

Test Report

Report No.: MTi211019005-01E3

Date of issue: Jan. 11, 2022

Applicant: Zhuhai Quin Technology Co., Ltd.

Product: Smart Mini Label Maker

Model(s): D30S, D31, D31Pro, D31S, D36, D30SE, D31PRO, D20, D20PRO, D10, D26, D28

FCC ID: 2ASRB-D30S-JL

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Contents

1 G	General Description	5
1.1	Description of the EUT	5
1.2	Description of test modes	
1.3	Description of support units	5
1.4	Environmental conditions	6
1.5	Measurement uncertainty	6
2 S	Summary of Test Result	7
3 Te	est Facilities and accreditations	8
3.1	Test laboratory	8
4 L i	ist of test equipment	
5 Te	est Results	10
5.1	Antenna requirements	10
5.2	AC power line conducted emissions	11
5.3	Radiated emissions	14
5.4	Occupied bandwidth test	22
5.5	Frequency stability	23
Photo	ographs of the Test Setup	24
Photo	ographs of the EUT	26

Test Result Certification				
Applicant:	Zhuhai Quin Technology Co., Ltd.			
Address:	ROOM 201 2ND FLOOR, 3RD FLOOR, BLOCK 2, NO.1 CUIZHU 4TH STREET, QIANSHAN, XIANGZHOU DISTRICT, ZHUHAI CITY, CHINA			
Manufacturer:	Zhuhai Quin Technology Co., Ltd.			
Address:	ROOM 201 2ND FLOOR, 3RD FLOOR, BLOCK 2, NO.1 CUIZHU 4TH STREET, QIANSHAN, XIANGZHOU DISTRICT, ZHUHAI CITY, CHINA			
Product description				
Product name:	Smart Mini Label Maker			
Trademark:	N/A			
Model name:	D30S			
Serial Model:	D31, D31Pro, D31S, D36, D30SE, D31PRO, D20, D20PRO, D10, D26, D28			
Standards:	FCC 47 CFR Part 15 Subpart C			
Test method:	ANSI C63.10-2013			
Date of Test				
Date of test:	2021-12-10 ~ 2021-12-24			
Test result:	Pass			

Test Engineer	:	crndy am
		(Cindy Qin)
Reviewed By:	:	leon chen
		(Leon Chen)
Approved By:	:	tom Kue
		(Tom Xue)

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: www.mtitest.com E-mail: mti@51mti.com

1 General Description

1.1 Description of the EUT

Product name:	Smart Mini Label Maker
Model name:	D30S
Series Model:	D31, D31Pro, D31S, D36, D30SE, D31PRO, D20, D20PRO, D10, D26, D28
Model difference:	All the models are the same circuit and RF module, except the model name, appearance color, silk screen pattern.
Electrical rating:	DC 5V from adapter AC 120V/60Hz or DC 7.4V from battery
Battery:	DC 7.4V 1000mAh
Software version:	Q149_A
Hardware version:	_0.1.0
Accessories:	Cable: USB-A to Micro-USB cable (0.5m)
EUT serial number:	MTi210907013-04-S0001
RF specification:	
Operation frequency:	13.56 MHz
Modulation type:	ASK
Antenna type:	Loop Antenna
Antenna gain:	1.52dBi

1.2 Description of test modes

All the test modes were carried out with the EUT in normal operation, the final test mode of the EUT was the worst test mode for emission test, which was shown in this report and defined as:

No.	test modes
Mode 1	TX mode

1.3 Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Support equipment list						
Description	Model	Serial No.	Manufacturer			
A A A A A A A A A A A A A A A A A A A			Huizhou BYD Electronics Co., Ltd.			
Support cable list						
Description	Length (m)	From	То			
/	/	/	/			

1.4 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C~35°C
Humidity:	20 % RH ~ 75 % RH
Atmospheric pressure:	98 kPa~101 kPa

1.5 Measurement uncertainty

Measurement	Uncertainty
Conducted emission (9 kHz~30 MHz)	± 2.5 dB
Radiated emission (9 kHz ~ 30 MHz)	± 4.0dB
Radiated emission (30 MHz~1 GHz)	± 4.2 dB
Radiated emission (above 1 GHz)	± 4.3 dB
Occupied bandwidth	± 3 %
Temperature	±1 degree
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: www.mtitest.com E-mail: mti@51mti.com

2 Summary of Test Result

No.	FCC Clause	Description of test	Result			
	Emission					
1	§15.203	Antenna requirement	Pass			
2	§15.207	AC power line Conducted emissions	Pass			
3	§15.209 & §15.225	Radiated emissions	Pass			
4	§15.215	Occupied bandwidth	Pass			

Note: N/A means not applicable.

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Fuhai Street, Bao'an District, Shenzhen, Guangdong, China	
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
MTI-E043	EMI test receiver	R&S	ESCI7	101166	2021/06/02	2022/06/01
MTI-E044	Broadband antenna	Schwarzbeck	VULB9163	9163-1338	2021/05/30	2023/05/29
MTI-E045	Horn antenna	Schwarzbeck	BBHA9120D	9120D-2278	2021/05/30	2023/05/29
MTi-E046	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2021/05/30	2023/05/29
MTI-E047	Pre-amplifier	Hewlett-Packard	8447F	3113A06184	2021/06/02	2022/06/01
MTI-E048	Pre-amplifier	Agilent	8449B	3008A01120	2021/06/02	2022/06/01
MTi-E120	Broadband antenna	Schwarzbeck	VULB9163	9163-1419	2021/05/30	2023/05/29
MTi-E121	Pre-amplifier	Hewlett-Packard	8447D	2944A09365	2021/04/16	2022/04/15
MTi-E123	Pre-amplifier	Agilent	8449B	3008A04723	2021/05/06	2022/05/05
MTi-E122	MXA signal analyzer	Agilent	N9020A	MY54440859	2021/05/06	2022/05/05
MTi-E002	EMI Test Receiver	R&S	ESCI3	101368	2021/06/02	2022/06/01
MTi-E023	Artificial power network	Schwarzbeck	NSLK8127	NSLK8127# 841	2021/06/02	2022/06/01
MTi-E025	Artificial power network	Schwarzbeck	NSLK8127	8127183	2021/06/02	2022/06/01
MTi-A029	Loop antenna	SOLAR	7334-1	220095-2	2021/04/20	2023/04/19

5 Test Results

5.1 Antenna requirements

15.203 requirement

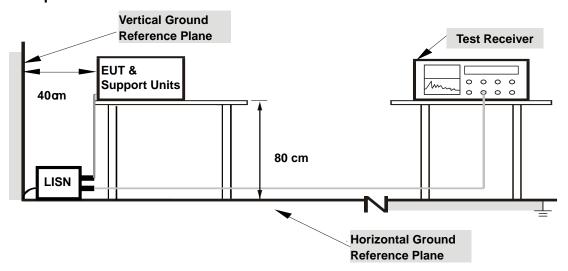
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Description of the EUT antenna

The antenna of EUT is loop antenna, which is no consideration of replacement.

5.2 AC power line conducted emissions

5.2.1 Limits


Frequency (MHz)	Detector type / Bandwidth	Limit-Quasi-peak dBµV	Limit-Average dBµV
0.15 -0.5		66 to 56	56 to 46
0.5 -5	Average / 9 kHz	56	46
5 -30		60	50

Note 1: the limit decreases with the logarithm of the frequency in the range of 0.15 MHz to 0.5 MHz.

5.2.2 Test Procedures

- a) The test setup is refer to the standard ANSI C63.10-2013.
- b) The EUT is connected to the main power through a line impedance stabilization network (LISN). All support equipment is powered from additional LISN(s).
- c) Emissions were measured on each current carrying line of the EUT using an EMI test receiver connected to the LISN powering the EUT.
- d) The test receiver scanned from 150 kHz to 30 MHz for emissions in each of the test modes described in Item 1.2.
- e) The test data of the worst-case condition(s) was recorded.

5.2.3 Test setup

For the actual test configuration, please refer to the related item – Photographs of the test setup.

5.2.4 Test Result

Calculation formula:

Measurement (dB μ V) = Reading Level (dB μ V) + Correct Factor (dB) Over (dB) = Measurement (dB μ V) - Limit (dB μ V)

est mode:	Mode 1	Phase:	L
ower supply:	Power by AC/DC adapter (AC 120V/60Hz)	Test site:	CE chamber 1
80.0 dBuV			
70			
60		FCCPart15 ClassB AC	Conduction(QP)
50		FCCPart15 ClassB AC	Conduction(AVG)
40		7	10 *
30 2	5		32
20	or many of the design of the second of the s	had been the state of the state	peak
10 PY W	University house designed and the second of		AVG
0			
-10			
-20		z) 5.000	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB	dBu∀	dBuV	dB	Detector
1		0.1580	28.93	10.99	39.92	65.57	-25.65	QP
2		0.1580	14.65	10.99	25.64	55.57	-29.93	AVG
3		0.3860	19.08	10.96	30.04	58.15	-28.11	QP
4		0.3860	11.21	10.96	22.17	48.15	-25.98	AVG
5		0.6260	12.79	11.08	23.87	56.00	-32.13	QP
6		0.6260	4.25	11.08	15.33	46.00	-30.67	AVG
7		6.5739	22.57	11.59	34.16	60.00	-25.84	QP
8		6.5739	11.33	11.59	22.92	50.00	-27.08	AVG
9		13.5618	37.95	11.67	49.62	60.00	-10.38	QP
10	*	13.5619	31.51	11.67	43.18	50.00	-6.82	AVG
11		27.1219	22.65	11.75	34.40	60.00	-25.60	QP
12		27.1219	21.35	11.75	33.10	50.00	-16.90	AVG

est mode:	Mode 1	Phase:	N		
ower supply:	Power by AC/DC adapter (AC 120V/60Hz)	Test site:	CE chamber 1		
80.0 dBuV					
70					
60		FCCPart15 ClassB AC	Conduction(QP)		
50		FCCPart15 ClassB AC	Ž .		
40			90 *		
30	3	5	13 10		
20	Warning and Mary Mary Mary Mary Mary Mary Mary Mary	S TO THE TOTAL OF	peak		
10	a so the sale of a grant of the sale of th	or the supplementation of the second	AVG		
0					
-10					
-20 0.150	0.500 0.800 (MH	z) 5.000			

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB	dBuV	dBu∀	dB	Detector
1		0.1500	35.76	10.99	46.75	66.00	-19.25	QP
2		0.1500	21.58	10.99	32.57	56.00	-23.43	AVG
3		0.6380	15.25	11.02	26.27	56.00	-29.73	QP
4		0.6380	10.23	11.02	21.25	46.00	-24.75	AVG
5		2.3740	10.42	16.12	26.54	56.00	-29.46	QP
6		2.3740	1.38	16.12	17.50	46.00	-28.50	AVG
7		6.5940	11.88	11.39	23.27	50.00	-26.73	AVG
8		6.6540	22.80	11.39	34.19	60.00	-25.81	QP
9		13.5620	36.65	11.66	48.31	60.00	-11.69	QP
10	*	13.5620	32.23	11.66	43.89	50.00	-6.11	AVG
11		27.1220	23.99	11.73	35.72	60.00	-24.28	QP
12		27.1220	22.76	11.73	34.49	50.00	-15.51	AVG

5.3 Radiated emissions

5.3.1 Limits

The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.

Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.

Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

§ 15.209 Radiated emission limits:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Notes:

The tighter limit applies at the band edges.

The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector

§ 15.35 (b) requirements:

When average radiated emission measurements are specified in this part, including average emission measurements below 1000 MHz, there also is a limit on the peak level of the radio frequency emissions. Unless otherwise specified, e.g., see §§ 15.250, 15.252, 15.253(d), 15.255, 15.256, and 15.509 through 15.519, the limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

According to ANSI C63.10, the tests shall be performed in the frequency range shown in the following table:

Frequency range of measurements for unlicensed wireless device

Lowest frequency generated in the device	Upper frequency range of measurement
9 kHz to below 10 GHz	10th harmonic of highest fundamental frequency or to 40 GHz, whichever is lower
At or above 10 GHz to below 30 GHz	5th harmonic of highest fundamental frequency or to 100 GHz, whichever is lower
At or above 30 GHz	5th harmonic of highest fundamental frequency or to 200 GHz, whichever is lower, unless otherwise specified

Frequency range of measurements for unlicensed wireless device with digital device

Highest frequency generated or used in the device or on which the device operates or tunes	Upper frequency range of measurement
Below 1.705 MHz	30 MHz
1.705 MHz to 108 MHz	1000 MHz
108 MHz to 500 MHz	2000 MHz
500 MHz to 1000 MHz	5000 MHz
Above 1000 MHz	5th harmonic of the highest frequency or 40 GHz, whichever is lower

Test instrument setup

Frequency	Test receiver / Spectrum analyzer setting
9 kHz ~ 150 kHz	Quasi Peak / 200 Hz
150 kHz ~ 30 MHz	Quasi Peak / 9 kHz
30 MHz ~ 1 GHz	Quasi Peak / 120 kHz

5.3.2 Test Procedures

The EUT is placed on a non-conducting table 80cm above the ground plane for measurement blew 1 GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10-2013.

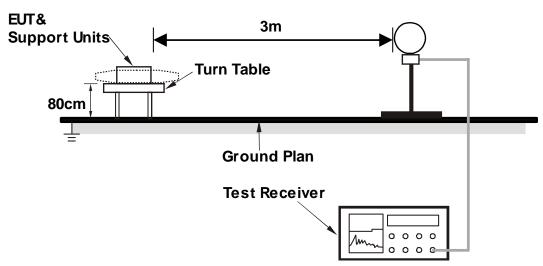
For measurement blew 1 GHz, the resolution bandwidth is set as item 5.4.2.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned form 1 to 4m meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and horizontal positions.

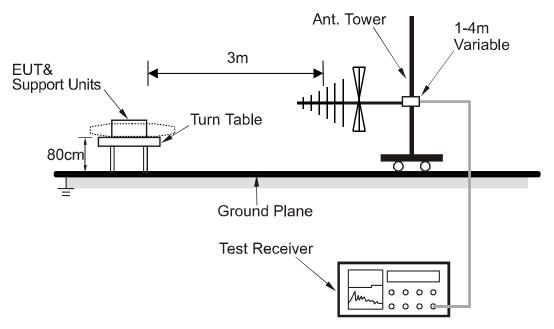
Special requirements for 9 kHz to 30 MHz:

The lowest height of the magnetic antenna shall be 1 m above the ground

When the EUT contains a loop antenna that can only be placed in a vertical axis, normal measurements shall be made aligning the measurement antenna along the site axis, and then orthogonal to the axis. For each measurement antenna alignment, the EUT shall be rotated through 0° to 360° on a turntable.


When the EUT contains a loop antenna that can be placed in a horizontal or vertical axis, normal measurements shall be made aligning the measurement antenna along the site axis, orthogonal to the axis, and then with the measurement antenna horizontal. For each measurement antenna alignment, the EUT shall be rotated through 0° to 360° on a turntable.

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: www.mtitest.com E-mail: mti@51mti.com



5.3.3 Test Setup

Blew 30 MHz:

Blew 1 GHz:

For the actual test configuration, please refer to the related item – Photographs of the test setup.

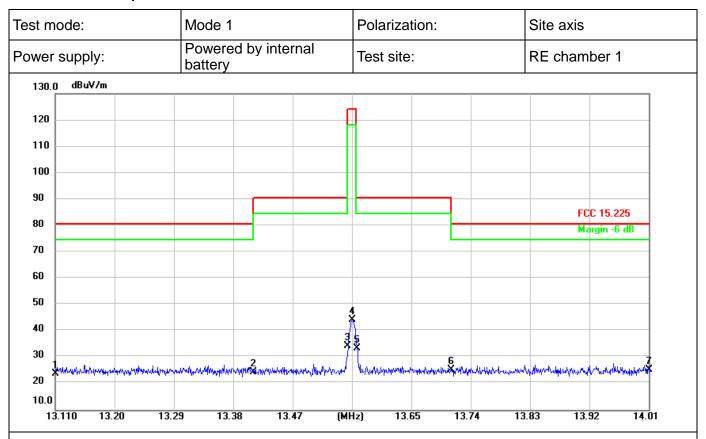
5.3.4 Test result

Calculation formula:

Measurement (dB μ V/m) = Reading Level (dB μ V) + Correct Factor (dB/m) Over (dB) = Measurement (dB μ V/m) – Limit (dB μ V/m)

Notes:

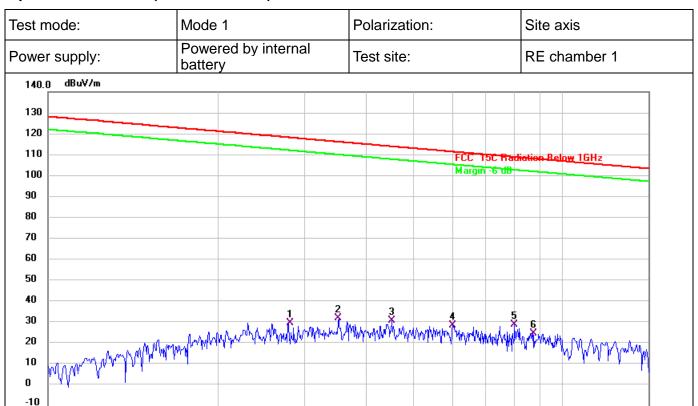
The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.


For 9 kHz - 30 MHz testing, all the required orthogonal orientations of the measurement loop antenna were performed for pre-scan, the maximum radiated transmissions (Site axis) were recorded.

Limit (dB μ V/m) = 20*log(μ V/m).

Limit (dBuV/m) @ 3m = Limit (dB μ V/m) @ 10m + 40*log(30/3)

Fundamental & spurious emissions in 13.110 ~ 14.010 MHz


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB	dBu∀/m	dBuV/m	dB	Detector
1		13.1100	29.25	-5.31	23.94	80.50	-56.56	QP
2		13.4100	29.97	-5.34	24.63	80.50	-55.87	QP
3		13.5530	39.86	-5.35	34.51	90.50	-55.99	QP
4		13.5600	49.67	-5.35	44.32	124.0	-79.68	QP
5		13.5670	38.99	-5.35	33.64	90.50	-56.86	QP
6	*	13.7100	30.92	-5.36	25.56	80.50	-54.94	QP
7		14.0100	30.87	-5.39	25.48	80.50	-55.02	QP

0.150

0.009

Spurious emissions (9 kHz ~ 150 kHz)

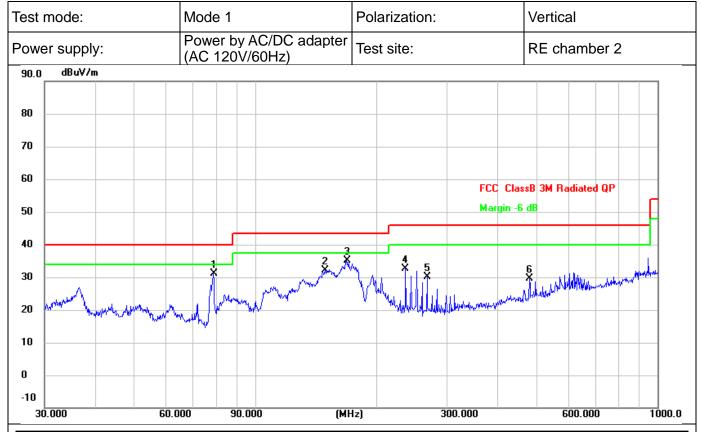
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector
1	0.0276	35.08	-3.26	31.82	118.65	-86.83	QP
2	0.0350	37.27	-3.37	33.90	116.59	-82.69	QP
3	0.0449	36.53	-3.46	33.07	114.44	-81.37	QP
4	0.0600	34.15	-3.60	30.55	111.94	-81.39	QP
5 *	0.0800	34.67	-3.79	30.88	109.45	-78.57	QP
6	0.0870	30.68	-3.86	26.82	108.73	-81.91	QP

(MHz)

Spurious emissions (150 kHz ~ 30 MHz)

est mode:	Mode 1 Polarization:			Site axis	
Power supply:	Powered by internal battery	Test site:	RE chamber 1		
110.0 dBuV/m					
100					
90					
80					
70				liation Below 1GHz	
60		_	Margin -6 dB		
50					
40					
30 markethern when the	About the agent has been been been been been been been bee	Anam Marketon www. A.	Kwan maka a ma	6	
20	111111111111	Supplied his to see a sufferior	A transfer a (White	and and leading the think of the control of the con	
10					
0					
-10					
-20					
-30					
0.150	0.500 0.800	(MHz)	5.000	30.000	

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBu∨	dB	dBu∀/m	dBuV/m	dB	Detecto
1	0.9890	35.24	-5.56	29.68	67.72	-38.04	QP
2 *	1.5518	34.44	-5.58	28.86	63.82	-34.96	QP
3	2.2486	33.82	-5.59	28.23	69.50	-41.27	QP
4	3.9014	33.76	-5.58	28.18	69.50	-41.32	QP
5	4.2465	33.43	-5.57	27.86	69.50	-41.64	QP
6	27.1200	30.47	-5.52	24.95	69.50	-44.55	QP


Spurious emissions (30 MHz ~ 1 GHz)

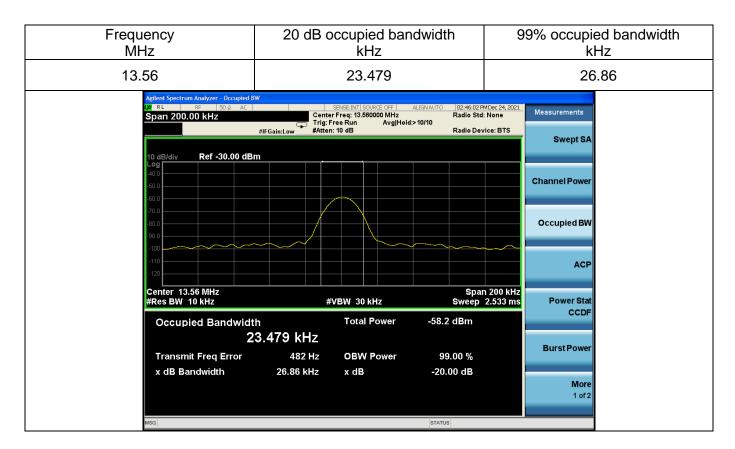
No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		78.9652	35.78	-10.21	25.57	40.00	-14.43	QP
2		154.2786	41.27	-10.14	31.13	43.50	-12.37	QP
3		194.4534	42.77	-8.16	34.61	43.50	-8.89	QP
4		236.6447	44.85	-6.46	38.39	46.00	-7.61	QP
5	*	267.5455	44.65	-5.69	38.96	46.00	-7.04	QP
6		298.2681	42.22	-5.86	36.36	46.00	-9.64	QP

Spurious emissions (30 MHz ~ 1 GHz)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		78.6888	41.32	-10.20	31.12	40.00	-8.88	QP
2		149.4857	42.42	-10.39	32.03	43.50	-11.47	QP
3	*	169.0054	44.69	-9.63	35.06	43.50	-8.44	QP
4		236.6447	39.11	-6.46	32.65	46.00	-13.35	QP
5		267.5455	35.90	-5.69	30.21	46.00	-15.79	QP
6		480.5276	32.84	-3.22	29.62	46.00	-16.38	QP

5.4 Occupied bandwidth test

5.4.1 Limits


None, for reporting purposes only.

5.4.2 Test Procedures

- a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation.
- d) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement
- e) Set detection mode to peak and trace mode to max hold.
- f) Determine the "-xx dB down amplitude" using [(reference value) xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument.

5.4.3 Test Result

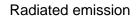
Note: Because the measured signal is CW-like, adjusting the RBW per C63.10 would not be practical since measurement bandwidth will always follow the RBW. The RBW is set to 10 kHz to perform the occupied bandwidth test.

5.5 Frequency stability

5.5.1 Limit

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

5.5.2 Test Procedure


ANSI C63.10-2013 Clause 6.8.

5.5.3 Test result

Power Supply (VDC)	Temperature (°C)	Measured Frequency (MHz)	Frequency Deviation	Limit	
	-20	13.560305	0.002%		
	-10	13.560314	0.002%		
	0	13.560328	0.002%		
7.4	10 20 30	13.560402	0.003%		
7.4		13.560359	0.003%	+/-0.01%	
		13.560287	0.002%	+/-0.0176	
	40	13.560312	0.002%		
	50	13.560289	0.002%		
6.3	20	13.560306	0.002%		
8.5	20	13.560311	0.002%		

Photographs of the Test Setup

Photographs of the EUT

See the Appendix – EUT Photos.

----End of Report----