the data of the worst mode (Mode2) is recorded in the report								
Note:								

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

6.6.2 Test Setup Diagram:

6.6.3 Test Data:

Mode2 /	Polari	zatio	n: Horizonta	al / CH: H					
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		2483.500	58.53	-12.44	46.09	74.00	-27.91	peak
	2		2483.500	44.78	-12.44	32.34	54.00	-21.66	AVG
	3		2500.000	59.48	-12.35	47.13	74.00	-26.87	peak
	4	*	2500.000	49.69	-12.35	37.34	54.00	-16.66	AVG

Page 21 of 57

Mode2 / Polarization: Vertical / CH: H

iodez /	Polan	zalio	n: venical/						
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		2483.500	64.30	-12.44	51.86	74.00	-22.14	peak
	2		2483.500	47.97	-12.44	35.53	54.00	-18.47	AVG
	3		2500.000	62.94	-12.35	50.59	74.00	-23.41	peak
	4	*	2500.000	53.56	-12.35	41.21	54.00	-12.79	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2310.000	51.94	-12.83	39.11	74.00	-34.89	peak
2		2310.000	42.34	-12.83	29.51	54.00	-24.49	AVG
3		2390.000	55.91	-12.42	43.49	74.00	-30.51	peak
4	*	2390.000	47.55	-12.42	35.13	54.00	-18.87	AVG

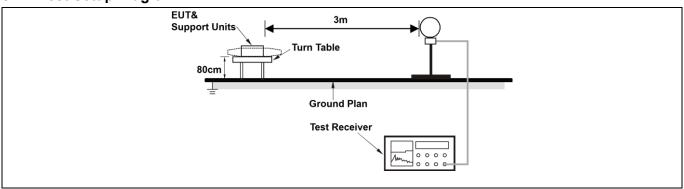
Mode2 / Polarization: Vertical / CH: L

N	о.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		2310.000	52.72	-12.83	39.89	74.00	-34.11	peak
	2		2310.000	42.48	-12.83	29.65	54.00	-24.35	AVG
	3		2390.000	53.89	-12.42	41.47	74.00	-32.53	peak
	4	*	2390.000	44.36	-12.42	31.94	54.00	-22.06	AVG

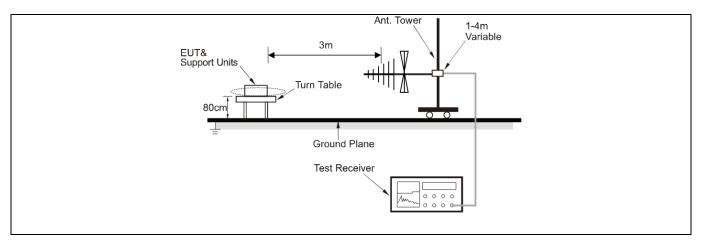
6.7 Radiated emissions (below 1GHz)

Test Requirement:	restricted bands, as de	7(d), In addition, radiated em fined in § 15.205(a), must als s specified in § 15.209(a)(see	so comply with the
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e. In the emission table a The emission limits sho employing a CISPR qu kHz, 110–490 kHz and	n paragraph (g), fundamenta perating under this section sh 2 MHz, 76-88 MHz, 174-216 thin these frequency bands is g., §§ 15.231 and 15.241. bove, the tighter limit applies own in the above table are ba asi-peak detector except for above 1000 MHz. Radiated on measurements employin	all not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2020 sec KDB 558074 D01 15.2	ction 6.6.4 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2020 sec	ction 6.6.4	

6.7.1 E.U.T. Operation:

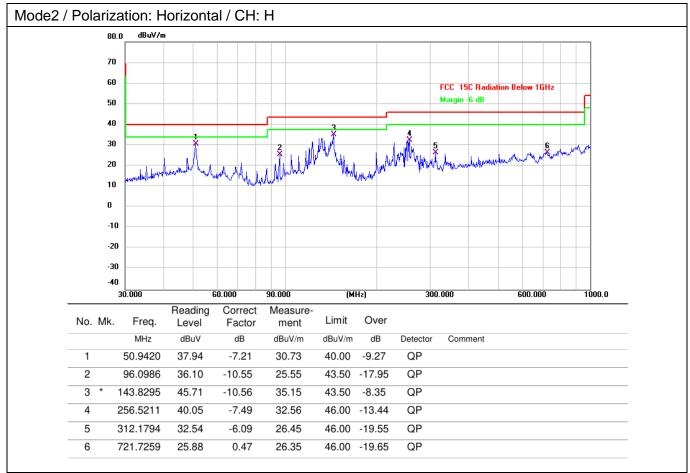

Operating Env	Operating Environment:								
Temperature:	26 °C		Humidity:	54 %	Atmospheric Pressure:	101 kPa			
Pre test mode: Mode1, Mode2									
Final test mode: All of the listed pre-test mode (Mode2) is recorded in the r						of the worst mode			
Mater									

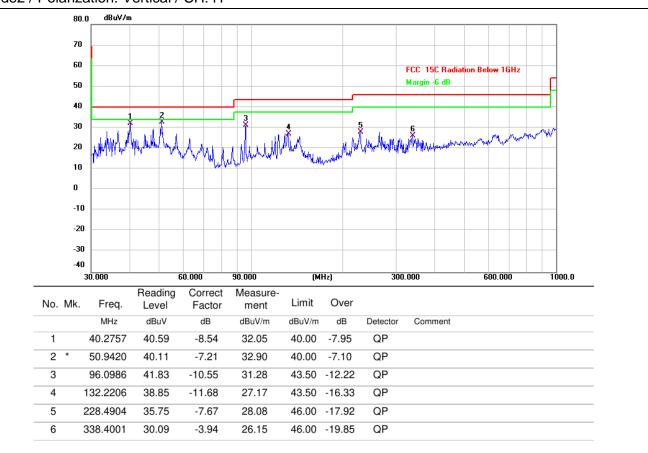
Note:


The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported. There were no emissions found below 30MHz within 20dB of the limit.

6.7.2 Test Setup Diagram:

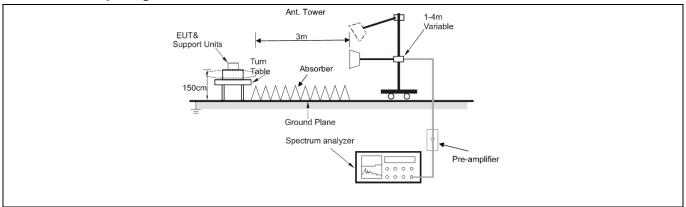




6.7.3 Test Data:

Mode2 / Polarization: Vertical / CH: H

6.8 Radiated emissions (above 1GHz)


Test Requirement:	-	nissions which fall in the rest comply with the radiated em 5(c)).`	-			
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960 500 3					
	intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e. In the emission table a The emission limits sho employing a CISPR qu kHz, 110–490 kHz and	n paragraph (g), fundamenta erating under this section sh 2 MHz, 76-88 MHz, 174-216 hin these frequency bands is g., §§ 15.231 and 15.241. bove, the tighter limit applies own in the above table are ba asi-peak detector except for above 1000 MHz. Radiated on measurements employing	all not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–90 emission limits in these			
Test Method:	ANSI C63.10-2020 sec KDB 558074 D01 15.2	tion 6.6.4 47 Meas Guidance v05r02				
Procedure:	ANSI C63.10-2020 sec	tion 6.6.4				

6.8.1 E.U.T. Operation:

Operating Env	ironment					
Temperature:	26 °C		Humidity:	54 %	Atmospheric Pressure:	101 kPa
Pre test mode: Mode1, Mode2						
Final test mode: All of the listed pre-test mode were tested, only the data of the worst mode (Mode2) is recorded in the report						
attenuated mo	re than 2	0 dB b	elow the lim	nits are not r	nplitude of spurious emission eported. and only the worst-case resu	

All modes of operation of the EUT were investigated, and only the worst-case results are reported.

6.8.2 Test Setup Diagram:

6.8.3 Test Data:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4804.000	51.05	-7.40	43.65	74.00	-30.35	peak
2		4804.000	45.66	-7.40	38.26	54.00	-15.74	AVG
3		7206.000	47.63	0.96	48.59	74.00	-25.41	peak
4		7206.000	41.68	0.96	42.64	54.00	-11.36	AVG
5		9608.000	50.22	2.16	52.38	74.00	-21.62	peak
6	*	9608.000	44.12	2.16	46.28	54.00	-7.72	AVG

Page 30 of 57

14804.00051.48-7.4044.0874.00-29.9224804.00045.64-7.4038.2454.00-15.76	MHz	dBuV dB dBuV/m	
2 4804.000 45.64 -7.40 38.24 54.00 -15.76			dBuV/m dB Detector
	4804.000	51.48 -7.40 44.08	74.00 -29.92 peak
3 7206.000 47.58 0.96 48.54 74.00 -25.46	4804.000	45.64 -7.40 38.24	54.00 -15.76 AVG
	7206.000	47.58 0.96 48.54	74.00 -25.46 peak
4 7206.000 41.19 0.96 42.15 54.00 -11.85	7206.000	41.19 0.96 42.15	54.00 -11.85 AVG
5 9608.000 49.11 2.16 51.27 74.00 -22.73	9608.000	49.11 2.16 51.27	74.00 -22.73 peak
6 * 9608.000 43.11 2.16 45.27 54.00 -8.73	* 9608.000	43.11 2.16 45.27	54.00 -8.73 AVG

Page 31 of 57

No.	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4880.000	50.94	-7.45	43.49	74.00	-30.51	peak
2		4880.000	44.71	-7.45	37.26	54.00	-16.74	AVG
3		7320.000	48.58	0.77	49.35	74.00	-24.65	peak
4		7320.000	42.37	0.77	43.14	54.00	-10.86	AVG
5		9760.000	48.28	3.11	51.39	74.00	-22.61	peak
6	*	9760.000	42.16	3.11	45.27	54.00	-8.73	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4880.000	51.34	-7.45	43.89	74.00	-30.11	peak
2		4880.000	46.10	-7.45	38.65	54.00	-15.35	AVG
3		7320.000	48.38	0.77	49.15	74.00	-24.85	peak
4		7320.000	42.90	0.77	43.67	54.00	-10.33	AVG
5		9760.000	48.16	3.11	51.27	74.00	-22.73	peak
6	*	9760.000	42.06	3.11	45.17	54.00	-8.83	AVG

Page **33** of **57**

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4960.000	53.17	-7.20	45.97	74.00	-28.03	peak
2		4960.000	47.45	-7.20	40.25	54.00	-13.75	AVG
3		7440.000	47.54	0.98	48.52	74.00	-25.48	peak
4		7440.000	41.41	0.98	42.39	54.00	-11.61	AVG
5		9920.000	48.78	3.02	51.80	74.00	-22.20	peak
6	*	9920.000	42.83	3.02	45.85	54.00	-8.15	AVG

Page 34 of 57

No	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4960.000	55.43	-7.20	48.23	74.00	-25.77	peak
2		4960.000	49.47	-7.20	42.27	54.00	-11.73	AVG
3		7440.000	47.11	0.98	48.09	74.00	-25.91	peak
4		7440.000	41.14	0.98	42.12	54.00	-11.88	AVG
5		9920.000	47.43	3.02	50.45	74.00	-23.55	peak
6	*	9920.000	41.30	3.02	44.32	54.00	-9.68	AVG

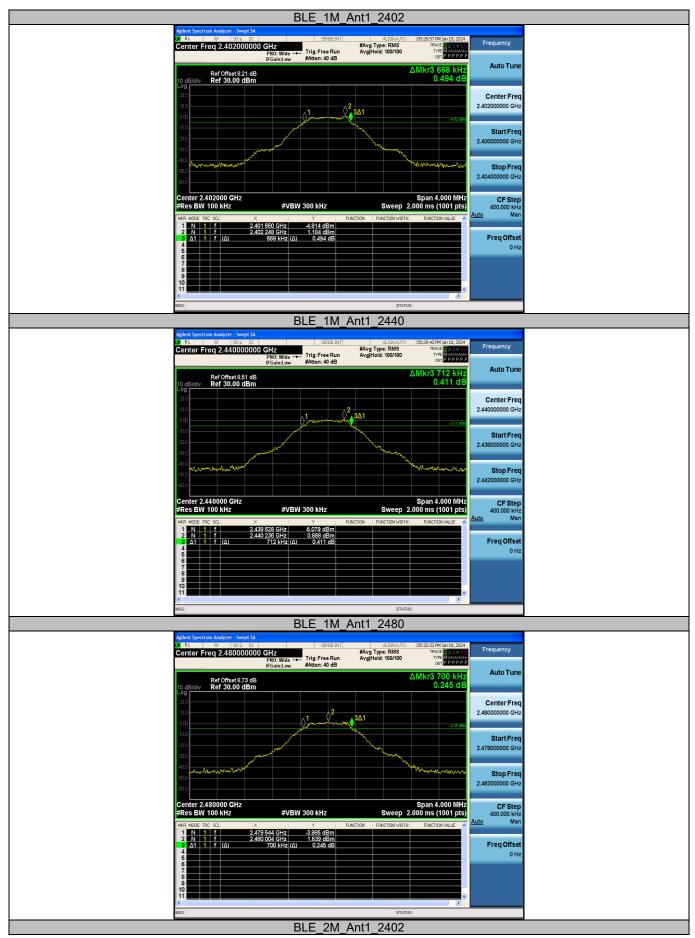
Photographs of the test setup

Refer to Appendix - Test Setup Photos

Photographs of the EUT

Refer to Appendix - EUT Photos

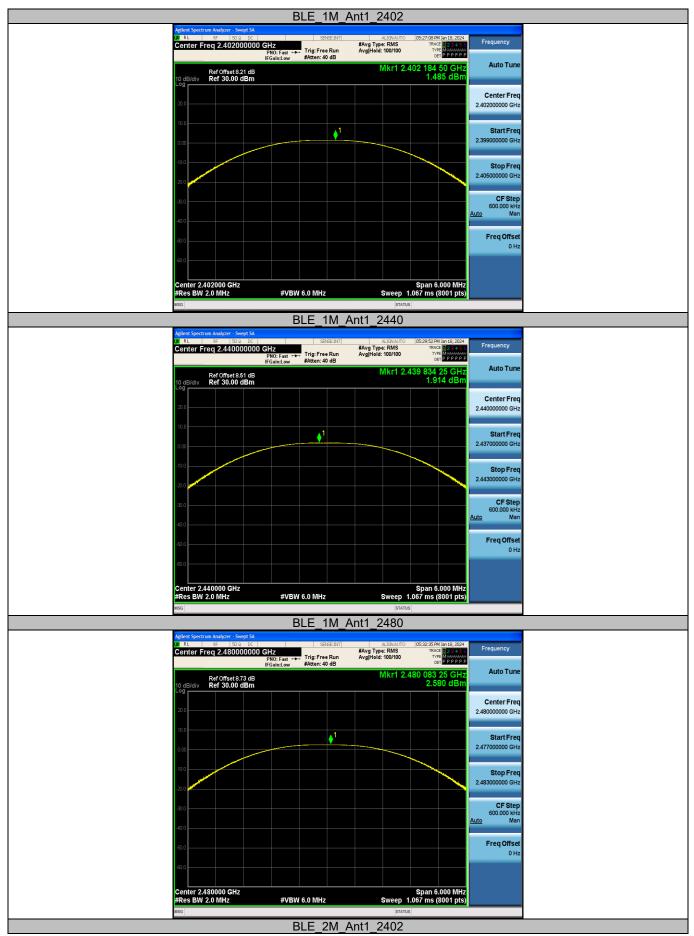
Page 36 of 57


Appendix

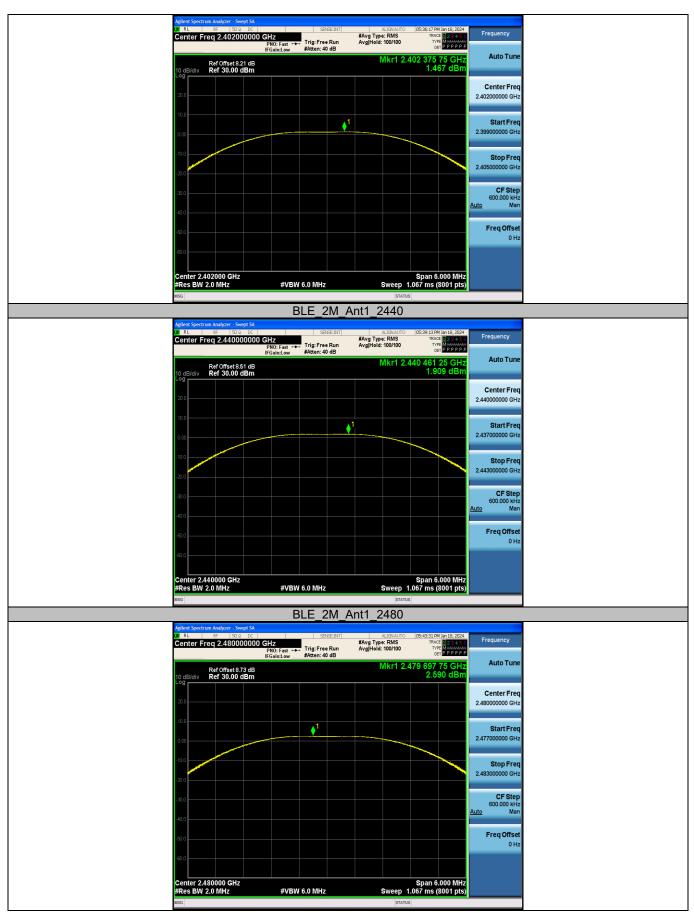
Appendix A: DTS Bandwidth

Test Result

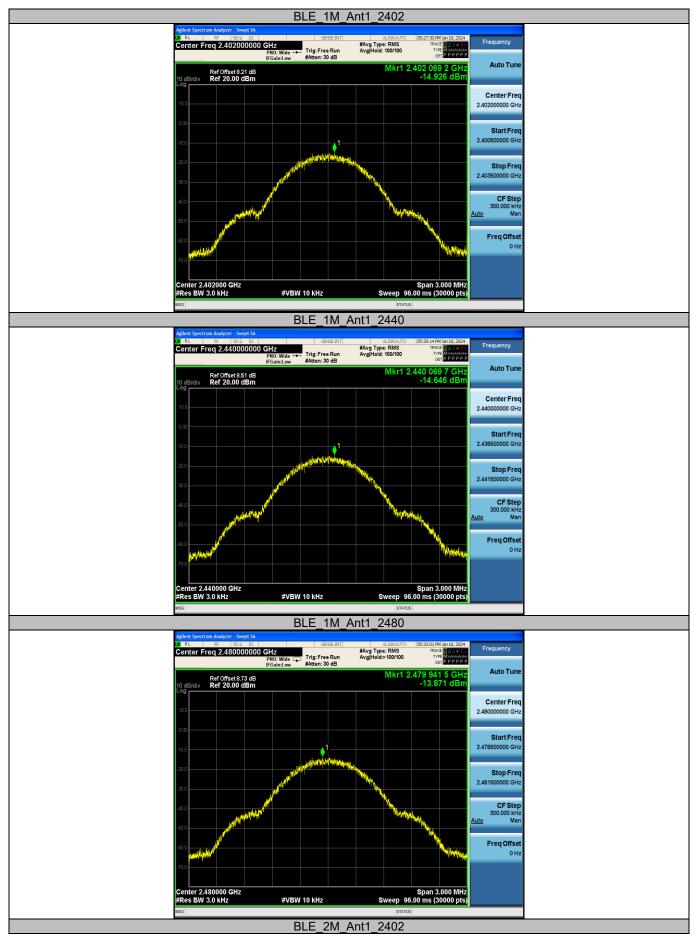
Test Mode	Antenna	Frequency [MHz]	DTS BW [MHz]	Limit [MHz]	Verdict
		2402	0.668	0.5	PASS
BLE_1M	Ant1	2440	0.712	0.5	PASS
		2480	0.700	0.5	PASS
		2402	1.228	0.5	PASS
BLE_2M	Ant1	2440	1.156	0.5	PASS
		2480	1.212	0.5	PASS



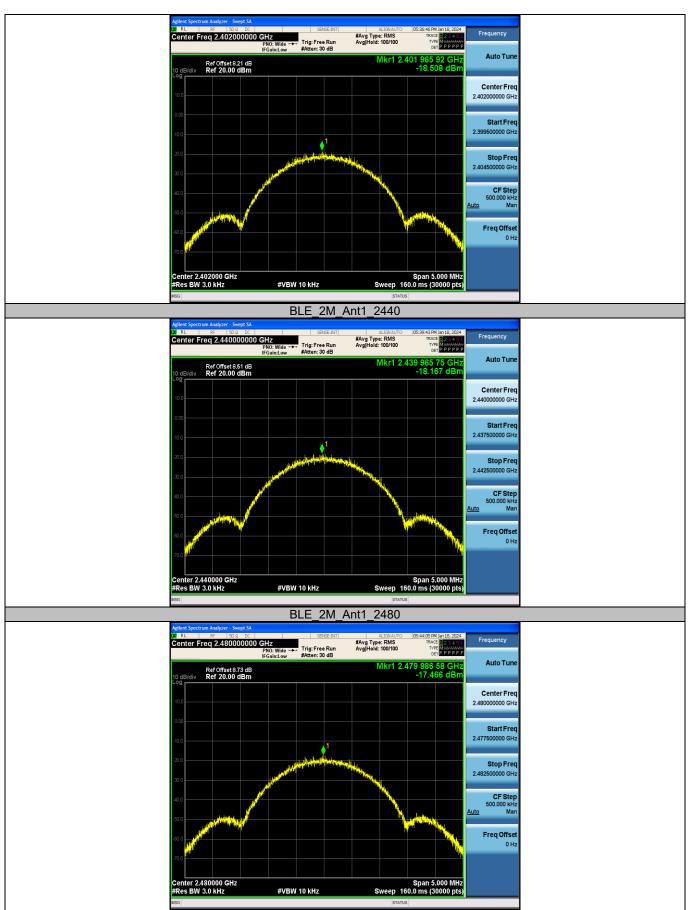
Appendix B: Maximum conducted output power


Test Result-Peak

Test Mode	Antenna	Frequency [MHz]	Conducted Peak Power [dBm]	Limit [dBm]	Verdict
		2402	1.49	≤30	PASS
BLE 1M	Ant1	2440	1.91	≤30	PASS
		2480	2.58	≤30	PASS
	Ant1	2402	1.47	≤30	PASS
BLE_2M		2440	1.91	≤30	PASS
		2480	2.59	≤30	PASS



Appendix C: Maximum power spectral density


Test Result

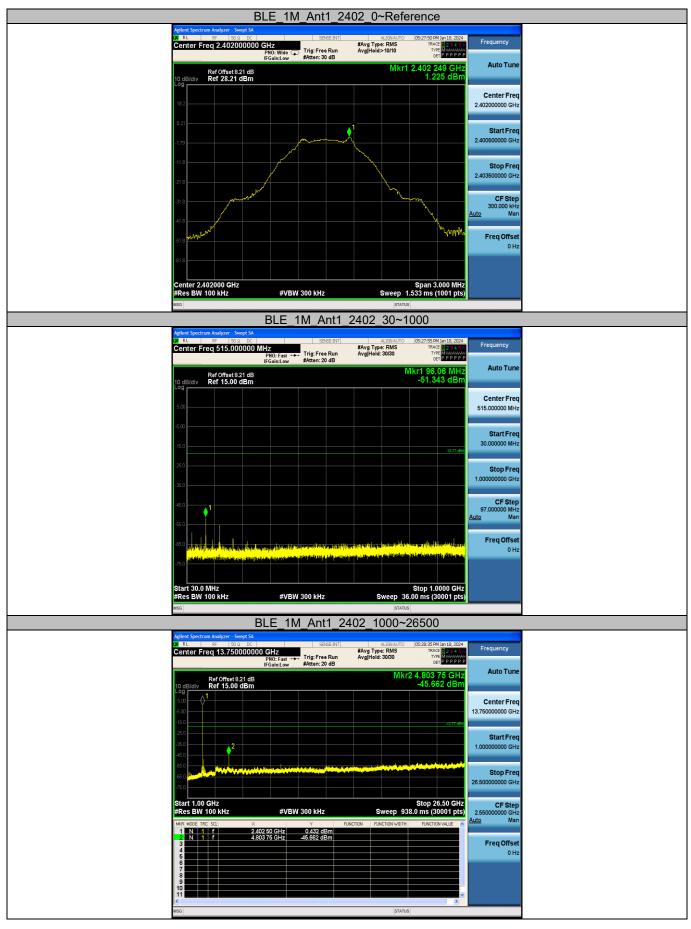
Test Mode	Antenna	Frequency [MHz]	Result [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
		2402	-14.93	≤8.00	PASS
BLE_1M	Ant1	2440	-14.65	≤8.00	PASS
		2480	-13.87	≤8.00	PASS
		2402	-18.51	≤8.00	PASS
BLE_2M	Ant1	2440	-18.17	≤8.00	PASS
		2480	-17.47	≤8.00	PASS



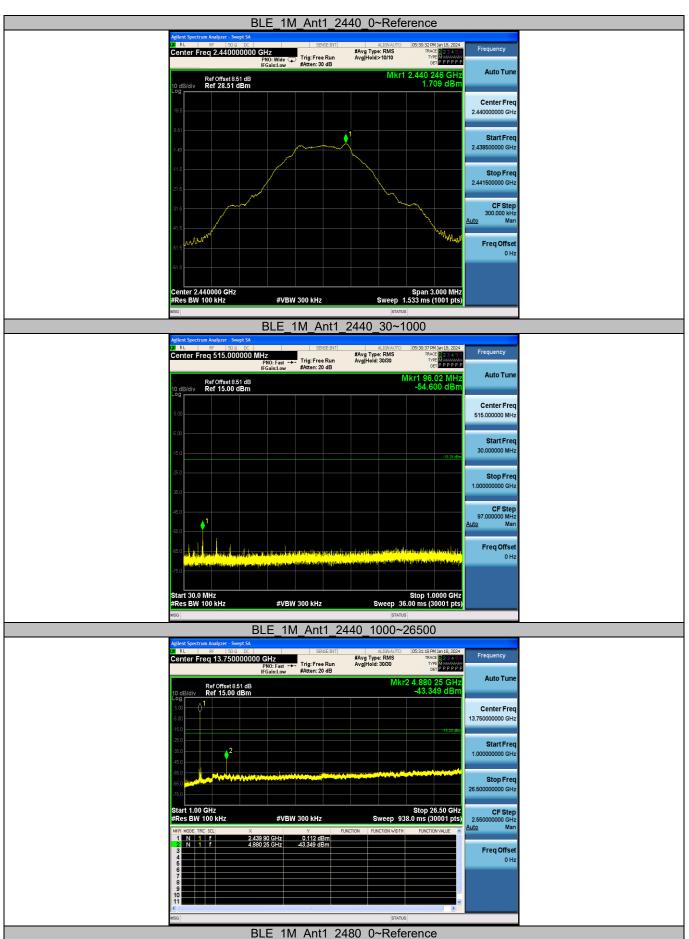
Appendix D: Band edge measurements

Test Graphs

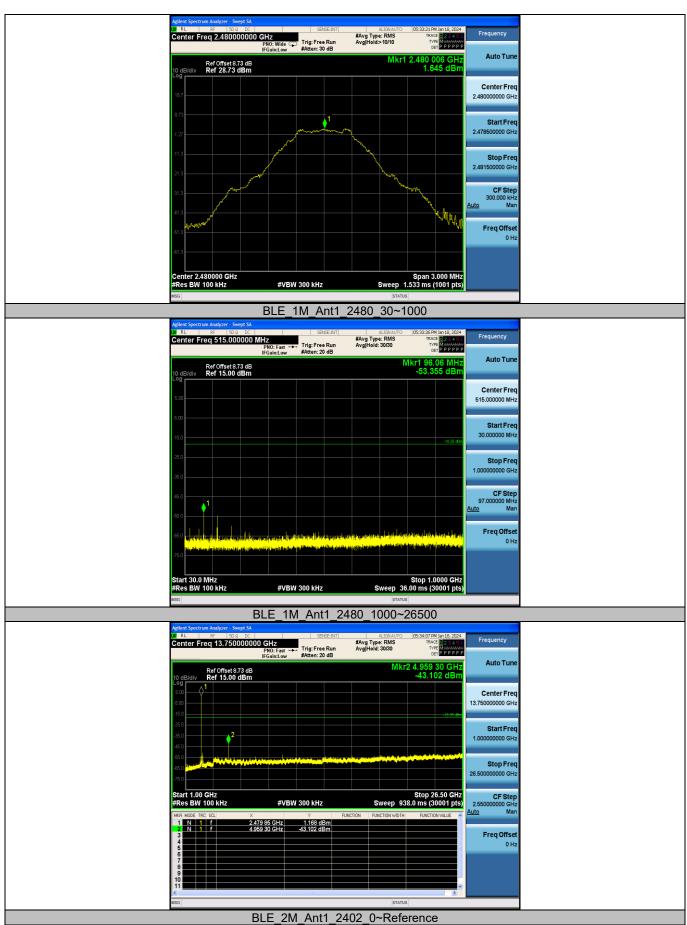
Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, ChinaTel: (86-755)88850135Fax: (86-755) 88850136Web: www.mtitest.comE-mail: mti@51mti.com



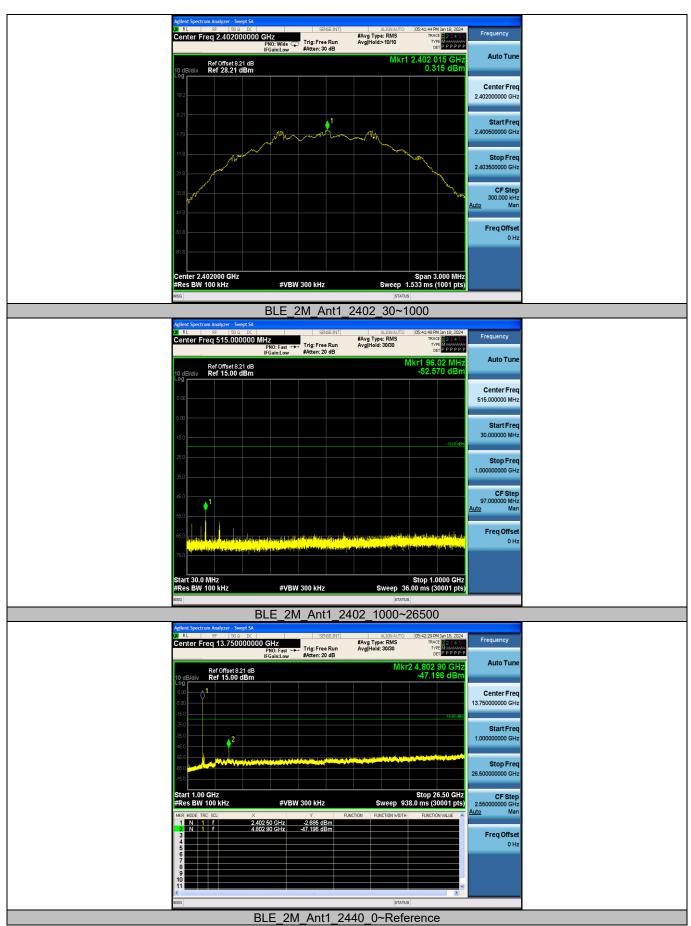
	BLE_2M_Ant1	_High_2480		
Agilent Spectrum Acatyzer - Swept SA Mill RL RE - 1999 000 Center Freq 24.51000000	SENSE:INT	ALIGNAUTO 05:44:11 PM Jan 18, 2024 #Avg Type: RMS TRACE 22 4 5 C Avg Hold: 100/100 TYPE DET PPPP P	Frequency	
Ref Offset 8.73 dB 10 dB/div Ref 20.00 dBm		Mkr4 2.518 00 GHz -47.393 dBm	Auto Tune	
			Center Freq 2.51000000 GHz	
		-20.78 dBm	Start Freq 2.470000000 GHz	
-50.0 rest-teste, p -70.0	eseened management of the service of	Janderhaumsumsunglickentrechtigtenskriversklure	Stop Freq 2.55000000 GHz	
Start 2.47000 GHz #Res BW 100 kHz	#VBW 300 kHz	Stop 2.55000 GHz Sweep 3.000 ms (1001 pts)	CF Step 8.000000 MHz Auto Man	
1 N 1 f 2 2 N 1 f 2 2 N 1 f 2	X Y FUN 2483 56 GHz - 0,782 dBm 2483 56 GHz - 53,977 dBm 2 500 00 GHz - 53,605 dBm 518 00 GHz - 47,393 dBm		Freq Offset 0 Hz	
MSG		STATUS		

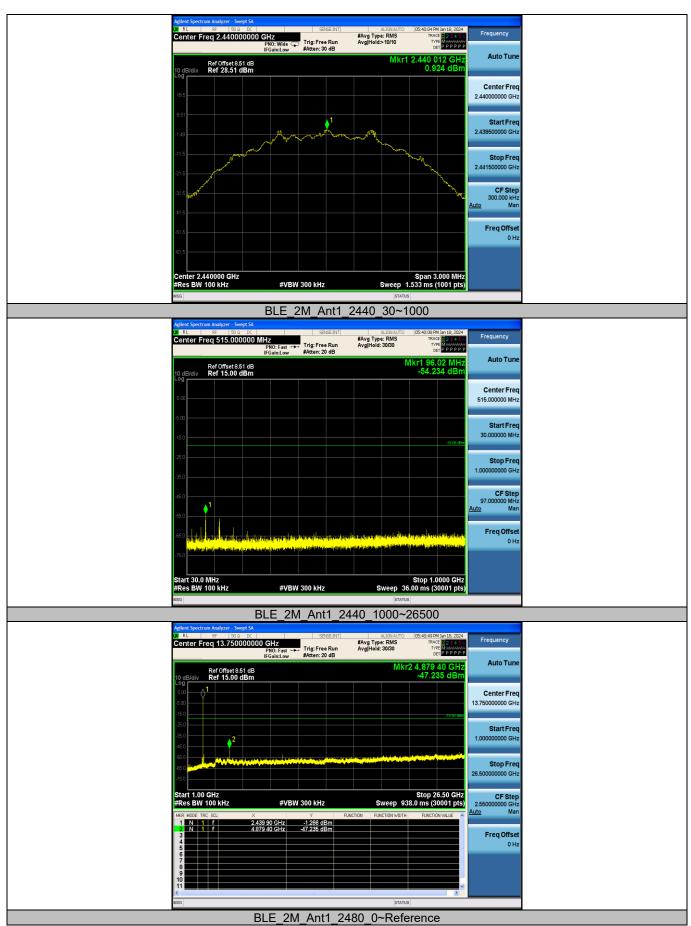

Appendix E: Conducted Spurious Emission

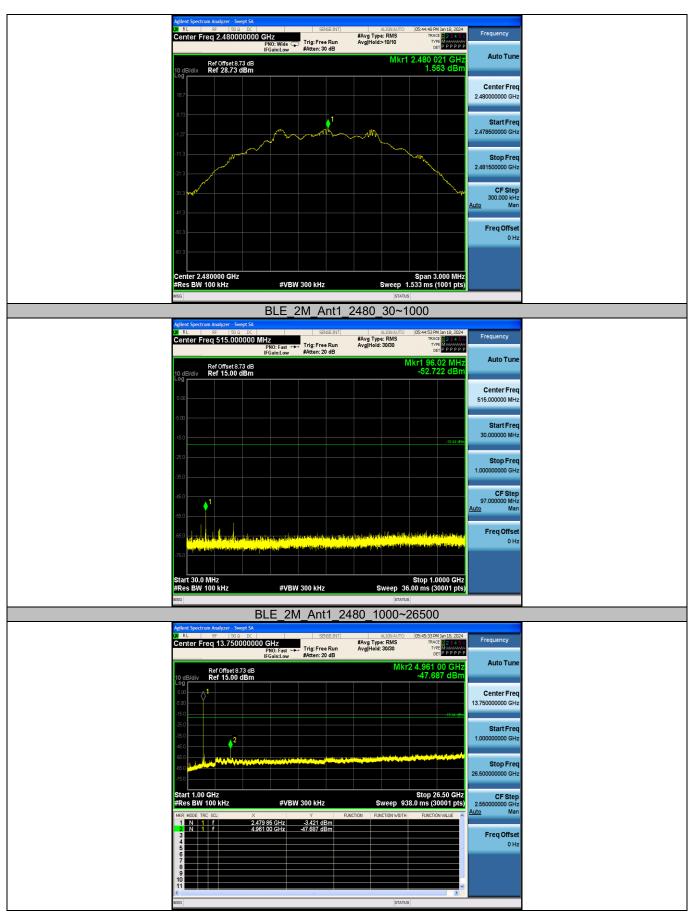
Test Graphs



Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, ChinaTel: (86-755)88850135Fax: (86-755) 88850136Web: www.mtitest.comE-mail: mti@51mti.com







Appendix F: Duty Cycle

Test Result

Test Mode	Antenna	Frequency	ON Time	Period	Duty Cycle	Duty Cycle
		[MHz]	[ms]	[ms]	[%]	Factor[dB]
		2402	2.13	2.50	85.20	0.70
BLE_1M	Ant1	2440	2.13	2.50	85.20	0.70
		2480	2.13	2.50	85.20	0.70
		2402	1.08	2.50	43.20	3.65
BLE_2M	Ant1	2440	1.08	2.50	43.20	3.65
		2480	1.08	2.50	43.20	3.65

Agilent Spectrum Analyzer - Swept SA ut RL 8F 50 0. DC SENSEINT ALIGNAUTO (55:55:56 PM Jan 18, 2024	
Cepter Freq 2 402000000 GHz Trig Delay-2.000 ms #Avg Type: RMS TRACE 1 23456	Frequency
PNO: Fast - Trig: Video Trie Mathematical Control of the PPPPP	
	Auto Tune
Ref Offset821 dB ΔMkr3 2,500 ms 10 dB/div Ref 15.00 dBm -0.02 dB	
10 dB/div Ref 15.00 dBm -0.02 dB Log 1 3Δ1	
	Center Freq
5.00 780LV4	2.402000000 GHz
	Start Freq
	2.40200000 GHz
45.0 Set-independent of the set o	
	Stop Freq
	2.402000000 GHz
Center 2.402000000 GHz Span 0 Hz	CF Step
Res BW 8 MHz #VBW 8.0 MHz Sweep 5.000 ms (1001 pts)	8.000000 MHz
MICH MODE THE SEE A T FONCTION WITH FONCTION VIELDE A	<u>Auto</u> Man
1 N 1 t 1.990 ms 1.38 dBm 2 Δ1 1 t (Δ) 1.080 ms (Δ) -21.68 dB	
3 <u>Δ1 1 t (Δ) 2.550 ms (Δ) -0.02 dB</u>	FreqOffset
	0 Hz
9	
KI STATUS	
BLE_2M_Ant1_2440	
Agilent Spectrum Analyzer - Swept SA	
100 R L RF 50 Q DC SENSE:INT ALIGNAUTO 05:38:52 PM Jan 18: 2024	Frequency
Center Freq 2.440000000 GHz DW0- Ext. Control Trig: Video Trigeo Trig: Video T	requency
Center Freq 2.44000000 GHZ	
Performents 61 dB AMkr3 2.500 ms	Auto Tune
10 dB/div Ref 15.00 dBm 0.01 dB	
	Center Freq
5.00 1990/4	2.44000000 GHz
350	Start Freq
35.0	2.44000000 GHz
450 entertained and an anti-anti-anti-anti-anti-anti-anti-anti-	
45.0	Stop Freq
75.0	2.44000000 GHz
Center 2.44000000 GHz Span 0 Hz Bec Biu 8 MHz #VEW 8 0 MHz Sween 5 000 mc (1001 ptc)	CF Step
Res BW 8 MHz #VBW 8.0 MHz Sweep 5.000 ms (1001 pts)	8.000000 MHz Auto Man
INCH MODE THE SEE A FONCTION WOTH FONCTION WERE	
1 N 1 t 1990 ms 1.85 dBm 2 Δ1 1 t (Δ) 4.03 dB 3 Δ1 1 t (Δ) 4.03 dB	Env Offert
3 Δ1 1 t (Δ) 2.500 ms (Δ) 0.01 dB	FreqOffset
	0 Hz
11	
NG STATUS	
BLE 2M Ant1 2480	
Agilent Spectrum Analyzer - Swept SA	
UN RL RF 50 Ω DC SENSE:INT ALIGNAUTO (05:43:08 PM Jan 18, 2024	Frequency
Center Freq 2.480000000 GHz Trig Delay-2.000 ms #Avg Type: RMS Trig: Video	
CEITER FIEL 2.40000000 GFIZ. → Tig: Video Trie Remaining and the second	
AM/-2.2.500.mo	Auto Tune
10 dB/div Ref 15.00 dBm 0.01 dB	
	Center Freq
-5:00 ZΔ1 TREUM	2.480000000 GHz
	Start Freq
36.0	2.480000000 GHz
45.0 betallytigeter approach and the second betally and the second betally the second bet	
56 B	Ctop Error
0.33	Stop Freq
76.0	2.48000000 GHz
Center 2.480000000 GHz Span 0 Hz	CF Step
Res BW 8 MHz #VBW 8.0 MHz Sweep 5.000 ms (1001 pts)	8.000000 MHz Auto Man
	Eren Officet
	Freq Offset
	Freq Offset 0 Hz
1 1 1 2 42 43 1 1 1 2 42 43 1 <th1< th=""> 1 1 1<td></td></th1<>	
1 N 1 K 1.990 ms 2.48 dBm Control Mode 2 Δ1 1 t (Δ) 1.990 ms (Δ) -17.83 dB 4 3 Δ1 1 t (Δ) 2.800 ms (Δ) 0.01 dB 6 6 6 6 7 8 9 1<	
1 N 1 × 1 1400 ms 2.48 dBm 2.48 dBm 2.44 dBm 2.45 dBm	

----End of Report----