

FCC TEST REPORT FCC ID: 2ASRB-M02S

Product Name	:	Mini Printer				
Model Name	:	M02S , M02 pro, Y61S, Y61 pro, Y02 pro , M03, M02H				
Brand Name	:	N/A				
Report No.	:	PTC191802301E-FC02				
		Prepared for				
		Zhuhai Quyin Technology Co., Ltd.				
Office 105 - 38	942,	No. 6 Baohua Road, Hengqin New District, Zhuhai City (Centralized Office Area)				
Prepared by						
Dongguan Precise Testing & Certification Co., Ltd.						
Building D, Baoding Technology Park, Guangming Road 2, Guangming Community, Dongcheng District, Dongguan, Guangdong, China						

1TEST RESULT CERTIFICATION

Applicant's name	:	Zhuhai Quyin Technology Co., Ltd.				
Address	:	Office 105 - 38942, No. 6 Baohua Road, Hengqin New District, Zhuhai City (Centralized Office Area)				
Manufacture's name	:	Zhuhai Quyin Technology Co., Ltd.				
Address	:	Office 105 - 38942, No. 6 Baohua Road, Hengqin New District, Zhuhai City (Centralized Office Area)				
Product name	:	Mini Printer				
Model name	:	M02S , M02 pro, Y61S, Y61 pro, Y02 pro , M03, M02H				
Standards	:	FCC CFR47 Part 15 Section 15.247				
Test procedure	:	ANSI C63.10:2013				
Test Date	:	Oct. 24, 2019 to Nov. 12, 2019				
Date of Issue	:	Nov. 13, 2019				
Test Result	:	Pass				

This device described above has been tested by PTC, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of PTC, this document may be altered or revised by PTC, personal only, and shall be noted in the revision of the document.

Test Engineer:

Technical Manager:

Leo Yang

Leo Yang / Engineer

chim

Chris Du / Manager

Contents

1TEST RESULT CERTIFICATION	5 6
2 TEST SUMMARY	6
3 TEST FACILITY	7
4 GENERAL INFORMATION	
4.1 GENERAL DESCRIPTION OF E.U.T.	7
4.2 Test Mode	8
5 EQUIPMENT DURING TEST	9
5.1 Equipments List	9
5.2 Measurement Uncertainty	
5.3 DESCRIPTION OF SUPPORT UNITS	12
6 CONDUCTED EMISSION	13
6.1 E.U.T. OPERATION	13
6.2 EUT SETUP	13
6.3 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	14
6.4 Measurement Procedure:	14
6.5 CONDUCTED EMISSION LIMIT	14
6.6 MEASUREMENT DESCRIPTION	14
6.7 CONDUCTED EMISSION TEST RESULT	14
7 RADIATED SPURIOUS EMISSIONS	17
7.1 EUT OPERATION	17
7.2 Test Setup	18
7.3 SPECTRUM ANALYZER SETUP	19
7.4 Test Procedure	20
7.5 SUMMARY OF TEST RESULTS	21
8 CONDUCTED BAND EDGE EMISSION	26
8.1 REQUIREMENT	26
8.2 TEST PROCEDURE	26
8.3 TEST RESULTS	28
9 20 DB BANDWIDTH MEASUREMENT	43

9.2 TEST RESULT	
10 MAXIMUM PEAK OUTPUT POWER	
10.1 TEST PROCEDURE	
10.2 TEST RESULT	
11 HOPPING CHANNEL SEPARATION	N
11.1 TEST PROCEDURE	
11.2 TEST RESULT	
12 NUMBER OF HOPPING FREQUEN	CY63
12.1 TEST PROCEDURE	
12.2 TEST RESULT	
13 DWELL TIME	
13.1 Test Procedure	
13.2 TEST RESULT	
14 ANTENNA REQUIREMENT	
14.1 ANTENNA REQUIREMENT	
14.2 RESULT	

2 Test Summary

Test Items	Test Requirement	Result
Radiated Spurious Emissions	15.205(a) 15.209 15.247(d)	PASS
Band edge	15.247(d) 15.205(a)	PASS
Conduct Emission	15.207	PASS
20dB Bandwidth	15.247(a)(1)	PASS
Maximum Peak Output Power	15.247(b)(1)	PASS
Frequency Separation	15.247(a)(1)	PASS
Number of Hopping Frequency	15.247(a)(1)(iii)	PASS
Dwell time	15.247(a)(1)(iii)	PASS
Antenna Requirement	15.203	PASS

Remark:

1. The EUT is powered by full-charged battery during the test.

3 TEST FACILITY

Dongguan Precise Testing & Certification Corp., Ltd. Address: Building D, Baoding Technology Park, Guangming Road2, Dongcheng District, Dongguan, Guangdong, China FCC Registration Number: 790290 A2LA Certificate No.: 4408.01 IC Registration Number: 12191A-1

4 General Information

4.1 General Description of E.U.T.

Product Name	:	Mini Printer
Model Name	:	M02S , M02 pro, Y61S, Y61 pro, Y02 pro , M03, M02H (Note: The samples are the same except appearance and model number. So BTS0019A was selected for full tested.)
Bluetooth Version	:	BT 4.0
Operating frequency	:	2402-2480MHz
Numbers of Channel	:	79 channels
Antenna Type	:	Internal PCB Antenna
Antenna Gain	:	0 dBi
Type of Modulation	:	GFSK, Π/4-DQPSK, 8DPSK
Power supply	:	DC 7.4V 1000mAh Battery
Hardware Version	:	V1.2
Software Version	:	V0.1

4.2 Test Mode

The EUT has been tested under its typical operating condition. Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting. Only the worst case data were reported.

The EUT has been associated with peripherals pursuant to ANSI C63.10-2013 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation (9 KHz to the 10th harmonics of the highest fundamental frequency or to 40 GHz, whichever is lower).

The EUT has been tested under TX operating condition.

This EUT is a FHSS system, were conducted to determine the final configuration from all possible combinations. We use software control the EUT, Let EUT hopping on and transmit with highest power, all the modes GFSK, Π /4-DQPSK, 8DPSK have been tested. 79 Channels are provided by EUT. The 3 channels of lower, medium and higher were chosen for test.

Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	-	-

EUT was tested with channel 0, 39, 78.

5 Equipment During Test

5.1 Equipments List

RF Conducted Test

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due
MXG Signal Analyzer	Agilent	N9020A	MY56070279	10Hz-30GHz	Sep. 18, 2020
Spectrum Analyzer	Rohde&Schwarz	FSU26	1166.1660.26	20Hz-26.5GHz	Sep. 18, 2020
Coaxial Cable	CDS	79254	46107086	10Hz-30GHz	Sep. 18, 2020
Antenna Connector	Florida RF Labs	N/A	RF01#	N/A	Sep. 18, 2020
Power Meter	Anritsu	ML2495A	0949003	300MHz-40GHz	Sep. 18, 2020
Power Sensor	Anritsu	MA2411B	0917017	300MHz-40GHz	Sep. 18, 2020

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

Radiated Emissions(Test Frequency from 9KHz-18GHz)

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due
EMI Test Receiver	Rohde&Schwarz	ESCI	101417	9KHz-3GHz	Sep. 18, 2020
Loop Antenna	Schwarzbeck	FMZB 1519	012	9 KHz -30MHz	Sep. 18, 2020
Bilog Antenna	SCHWARZBECK	VULB9160	9160-3355	25MHz-2GHz	Sep. 18, 2020
Preamplifier (low frequency)	SCHWARZBECK	BBV 9475	9745-0013	1MHz-1GHz	Sep. 18, 2020
Cable	Schwarzbeck	PLF-100	549489	9KHz-3GHz	Sep. 18, 2020
Spectrum Analyzer	Agilent	E4407B	MY45109572	9KHz-40GHz	Sep. 18, 2020
Horn Antenna	SCHWARZBECK	9120D	9120D-1246	1GHz-18GHz	Sep. 18, 2020
Power Amplifier	LUNAR EM	LNA1G18-40	J1010000081	1GHz-26.5GHz	Sep. 18, 2020
Cable	H+S	CBL-26	N/A	1GHz-26.5GHz	Sep. 18, 2020

Conducted Emissions

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due
EMI Test Receiver	Rohde&Schwarz	ESCI	101417	9KHz-3GHz	Sep. 18, 2020
Artificial Mains Network	Rohde&Schwarz	L2-16B	000WX31025	9KHz-300MHz	Sep. 18, 2020
Artificial Mains Network	Rohde&Schwarz	ENV216	101342	9KHz-300MHz	Sep. 18, 2020

5.2 Measurement Uncertainty

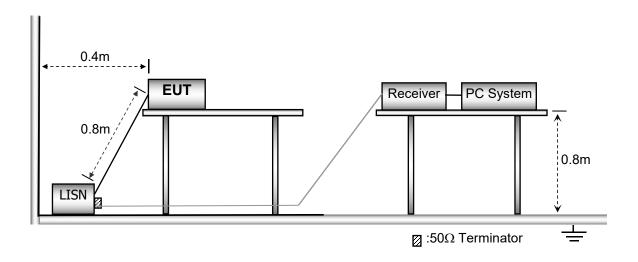
Parameter	Uncertainty				
RF output power, conducted	±1.0dB				
Power Spectral Density, conducted	±2.2dB				
Radio Frequency	± 1 x 10 ⁻⁶				
Bandwidth	± 1.5 x 10 ⁻⁶				
Time	±2%				
Duty Cycle	±2%				
Temperature	±1°C				
Humidity	±5%				
DC and low frequency voltages	±3%				
Conducted Emissions (150kHz~30MHz)	±3.64dB				
Radiated Emission(30MHz~1GHz)	±5.03dB				
Radiated Emission(1GHz~25GHz)	±4.74dB				
Remark: The coverage Factor (k=2), and measurement Uncertainty for a level of Confidence of 95%					

5.3 Description of Support Units

Equipment	Model No.	Series No.
Adapter	Model: PS65B150Y3000S Input: AC120V, 60Hz, 1.5A Output: DC 5V, 3000mA	N/A

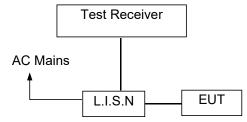
6 Conducted Emission

Test Requirement:	:	FCC CFR 47 Part 15 Section 15.207
Test Method:	:	ANSI C63.10:2013
Test Result:	:	PASS
Frequency Range:	:	150kHz to 30MHz
Class/Severity:	:	Class B
Detector:	:	Peak for pre-scan (9kHz Resolution Bandwidth)


6.1 E.U.T. Operation

Operating Environment :

Temperature:	:	25.5 °C
Humidity:	:	51 % RH
Atmospheric Pressure:	:	101.2kPa
Test Voltage	:	AC 120V/60Hz


6.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10: 2013

6.3 Test SET-UP (Block Diagram of Configuration)

6.4 Measurement Procedure:

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured was complete.

6.5 Conducted Emission Limit

Conducted Emission

Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

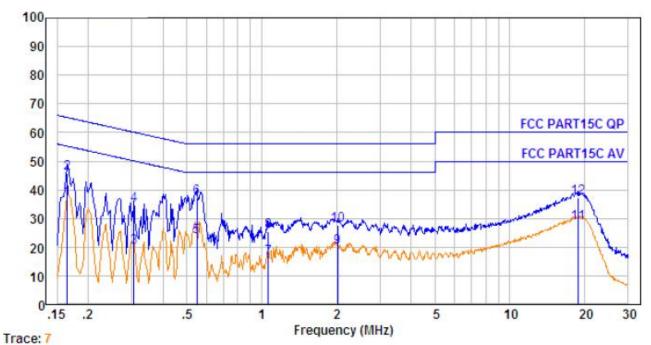
Note:

1. The lower limit shall apply at the transition frequencies

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

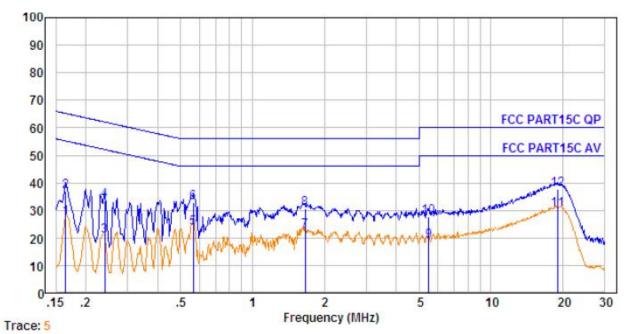
6.6 Measurement Description


The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.


6.7 Conducted Emission Test Result

Pass.

All the modulation modes were tested the data of the worst mode (AC 120V/60Hz, GFSK TX 2402MHz) are recorded in the following pages and the others modulation methods do not exceed the limits.



No.	Freq MHz	Cable Loss dB	AMN Factor dB	Receiver Reading dBuV	Emission Level dBuV	Limit dBu∀	O∨er Limit dB	Remark
1.	0.165	0.23	9.53	27.31	37.07	55.21	-18.14	Average
2.	0.165	0.23	9.53	36.14	45.90	65.21	-19.31	QP -
3.	0.305	0.37	9.68	10.04	20.09	50.10	-30.01	Average
4.	0.305	0.37	9.68	24.68	34.73	60.10	-25.37	QP
5.	0.549	0.43	9.79	13.55	23.77	46.00	-22.23	Average
6.	0.549	0.43	9.79	27.12	37.34	56.00	-18.66	QP -
7.	1.065	0.46	9.82	5.98	16.26	46.00	-29.74	Average
8.	1.065	0.46	9.82	15.32	25.60	56.00	-30.40	QP
9.	2.023	0.47	9.85	9.54	19.86	46.00	-26.14	Average
10.	2.023	0.47	9.85	17.35	27.67	56.00	-28.33	QP
11.	18.820	0.43	9.88	18.28	28.59	50.00	-21.41	Average
12.	18.820	0.43	9.88	26.94	37.25	60.00	-22.75	QP -

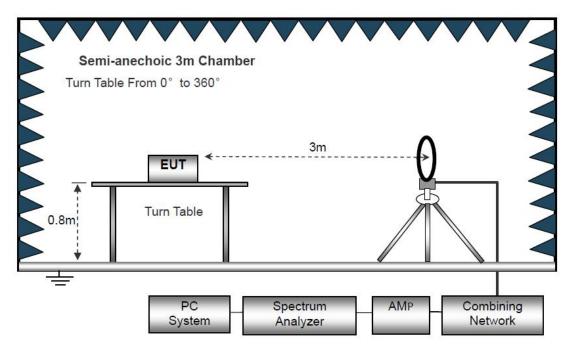
Neutral -120V/60Hz:

No.	Freq MHz	Cable Loss dB	AMN Factor dB	Receiver Reading dBu∨	Emission Le∨el dBu∨	Limit dBu∀	O∨er Limit dB	Remark
1.	0.165	0.23	9.56	17.36	27.15	55.21	-28.06	Average
2.	0.165	0.23	9.56	27.14	36.93	65.21	-28.28	QP
3.	0.240	0.32	9.66	10.83	20.81	52.08	-31.27	Average
4.	0.240	0.32	9.66	23.65	33.63	62.08	-28.45	QP
5.	0.564	0.43	9.82	13.53	23.78	46.00	-22.22	Average
6.	0.564	0.43	9.82	22.65	32.90	56.00	-23.10	QP -
7.	1.662	0.47	9.87	12.24	22.58	46.00	-23.42	Average
8.	1.662	0.47	9.87	20.35	30.69	56.00	-25.31	QP -
9.	5.476	0.51	9.97	8.22	18.70	50.00	-31.30	Average
10.	5.476	0.51	9.97	17.35	27.83	60.00	-32.17	QP
11.	19.021	0.42	9.98	19.79	30.19	50.00	-19.81	Average
12.	19.021	0.42	9.98	27.37	37.77	60.00	-22.23	QP -

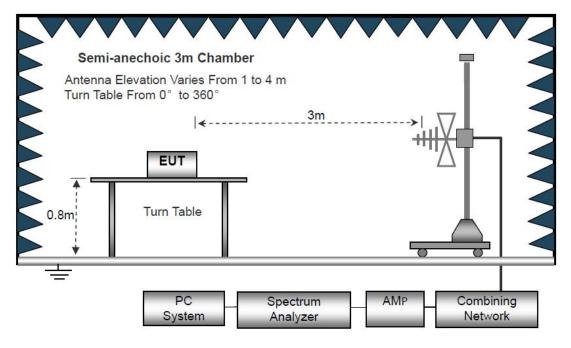
7 Radiated Spurious Emissions

Test Requirement	:	FCC CFR47	Part 15 Section 15.209 & 15.247		
Test Method	:	ANSI C63.10:2013			
Test Result	:	PASS			
Measurement Distance	:	3m			
Limit	:	See the follow	w table		

	Field Strer	ngth	Field Strength Limit at 3m Measurement Dist		
Frequency (MHz) uV/m		Distance (m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

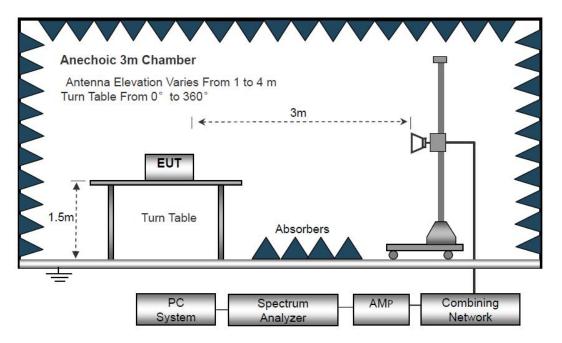

7.1 EUT Operation

Temperature	:	23.5 °C
Humidity	:	51.1 % RH
Atmospheric Pressure	:	101.2kPa
Test Voltage	:	AC 120V 60Hz



7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site The test setup for emission measurement below 30MHz.



The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz.

7.3 Spectrum Analyzer Setup

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / <i>10Hz</i> for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

7.4 Test Procedure

- 1. The testing follows the guidelines in Spurious Radiated Emissions of ANSI C63.10-2013.
- 2. Below 1000MHz, The EUT was placed on a turn table which is 0.8m above ground plane. And above 1000MHz, The EUT was placed on a styrofoam table which is 1.5m above ground plane.
- 3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (From 1m to 4m) and turntable (from 0 degree to 360 degree) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Final measurement (Above 1GHz): The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1MHz. The measurement will be performed in horizontal and vertical polarization of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 degree to 360 degree in order to have the antenna inside the cone of radiation.
- 7. Test Procedure of measurement (For Above 1GHz):
- 1) Monitor the frequency range at horizontal polarization and move the antenna over all sides of the EUT(if necessary move the EUT to another orthogonal axis).
- 2) Change the antenna polarization and repeat 1) with vertical polarization.
- 3) Make a hardcopy of the spectrum.
- 4) Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 5) Change the analyser mode to Clear/ Write and found the cone of emission.
- 6) Rotate and move the EUT, so that the measuring distance can be enlarged to 3m and the antenna will be still inside the cone of emission.
- 7) Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarization and azimuth and the peak and average detector, which causes the maximum emission.
- 8) Repeat steps 1) to 7) for the next antenna spot if the EUT is larger than the antenna beamwidth.

7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

7.5 Summary of Test Results

Test Frequency: 9KHz-30MHz

Freq.	Ant.Pol.	Emission Level	Limit 3m	Over
(MHz)	H/V	(dBuV/m)	(dBuV/m)	(dB)
				>20

Note:

The amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

Test Frequency: 30MHz ~ 1GHz

Please refer to the following test plots:

All the modulation modes were tested the data of the worst mode (GFSK TX 2402MHz) are recorded in the following pages and the others modulation methods do not exceed the limits.

813.112

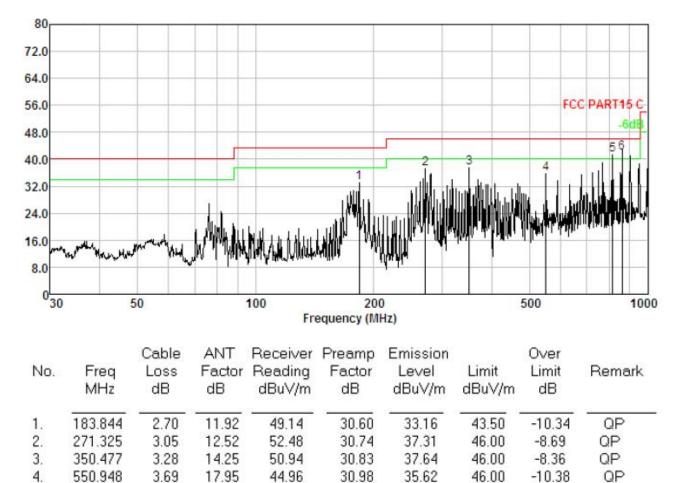
860.035

5.

6.

4.04

4.09


21.85

22.06

46.41

46.90

Report No.: PTC191802301E-FC02

31.12

31.14

41.18

41.91

46.00

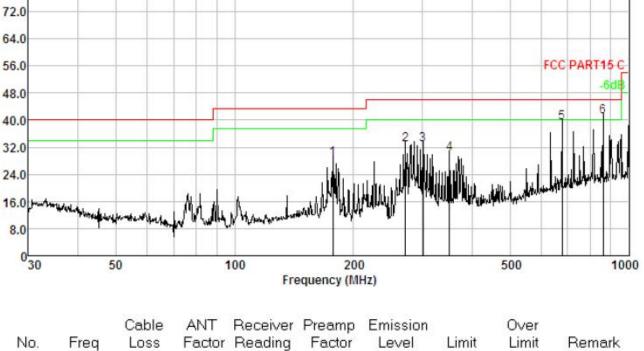
46.00

-4.82

-4.09

QP

QP


Test plot for Horizontal: GFSK(2402MHz)

Test plot for Vertical: GFSK(2402MHz)

Report No.: PTC191802301E-FC02

72.0

	MHz	dB	dB	dBuV/m	dB	dBuV/m	dBuV/m	dB	
1.	177.509	2.66	12.66	43.80	30.59	28.53	43.50	-14.97	QP
2.	271.325	3.05	12.52	47.96	30.74	32.79	46.00	-13.21	QP
3.	300.367	3.14	13.20	47.24	30.77	32.81	46.00	-13.19	QP
4.	350.477	3.28	14.25	43.37	30.83	30.07	46.00	-15.93	QP
5.	677.580	3.88	19.85	46.44	31.05	39.12	46.00	-6.88	QP
6.	860.035	4.09	22.06	46.00	31.14	41.01	46.00	-4.99	QP

Test Frequency 1GHz-18GHz

		LOW	Channel			กระ เสรเ			
Frequency	S.A	Detector	Polarity	Ant.	Cable	Pre-	Emission	Limit	Margin
(MHz)	Reading	(PK/AV)	(H/V)	Factor	Loss	Amp.	Level	(dBuV/m)	(dB)
	(dBuV)			(dB/m)	(dB)	Gain	(dBuV/m)		
						(dB)			
4824	29.75	AV	V	8.18	10.46	10.43	37.96	54	-16.04
4824	30.26	AV	Н	8.18	10.46	10.43	38.47	54	-15.53
4824	32.14	PK	V	8.18	10.46	10.43	40.35	74	-33.65
4824	35.29	PK	Н	8.18	10.46	10.43	43.5	74	-30.5
14859	30.26	AV	V	9.22	11.05	12.36	38.17	54	-15.83
14859	31.47	AV	Н	9.22	11.05	12.36	39.38	54	-14.62
14859	34.29	PK	V	9.22	11.05	12.36	42.2	74	-31.8
14859	36.28	PK	Н	9.22	11.05	12.36	44.19	74	-29.81

Low Channel (2402MHz) Worst case GFSK

Middle Channel (2441MHz) Worst case π /4-DQPSK

Frequency	S.A	Detector	Polarity	Ant.	Cable	Pre-	Emission	Limit	Margin
(MHz)	Reading	(PK/AV)	(H/V)	Factor	Loss	Amp.	Level	(dBuV/m)	(dB)
	(dBuV)		. ,	(dB/m)	(dB)	Gain	(dBuV/m)		~ /
						(dB)	. ,		
4882	28.43	AV	V	7.86	9.73	10.75	35.27	54	-18.73
4882	30.12	AV	Н	7.86	9.73	10.75	36.96	54	-17.04
4882	32.69	PK	V	7.86	9.73	10.75	39.53	74	-34.47
4882	35.06	PK	Н	7.86	9.73	10.75	41.9	74	-32.1
15896	29.43	AV	V	8.25	10.29	11.23	36.74	54	-17.26
15896	30.27	AV	Н	8.25	10.29	11.23	37.58	54	-16.42
15896	33.29	PK	V	8.25	10.29	11.23	40.6	74	-33.4
15896	35.74	PK	Н	8.25	10.29	11.23	43.05	74	-30.95

High Channel (2480MHz) Worst case GFSK

Frequency	S.A	Detector	Polarity	Ant.	Cable	Pre-	Emission	Limit	Margin
(MHz)	Reading	(PK/AV)	(H/V)	Factor	Loss	Amp.	Level	(dBuV/m)	(dB)
	(dBuV)			(dB/m)	(dB)	Gain	(dBuV/m)		
						(dB)			
4960	29.35	AV	V	8.23	9.86	11.46	35.98	54	-18.02
4960	30.22	AV	Н	8.23	9.86	11.46	36.85	54	-17.15
4960	33.37	PK	V	8.23	9.86	11.46	40	74	-34
4960	36.29	PK	Н	8.23	9.86	11.46	42.92	74	-31.08
15483	30.29	AV	V	9.32	10.24	12.09	37.76	54	-16.24
15483	32.48	AV	Н	9.32	10.24	12.09	39.95	54	-14.05
15483	35.98	PK	V	9.32	10.24	12.09	43.45	74	-30.55
15483	37.29	PK	Н	9.32	10.24	12.09	44.76	74	-29.24

Note: 1. The testing has been conformed to 10*2480MHz=24800MHz.

- 2. All other emissions more than 30dB below the limit.
- 3. Factor = Antenna Factor + Cable Loss Pre-amplifier. Emission Level = Reading + Factor Margin=Emission Level-Limit

Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

Bluetooth (GFSK, Pi/4-DQPSK, 8DPSK, Hopping)mode have been tested, and the worst result(GFSK, Hopping) was report as below

	Test Mode: GFSK Frequency: Channel 0 2402MHz										
Frequency	Frequency Polarity PK(dBuV/m) Limit 3m Over AV(dBuV/m) Limit 3m Over										
(MHz)	H/V	(VBW=3MHz)	(dBuV/m)	(dB)	(VBW=10Hz)	(dBuV/m)	(dB)				
2386.960	Н	47.42	74	-26.58	33.10	54	-20.90				
2384.160	V	43.87	74	-30.13	29.30	54	-24.70				

	Test Mode: GFSK Frequency: Channel 0 2402MHz										
Frequency	Frequency Polarity PK(dBuV/m) Limit 3m Over AV(dBuV/m) Limit 3m Over										
(MHz)	H/V	(VBW=3MHz)	(dBuV/m)	(dB)	(VBW=10Hz)	(dBuV/m)	(dB)				
2484.259	H	40.80	74	-33.20	27.10	54	-26.90				
2485.282	V	40.90	74	-33.10	26.10	54	-27.90				

	Test Mode: GFSK Frequency: Hopping												
Frequency	Polarity	PK(dBuV/m)	Limit 3m	Over	AV(dBuV/m)	Limit 3m	Over						
(MHz)	H/V	(VBW=3MHz)	(dBuV/m)	(dB)	(VBW=10Hz)	(dBuV/m)	(dB)						
2390.00	H	40.47	74	-33.53	26.80	54	-27.20						
2483.50	Н	51.49	74	-22.51	36.40	54	-17.60						
2390.00	V	38.75	74	-35.25	24.10	54	-29.90						
2483.50	V	41.37	74	-32.63	26.20	54	-27.80						

Test Frequency: From 18GHz to 25GHz

The measurements were more than 20dB below the limit and not reported.

8 CONDUCTED BAND EDGE EMISSION

8.1 REQUIREMENT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

8.2 TEST PROCEDURE

For Conducted Test

- 1. The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100KHz. The video bandwidth is set to 300KHz.
- 2. The spectrum from 30MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

EMI Test Receiver	Setting
Attenuation	Auto
RBW	100KHz
VBW	300KHz
Detector	Peak
Trace	Max hold

For Radiated emission Test

The EUT was placed on a styrofoam table which is 1.5m above ground plane.

The measurement procedure at the ban edges was simplified by performing the measurement in just one plot. Both, the in-band-emission and the unwanted emission were be encompassed by the span. After trace stabilization, the maximum peak was be determined by a peak detector and the value was marked by an appropriate limit line. The second limit line, which is 20dB below the first, marks the limit for the emissions in the unrestricted band. A maximum-peak-detector marks the highest emission in the unrestricted band next to the band edge.

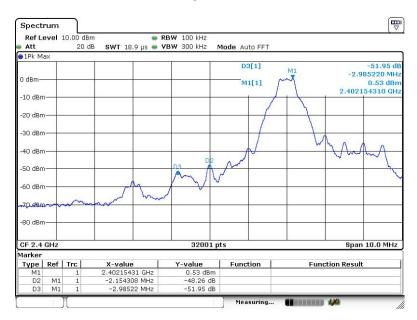
The measurements were performed at the lower end of the 2.4GHz band.

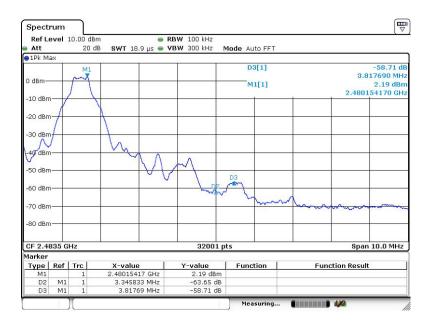
Use the following spectrum analyzer settings:

For Restricted Band, When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 3MHz:

EMI Test Receiver	Setting
Attenuation	Auto
RBW	1MHz
VBW	3MHz
Detector	Peak
Trace	Max hold

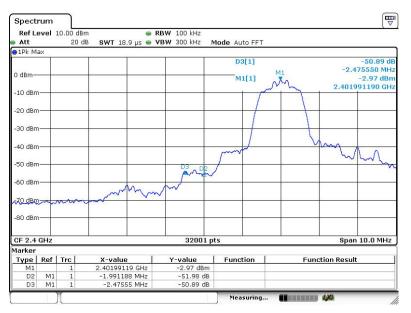
For Non-Restricted Band, When spectrum scanned above 1GHz setting resolution bandwidth 100KHz, video bandwidth 300KHz:

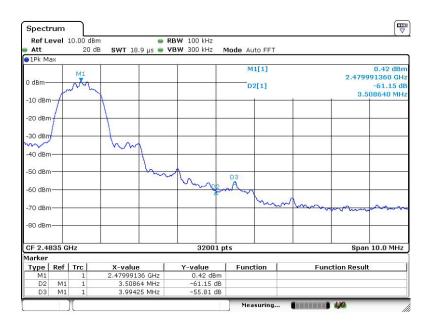

EMI Test Receiver	Setting
Attenuation	Auto
RBW	100KHz
VBW	300KHz
Detector	Peak
Trace	Max hold


8.3 TEST RESULTS

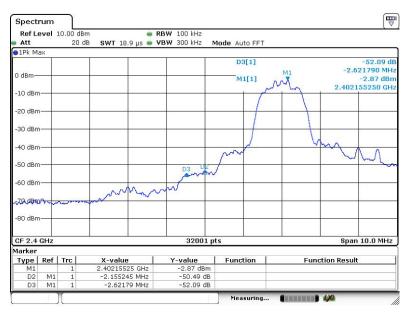
For Conducted Test

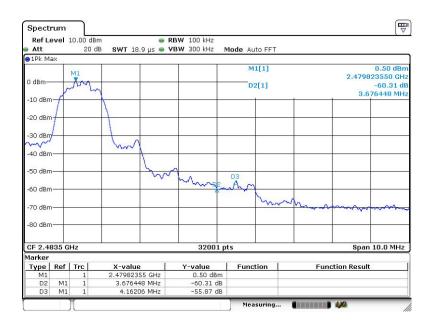
For Non-Hopping Mode


GFSK

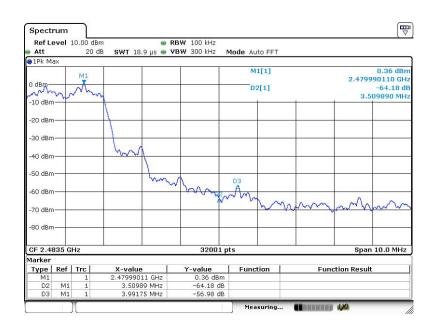


Page 28 of 67

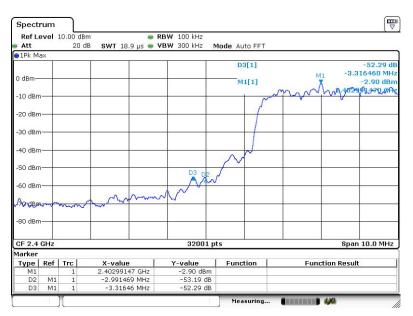




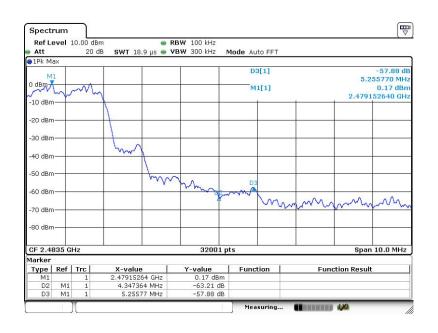
For Hopping Mode


Spectrum ● RBW 100 kHz SWT 18.9 µs ● VBW 300 kHz Ref Level 10.00 dBm Att 20 dB Mode Auto FFT ●1Pk Max -58.99 dB 4.962970 MHz 1.60 dBm 2.478989200 GHz D3[1] MI dBm M1[1] 0 dBr 20 dBr 30 dBm 40 dBn -50 dBm D3 -60 dBm 'n 70 dBm -80 dBm CF 2.4835 GHz Span 10.0 MHz 32001 pts Marker X-value 2.4789892 GHz 4.510797 MHz 4.96297 MHz Y-value 1.60 dBm -66.26 dB -58.99 dB Type Ref Trc Function Function Result M1 D2 D3 M1 M1 1 Measuring...

GFSK



Ref L	evel	10.00 dB		RBW 100 kHz			620
Att		20 d	B SWT 18.9 µs 🖷 🕻	/BW 300 kHz M	lode Auto FFT		
●1Pk M	ах						
					D3[1]		-53.29 d
0 dBm-				_			-4.637040 MH
					M1[1]	A Am	-4.60 dBn
-10 dBm	i—				- M	maria	A HUTISING WAY
-20 dBm	1 <u> </u>			-			
					1	1 1	
-30 dBm	1			-			8
-40 dBm	1						C.
22 22					M		
-50 dBm	1			D3			
-60 dBm				mon			
-60 aBri	1						
JAD HEA		0.0	mon	www.			
- Autom	~	www.	needed and a second of	• • • • • • • • • • • • • • • • • • •			
-80 dBm				_			
CF 2.4	CLIP			32001 pt	2		Span 10.0 MHz
Marker	GHZ			32001 pt	.5		apan 10.0 MHz
Type	Ref	Tro	X-value	Y-value	Function	Function	Pocult
M1	Rei	1	2.40415175 GHz	-1.60 dBm	ranction	Function	Result
D2	M1	1	-4.151745 MHz	-56.59 dB			
D3	M1	1	-4.63704 MHz	-53.29 dB			

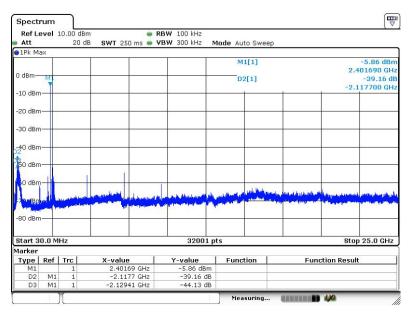

π/4-DQPSK

8DPSK

For Conduct spurious emissions

				BRUL LOO LU-						(V
Att	ever	10.00 di 20		RBW 100 kHz		ndo Au	to Sweep			
1Pk Ma	ax	20	ab 3wi 200 ms 👻	TON SOURIE	- 10	Due Au	(0 J#eep			
				1	T	D	3[1]			-46.55 dE
) dBm—	ML									56.060 MH
ubiii-						M	1[1]			0.24 dBn
10 dBm					_		-	-	2.4	101690 GH
20 dBm							-	-		
30 dBm					+		-	-	-	
40 dBm	03				+					
50 dBm										
00 0011			1							
0 dBm				1	+			_		
			Constant 1971	مر المراجع المراجع المراجع		الا بناريل	politice in	المحمد ومراجع والمحمد والمحمد والمحمد	A CALL CALLER	ور الدر الد يحت
h dBm	lini -	and the stands		Bollin Bonnessin a		a provinsi and a set	No. of Street, or other	Supplying provide	1 Later and the second second	and the second second
and and	-	C. ALLER CO.		A C Astrony	100				<u>84</u>	
80 dBm					+					
					_					
Start 3	0.0 M	Hz		320	01 pt	5			Sto	25.0 GHz
arker										
Туре	Ref		X-value	Y-value	_	Func	tion	Fur	nction Resul	t
M1 D2	M1	1	2.40169 GHz -2.1099 GHz	0.24 c -46.52						
	1417	1 × 1	-2.1099 GHZ	-40.52	up					

GFSK


Ref Lo	evel	10.00 dBr 20 d		RBW 100 kHz					622	
1Pk M	24	20 u	B SWT 250 ms 🖷 🕅	BW 300 KHZ I	Mode Aut	to Sweep)			
						3[1] 1[1]		-47.83 d 4.883040 GH 1.72 dBr 2.440700 GH		
-10 dBm	1									
-20 dBm	1			-						
-30 dBm	i					-				
40 dBm 2 50 dBm			DE						-	
50 dBm 70 dBm			i and the state of	La al a series and a second second	and a start of the second	and the star	al a dispersion of press	a and a state of the	and a stranger	
80 dBm	- and a feet	and the second								
Start 3	0.0 M	Hz		32001 p	ots	:		Stop	25.0 GHz	
1arker		- 1								
Type M1	Ref	Trc 1	2.4407 GHz	Y-value 1.72 dBm	Funct	tion	Fund	tion Result		
D2	M1	1	-2.15281 GHz	-46.96 dB						
D3	M1	1	4.88304 GHz	-47.83 dB	1					

Page 34 of 67

101	rum	Ļ								[₩
	evel	10.00 d			BW 100 kHz					
Att	2	20	dB SWT 2	50 ms 🖷 🎙	/BW 300 kHz	Mode Au	to Sweep			
1Pk M			1	Ĩ			3[1]			-47.72 dE
	M1					U	3[1]		-9.1	-47.72 dE
) dBm—	-+			+		M	1[1]		2.3	2.05 dBm
							+[+]		2.4	80490 GH
10 dBm	۱ <u> </u>		-	-			ľ	1	-	
20 dBm			-		-					
-30 dBm) — — —						0			
40 dBm							2			
3	· – –			02						
50 dBm				1						
bo abii										
i0 dBm										
			C CONTRACTOR	1 3		0.0000000	And and the		0.0110.000	10000
D dBm	Jare V	har we dette	Un Stady Holey	Ast Adapter	a line of the second second	Construction of the	Aler aler a		a application and so that	december strender.
-	-	had succedure		d phane water	Phales and a section of	A bear a. a.			- HENDERSTONE	
-80 dBrr	i		-	+					-	
Start 3	0.0 M	Hz			3200	1 pts			Stop	25.0 GHz
1arker										
Type	Ref	Trc	X-valu	e	Y-value	Function Function R		tion Result		
M1		1		049 GHz	2.05 dB					
D2	M1	1		029 GHz	-46.65 (
D3	M1	1	-2.19	261 GHz	-47.72 (в				

π/4-DQPSK

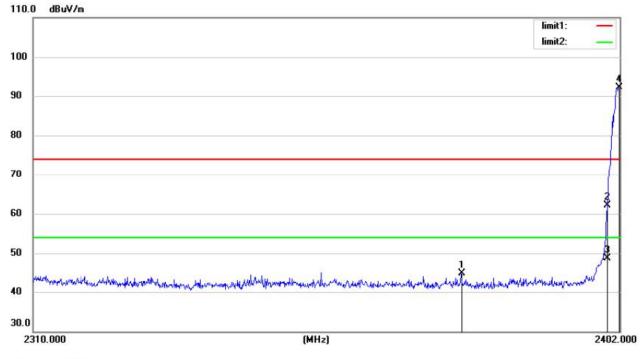
Ref L	evel	10.00 di	3m	👄 R	BW 100 kHz						
Att	20.08	20	dB SWT 250		'BW 300 kHz	Mode Au	to Sweep				
1Pk M	эх										
						D	3[1]			-45.50 di	
dBm-	MI		_		_		1117		-2.1	60620 GH	
						DAT N	1[1]		-3.11 dBn 2.440700 GH		
10 dBm			-					1	2.9	10700 GH	
00 In											
20 dBm											
-30 dBm	i				-					1	
40 dBm										0	
2	·										
50 dBrr	-				_						
			1								
0 dBm					10		Sec. Com				
		and the second	a same a	i la	a start they all shift	الدوسياني وم	Auto Astronite Mary	a stranger and and a stranger	the shaling	and an estimation	
7 CHHBM				and the second of	A statement of the statement of the	a survey of	A Designation of the local division of the l	(Contraction of the second	and a second second	and the second second	
-80 dBm	400 M										
80 UBN	1										
Start 3	0.0 M	Hz		-	32001	pts	2		Stop	25.0 GHz	
larker											
Туре	Ref		X-value		Y-value	Function Function Re		tion Result			
M1 D2	M1	1	-2.156	07 GHz	-3.11 dB						
D2	M1 M1	1	-2.150		-43.17 u -45.50 d						

Refl	evel	10.00 di	3m	e R	BW 100 kHz					
Att	evei	20			BW 300 kHz	Mode Au	to Sweep			
1Pk M	ах		0.111 40			niouo nu	to oncop			
						D	3[1]			-46.82 di
dBm-	M1				++	M	1[1]		-2.2	200410 GH
						141	1[1]		2.4	480490 GH:
10 dBn	n							1 1		
20 dBn	n				-			-		
30 dBn	n——		_							1
40 dBn			-		-		-			
50 dBn								1 1		
50 dBn	n		-		-					-
0 dBn								1 1		
					الملين بالشامه ال	البالمعرب ال		- Internet and a state of the state	and an inter the second	ور وبالد ومادور وال
7 milBa	0.74	and a second second	and the second	مرود مرود الواليو الرود مرود الواليو	an painting the second of the	In a start of the	and the state of the	A REAL PROPERTY AND	Manager and the	and The sheep stored
80 dBn	n		- 87			-0.0	-			
Start 3	0.0 M	Hz			32001	pts	2		Stor	p 25.0 GHz
arker										
Туре	Ref	Trc	X-value		Y-value			tion Result	t	
M1	-	1		49 GHz	-1.79 dBr					
D2 D3	M1 M1	1	-2.196		-44.22 d -46.82 d					

	evel	10.00 dE			/ 100 kHz					0.00
Att		20 (dB SWT 250 r	ns 🖷 VBV	V 300 kHz	Mode Au	to Sweep			
0 dBm—	ML						3[1] 1[1]			-38.57 di 22380 GH -9.71 dBn 02470 GH
-10 dBm										
20 dBm										
-30 dBm	i		++				-			
-40 dBm 3 50 dBm										-
i0 dBm					a de altre de contrat a Papa a contrat a contrat a				lan mangang di Propositi ng pangang di sa	ada ada da ak
-80 dBm	1						0			
Start 3	0.0 M	Hz			32001	pts			Stop	25.0 GHz
1arker										
Туре	Ref		X-value	011-	Y-value	Func	tion	Func	tion Result	
M1 D2	M1	1	2.40247		-9.71 dBm -37.57 dB					
02	M1	1	-2.12238		-38.57 dB					

	rum		10							
Ref Le	evel				/ 100 kHz					
Att		20	0 dB SWT 250 m:	5 👄 VBV	V 300 kHz	Mode Au	to Sweep			
1Pk Ma	ax									
						D	3[1]			-44.06 di
0 dBm—	MI						1111		-2	-4.38 dBn
	7					M	1[1]			-4.38 dBn 441480 GH:
-10 dBm	-		_					1	2.5	14140U GH
-20 dBm				-			-			-
-30 dBm	í		_				-	_		
40 dBm	i —		-				3	-		2
ŝ										
50 dBm	-									
j0 dBm							- and the			
10			MAR ANUAL DA	1 2 3 4	CINE COL	الروالل الجريز الم	alst Hardin	a destantes and a set	have seen lestered	مر الله في الله م
-7 n- dBm	l≞n r	hole	And the second se				In the second second second	and the second second second	A Real and the second second	
Man and a state	-	Annaula-	A CALL CONTRACTOR	a producer of					<u></u>	
-80 dBm								-	-	
Start 3	0.0 M	Hz		1	32001	pts			Sto	25.0 GHz
1arker										
Type	Ref	Trc	X-value	1	Y-value	Func	tion	Fund	tion Resul	t
M1		1	2.44148 0	Hz	-4.38 dBr					
D2	M1	1	-2.1536 @	Hz	-40.58 di					
D3	M1	1	-2.1653 G	H ₂	-44.06 di	B				

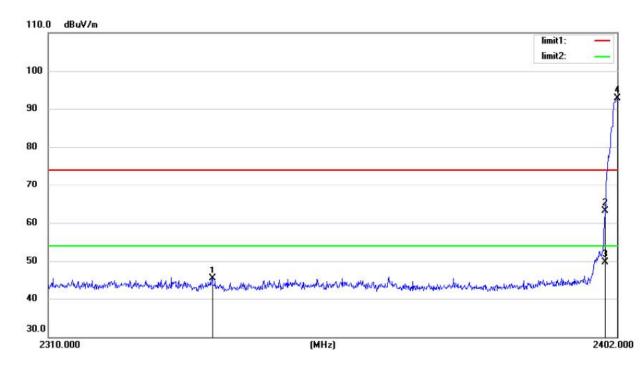
Refle	avel	10.00 dE	lm 🖷	RBW 100 kHz					
Att		20 1			Mode Au	to Sweep			
1Pk Ma	эх								
-					D	3[1]			-44.14 dE
) dBm—	MI					1000		-2.2	200410 GH
abiii	T				M	1[1]		100	-3.68 dBn
10 dBm							1	2.4	80490 GH
20 dBm									
30 dBm				-					
40 dBm									
3 50 dBm									
DU UBII									
i0.dBm			1 6						
10 abir			a manager i s	2 Same		ALL BARRIES	and the second second		and the second
7D dBm		Laugh Laubard	ما يا	الم المحمد المتحم بالوعم الحار رقال	A second second	M MAR	And the bird search	The plan of latents	de l'éléférenten
and the second	-	assessing the second	the state of the s	A Theory of part of the star of	Particular A.		1.	a same transition	
-80 dBm								-	
Start 3	0.0 M	Hz		32001	nts	2		Sto	25.0 GHz
larker									
Type	Ref	Trc	X-value	Y-value	Funct	tion	Fund	tion Resul	i.
M1		1	2.48049 GHz	-3.68 dBm					
D2	M1	1	-2.19261 GHz	-41.60 dB					
D3	M1	1	-2.20041 GHz	-44.14 dB					



For Radiated Test

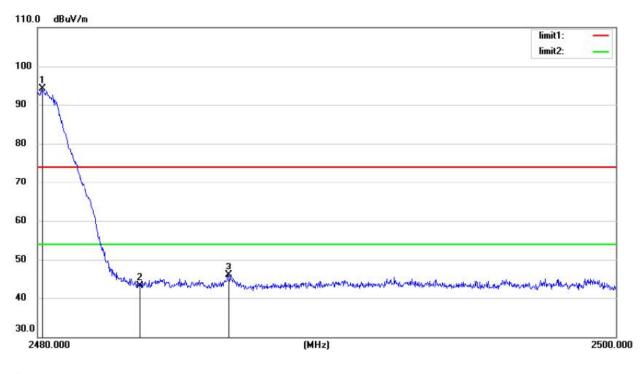
Worst Test Modulation: GFSK

For Non-Hopping Mode:


Horizontal

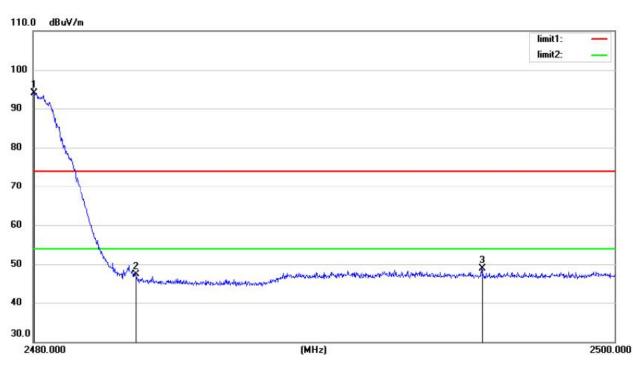
Mode: TX2402 Note:

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2376.884	56.42	-11.68	44.74	74.00	-29.26	peak			
2		2400.000	73.77	-11.63	62.14	74.00	-11.86	peak			
3		2400.000	60.30	-11.63	48.67	54.00	-5.33	AVG			
4	*	2401.816	104.00	-11.63	92.37	74.00	18.37	peak			



Vertical:

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2336.128	56.14	-10.82	45.32	74.00	-28.68	peak			
2		2400.000	73.54	-10.47	63.07	74.00	-10.93	peak			
3		2400.000	60.25	-10.47	49.78	54.00	-4.22	AVG			
4	*	2401.908	103.31	-10.46	92.85	74.00	18.85	peak			



Horizontal

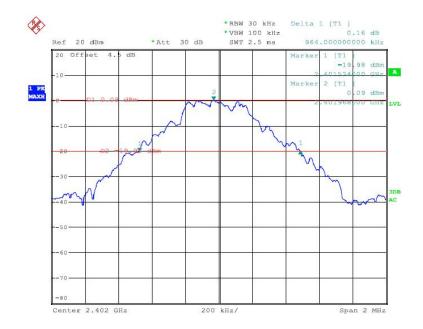
No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	2480.140	105.66	-11.45	94.21	74.00	20.21	peak			
2		2483.500	54.49	-11.46	43.03	74.00	-30.97	peak			
3		2486.600	57.40	-11.44	45.96	74.00	-28.04	peak			

Vertical:

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	2480.020	104.21	-10.02	94.19	74.00	20.19	peak			
2		2483.500	57.30	-10.01	47.29	74.00	-26.71	peak			
3		2495.420	58.88	-9.95	48.93	74.00	-25.07	peak			

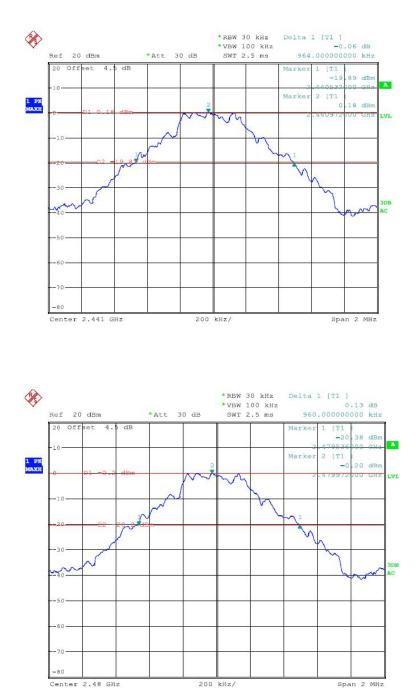
9 20 dB Bandwidth Measurement

Test Method : ANSI C63.10:2013


9.1 Test Procedure

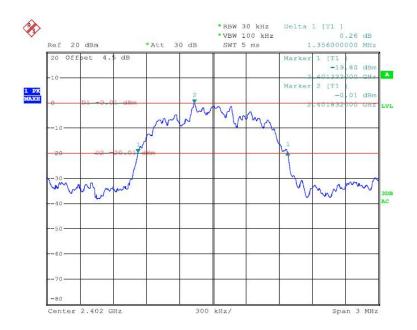
- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
- 2. Set the spectrum analyzer: RBW =30kHz, VBW = 100kHz

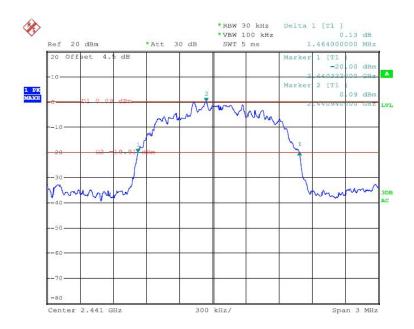
9.2 Test Result

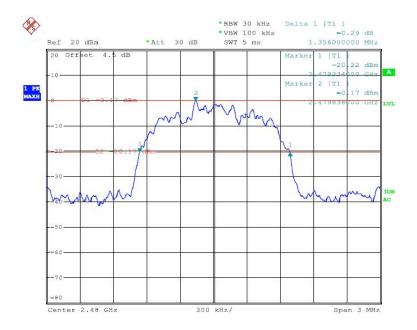

Test Mode: CH00 / CH39 / CH78 (GFSK/(1Mbps)Mode)

Channel number	Channel frequency (MHz)	20dB Down BW(kHz)
00	2402	964
39	2441	964
78	2480	960

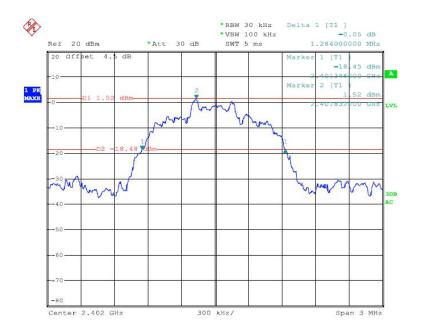
Page 43 of 67

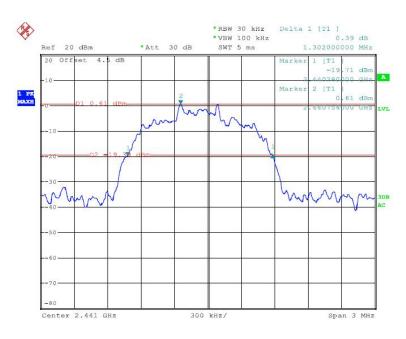


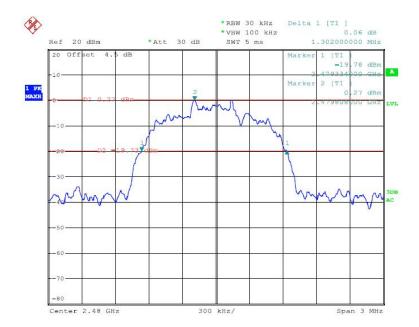



Test Mode: CH00 / CH39 / CH78 (Π/4-DQPSK /(2Mbps)Mode)

Channel number	Channel frequency (MHz)	20dB Down BW(kHz)
00	2402	1356
39	2441	1464
78	2480	1356






Test Mode: CH00 / CH39 / CH78 (8DPSK(3Mbps)Mode)

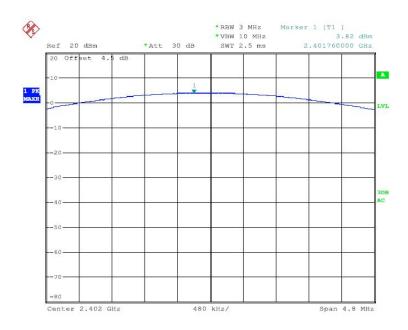
Channel number	Channel frequency (MHz)	20dB Down BW(kHz)
00	2402	1284
39	2441	1302
78	2480	1302

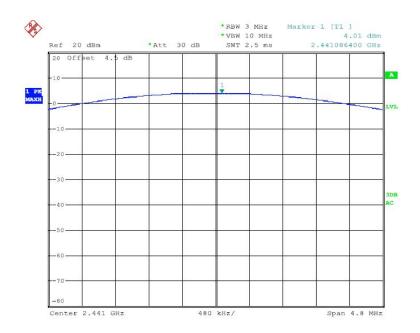
10 Maximum Peak Output Power

Test Requirement	:	FCC CFR47 Part 15 Section 15.247
Test Method	:	ANSI C63.10:2013
Test Limit	:	Regulation 15.247 (b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band eploying at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt (30dBm). For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts. Refer to the result "Number of Hopping Frequency" of this document. The 0.125watts (20.97 dBm) limit applies.

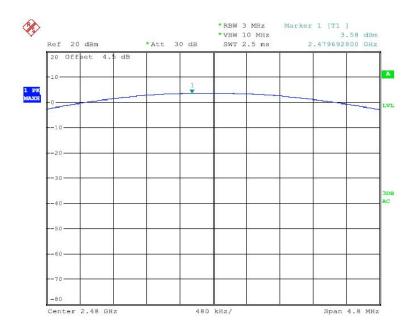
10.1Test Procedure

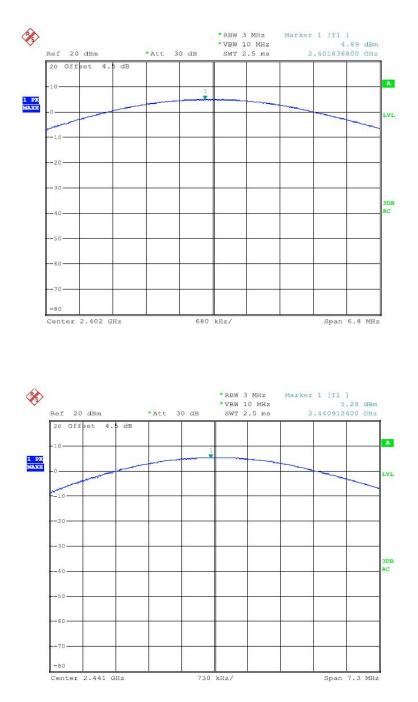
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.


2. Set the spectrum analyser: RBW = 3MHz. VBW =10MHz. Sweep = auto; Detector Function = Peak.

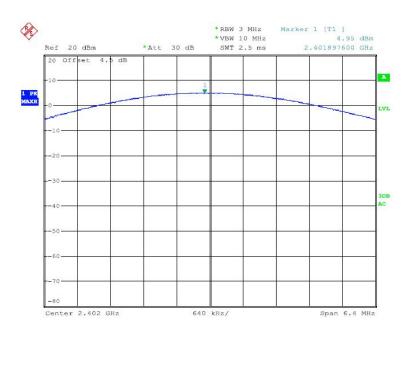

3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

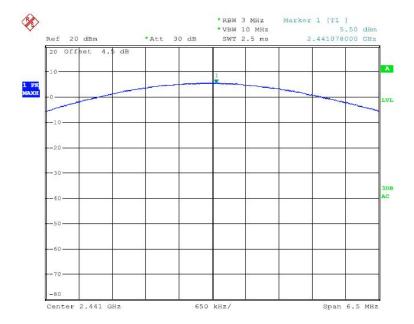
10.2Test Result

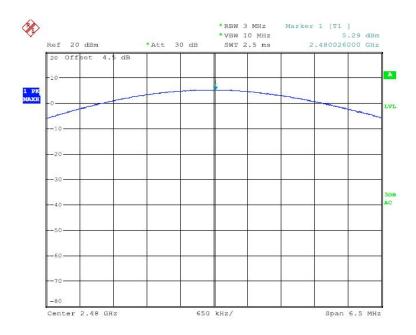

	GFSK(1Mbps)					
Test Channel	Frequency	Conducted Output Peak Power	Conducted Output Peak Power	LIMIT	Pass/Fail	
	(MHz)	(dBm)	(VV)	(W)		
CH00	2402	3.82	0.00241	1	Pass	
CH39	2441	4.01	0.00252	1	Pass	
CH78	2480	3.58	0.00228	1	Pass	



	π/4QPSK(2Mbps)					
Test Channel	Frequency	Conducted Output Peak Power	Conducted Output Peak Power	LIMIT	Pass/Fail	
	(MHz)	(dBm)	(VV)	(W)		
CH00	2402	4.89	0.00308	0.125	Pass	
CH39	2441	5.29	0.00338	0.125	Pass	
CH78	2480	5.08	0.00322	0.125	Pass	



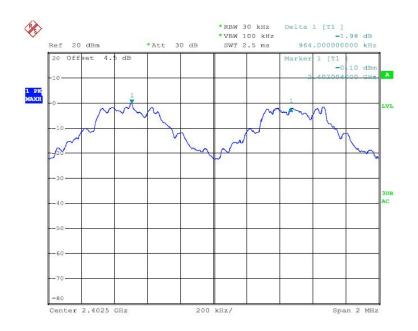


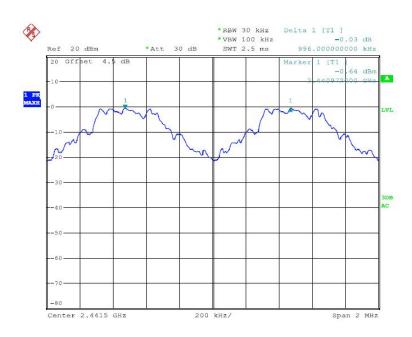

	8DPSK(3Mbps)					
Test Channel	Frequency	Conducted Output Peak Power	Conducted Output Peak Power	LIMIT	Pass/Fail	
	(MHz)	(dBm)	(W)	(W)		
CH00	2402	4.95	0.00313	0.125	Pass	
CH39	2441	5.50	0.00355	0.125	Pass	
CH78	2480	5.29	0.00338	0.125	Pass	

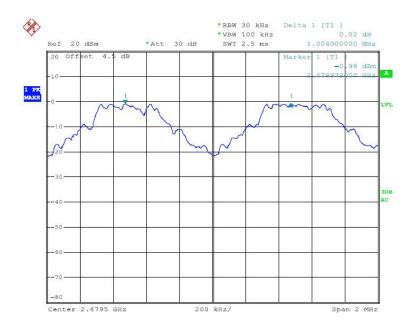
11 Hopping Channel Separation

Test Requirement :
Test Method :
Test Limit : Test Mode :

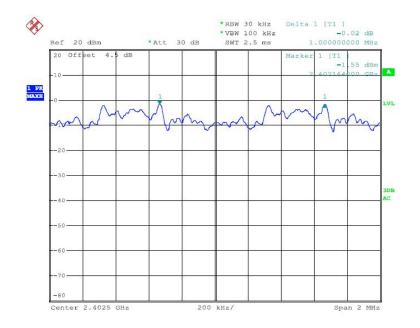
11.1 Test Procedure

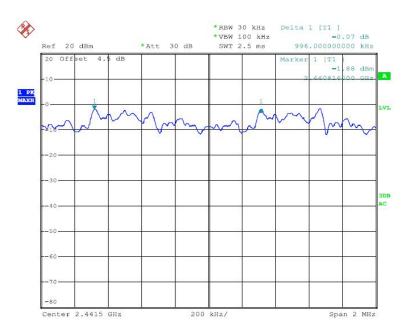

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 30KHz. VBW =100KHz, Span = 2.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

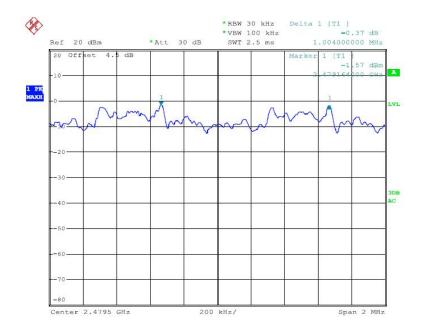

11.2 Test Result


Test Meder	CHOO / CHOO / CHOO (CECK(1Mbpo) Mode)
Test Mode:	CH00 / CH39 / CH78 (GFSK(1Mbps) Mode)

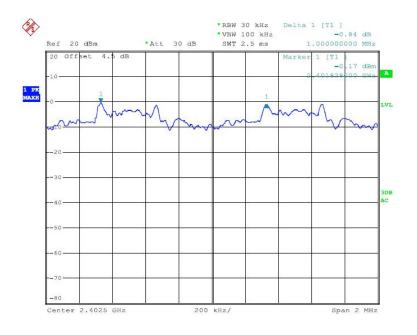
Channel number	Channel	Separation Read	Separation Limit	
	frequency (MHz)	Value (kHz)	2/3 20dB Down BW(kHz)	
00	2402	964	>642	
39	2441	996	>642	
78	2480	1004	>640	



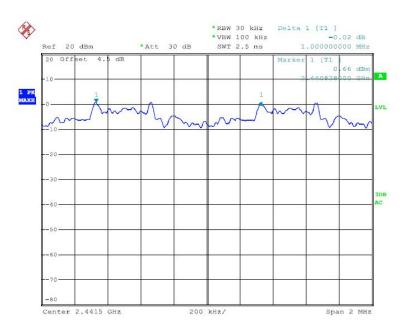


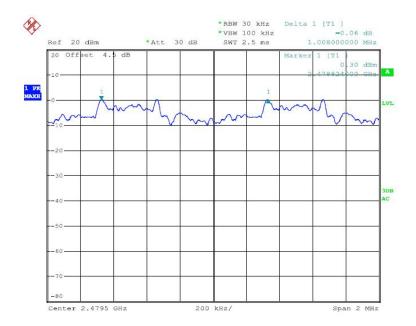

Test Mode: CH00 / CH39 / CH78 (π/4-DQPSK(2Mbps) Mode)

Channel number	Channel frequency (MHz)	Separation Read Value (kHz)	Separation Limit 2/3 20dB Down BW(kHz)
00	2402	1000	>904
39	2441	996	>916
78	2480	1004	>904



Page 60 of 67



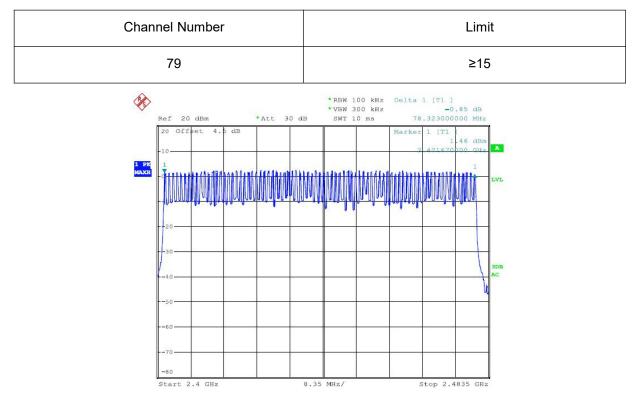

	Test Mode:	CH00 / CH39 / CH78 (8DPSK(3Mbps)Mode)
--	------------	---------------------------------------

Channel number	Channel frequency (MHz)	Separation Read Value (kHz)	Separation Limit 2/3 20dB Down BW(kHz)
00	2402	1000	>856
39	2441	1000	>868
78	2480	1008	>868

Page 62 of 67

12 Number of Hopping Frequency

Test Requirement	:	FCC CFR47 Part 15 Section 15.247
Test Method	:	ANSI C63.10:2013
Test Limit	:	Regulation 15.247 (a)(1)(iii) Frequency hopping systems in the 2400- 2483.5 MHz band shall use at least 15 channels.
Test Mode	:	Hopping(GFSK)


12.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 100KHz. VBW = 300KHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.483GHz. Sweep=auto;

12.2 Test Result

13 Dwell Time

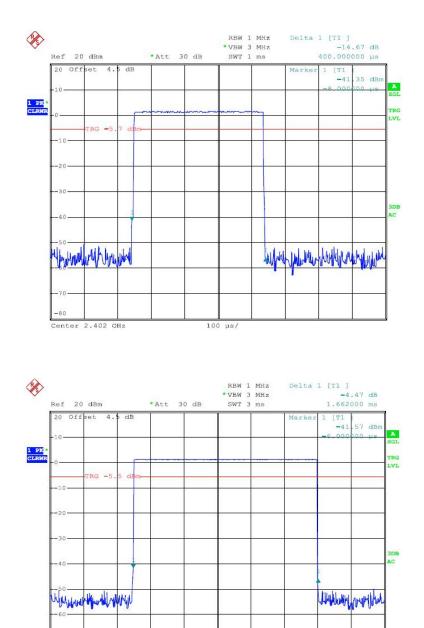
Test Requirement	:	FCC CFR47 Part 15 Section 15.247
Test Method	:	ANSI C63.10:2013
Test Limit	:	Regulation 15.247(a)(1)(iii) Frequency hopping systems in the 2400- 2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Mode	:	The worst case(π /4-DQPSK) was recorded

13.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set spectrum analyzer span = 0. Centred on a hopping channel;

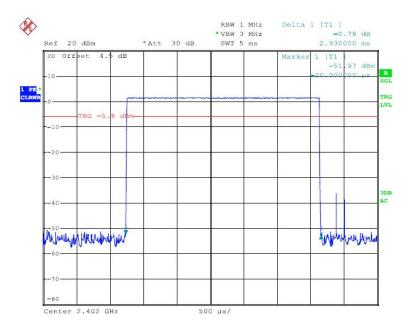
3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.


4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

13.2 Test Result

Test Mode:	π/4-DQPSK(2Mbps) –2DH1/2DH3/2DH5

Mode	СН	Length of transmissions time(msec)	Result (msec)	Limit (msec)
π/4- DQPSK	Low	0.400	128.00	400
	Middle	1.662	265.92	400
	High	2.930	312.543	400
	Note: Dwell Time= Pulse Time (ms)*1600/6/79*31.6			


Page 65 of 67

300 µs/

80

Center 2.402 GHz

14 Antenna Requirement

14.1 Antenna Requirement

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

14.2 Result

The EUT'S antenna, permanent attached antenna, is Internal Antenna. The antenna's gain is 0dBi and meets the requirement.

******THE END REPORT******