

FCC TEST REPORT FCC ID: 2ASRB-D30

Product	:	Small Label Printer			
Model Name	:	D30			
Additional model	:	D31,D35,D36,D50,Q30,Q50,Q80,Q90			
Brand	:	N/A			
Report No.	:	PTC20061900801E-FC02			
Prepared for					
Zhuhai Quyin Technology Co., Ltd.					
Office 105 - 38942, No. 6 Baohua Road, Hengqin New District, Zhuhai City, China					
		Prepared by			
Precise Testing & Certification Co., Ltd.					
Building 1, No. 6, Tong	Building 1, No. 6, Tongxin Road, Dongcheng Street, Dongguan, Guangdong, China				

1 TEST RESULT CERTIFICATION

Applicant's name	:	Zhuhai Quyin Technology Co., Ltd.
Address	:	Office 105 - 38942, No. 6 Baohua Road, Hengqin New District, Zhuhai City,China
Manufacture's name	:	Zhuhai Quyin Technology Co., Ltd.
Address	:	Office 105 - 38942, No. 6 Baohua Road, Hengqin New District, Zhuhai City,China
Product name	:	Small Label Printer
Model name	:	D30
Additional model		D31,D35,D36,D50,Q30,Q50,Q80,Q90
Standards	:	FCC CFR47 Part 15 Section 15.247
Test procedure	:	ANSI C63.10:2013
Test Date	:	Jul. 6, 2020 to Jul. 15, 2020
Date of Issue	:	Jul. 15, 2020
Test Result	:	Pass

This device described above has been tested by PTC, and the test results show that the

equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of PTC, this document may be altered or revised by PTC, personal only, and shall be noted in the revision of the document.

Test Engineer:

Leo Yang

Leo Yang / Engineer

chim

Chris Du / Manager

Technical Manager:

Contents

	Page
1 TEST RESULT CERTIFICATION	2
2 TEST SUMMARY	5
2.1 TEST SITE	6
3 GENERAL INFORMATION	7
3.1 GENERAL DESCRIPTION OF E.U.T.	
3.2 CHANNEL LIST	8
4 EQUIPMENT DURING TEST	9
4.1 Equipments List	9
4.2 MEASUREMENT UNCERTAINTY	11
4.3 DESCRIPTION OF SUPPORT UNITS	
5 CONDUCTED EMISSION	13
5.1 E.U.T. OPERATION	
5.2 EUT Setup	13
5.3 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	14
5.4 MEASUREMENT PROCEDURE	
5.5 CONDUCTED EMISSION LIMIT	14
5.6 MEASUREMENT DESCRIPTION	14
5.7 CONDUCTED EMISSION TEST RESULT	14
6 RADIATED SPURIOUS EMISSIONS	17
6.1 EUT OPERATION	
6.2 TEST SETUP	
6.3 Spectrum Analyzer Setup	19
6.4 Test Procedure	
6.5 SUMMARY OF TEST RESULTS	
7 CONDUCT BAND EDGE AND SPURIOUS EMISSIONS MEASUREMENT	
7.1 Test Procedure	
7.2 TEST RESULT	
8 6DB BANDWIDTH MEASUREMENT	32

8.1 Test Procedure	
8.2 TEST RESULT	
9 MAXIMUM PEAK OUTPUT POWER	
9.1 Test Procedure	
9.2 TEST RESULT	
10 POWER SPECTRAL DENSITY	
10.1 Test Procedure	
10.2 TEST RESULT	
11 ANTENNA APPLICATION	41
11.1 ANTENNA REQUIREMENT	41
11.2 RESULT.	41
12 TEST SETUP	
APPENDIX II EXTERNAL PHOTOGRAPH	
APPENDIX III INTERNAL PHOTOGRAPH	

2 Test Summary

Test Items	Test Requirement	Result
Conduct Emission	15.207	PASS
Radiated Spurious Emissions	15.205(a) 15.209 15.247(d)	PASS
Conducted Spurious Emission	15.247(d)	PASS
Band edge	15.247(d) 15.205(a)	PASS
6dB Bandwidth	15.247(a)(2)	PASS
Maximum Peak Output Power	15.247(b)(1)	PASS
Power Spectral Density	15.247(e)	PASS
Antenna Requirement	15.203	PASS

Remark:N/A

2.1 Test Site

Precise Testing & Certification Co., Ltd. Address: Building 1, No. 6, Tongxin Road, Dongcheng Street, Dongguan, Guangdong, China FCC Registration Number: 790290 A2LA Certificate No.: 4408.01 IC Registration Number: 12191A-1

3 General Information

3.1 General Description of E.U.T.

Product Name	:	Small Label Printer	
Model Name	:	D30	
Additional model	:	D31,D35,D36,D50,Q30,Q50,Q80,Q90 Note: all models have the same RF module and Antenna, except for color of enclosure and model No. for trading purpose.	
Bluetooth Version	:	BT 4.0 BLE	
Operating frequency	:	2402-2480MHz	
Numbers of Channel	:	40	
Antenna Type	:	PCB Antenna	
Antenna Gain	:	0 dBi	
Type of Modulation	:	GFSK,	
Power supply	-	Adapter model:N/A Input: DC 5V, 2A(with DC 7.4V, 1000mAh Battery inside)	
Hardware Version	:	N/A	
Software Version	:	N/A	

3.2 Channel List

The EUT has been tested under its typical operating condition. Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting. Only the worst case data were reported.

The EUT has been associated with peripherals pursuant to ANSI C63.10-2013 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation (9 KHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).

The details of test channels and bandwidth were for RF conductive measurement.

Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

Note:

 Test of channel was included the lowest 2402MHz, middle 2440MHz and highest frequency 2480MHz in highest data rate and to perform the test, then record on this report.

4 Equipment During Test

4.1 Equipments List

RF Conducted Test

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due
MXG Signal Analyzer	Agilent	N9020A	SER MY5111038	10Hz-30GHz	Aug. 21, 2020
Coaxial Cable	CDS	79254	46107086	10Hz-30GHz	Aug. 21, 2020
Power Meter	Anritsu	ML2495A	0949003	300MHz-40GHz	Aug. 28, 2020
Power Sensor	Anritsu	MA2411B	0917017	300MHz-40GHz	Aug. 28, 2020

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due
EMI Test Receiver	Rohde&Schwarz	ESCI	101417	9KHz-3GHz	Aug. 28, 2020
Loop Antenna	Schwarzbeck	FMZB 1519	012	9 KHz -30MHz	Aug. 28, 2020
Bilog Antenna	SCHWARZBECK	VULB9160	9160-3355	25MHz-2GHz	Aug. 22, 2020
Preamplifier (low frequency)	SCHWARZBECK	BBV 9475	9745-0013	1MHz-1GHz	Aug. 21, 2020
Cable	Schwarzbeck	PLF-100	549489	9KHz-3GHz	Aug. 21, 2020
Spectrum Analyzer	Agilent	E4407B	MY45109572	9KHz-40GHz	Aug. 28, 2020
Horn Antenna	SCHWARZBECK	9120D	9120D-1246	1GHz-18GHz	Apr. 13, 2021
Power Amplifier	LUNAR EM	LNA1G18-40	J10100000081	1GHz-26.5GHz	Aug. 21, 2020
Horn Antenna	SCHWARZBECK	BBHA 9170	9170-181	14GHz-40GHz	Apr. 13, 2021
Amplifier	SCHWARZBECK	BBV 9721	9721-205	18GHz-40GHz	Aug. 21, 2020
Cable	H+S	CBL-26	N/A	1GHz-26.5GHz	Aug. 21, 2020
RF Cable	R&S	R204	R21X	1GHz-40GHz	Aug. 21, 2020

Conducted Emissions

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due
EMI Test Receiver	Rohde&Schwarz	ESCI	101417	9KHz-3GHz	Aug. 28, 2020
Artificial Mains Network	Rohde&Schwarz	ENV216	102453	9KHz-300MHz	Aug. 21, 2020
Artificial Mains Network	Rohde&Schwarz	ENV216	101342	9KHz-300MHz	Aug. 21, 2020

4.2 Measurement Uncertainty

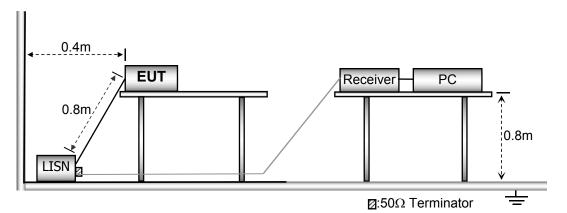
Parameter	Uncertainty			
RF output power, conducted	±1.0dB			
Power Spectral Density, conducted	±2.2dB			
Radio Frequency	± 1 x 10 ⁻⁶			
Bandwidth	± 1.5 x 10 ⁻⁶			
Time	±2%			
Duty Cycle	±2%			
Temperature	±1°C			
Humidity	±5%			
DC and low frequency voltages	±3%			
Conducted Emissions (150kHz~30MHz)	±3.64dB			
Radiated Emission(30MHz~1GHz)	±5.03dB			
Radiated Emission(1GHz~25GHz)±4.74dBRemark: The coverage Factor (k=2), and measurement Uncertainty for a level of Confidence of 95%				
Remark. The coverage Factor (K=2), and measure	ment oncertainty for a level of confidence of 95%			

4.3 Description of Support Units

Equipment	Model No.	Series No.
Adapter	Input:100-240V~, 1.5A, 50-	N/A
	60Hz	
	Output : DC 5V, 2A,	

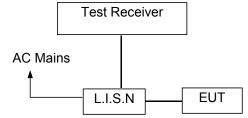
5 Conducted Emission

Test Requirement	:	FCC CFR 47 Part 15 Section 15.207
Test Method	:	ANSI C63.10: 2013
Test Result	:	PASS
Frequency Range	:	150kHz to 30MHz
Class/Severity	:	Class B


5.1 E.U.T. Operation

Operating Environment :

Temperature	:	25.5 °C
Humidity	:	51 % RH
Atmospheric Pressure	:	101.2kPa


5.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

5.3 Test SET-UP (Block Diagram of Configuration)

5.4 Measurement Procedure

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured was complete.

5.5 Conducted Emission Limit

Conducted Emission

Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

Note:

1. The lower limit shall apply at the transition frequencies

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

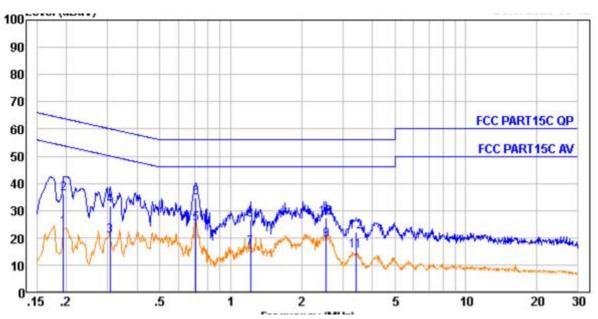
5.6 Measurement Description


The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

5.7 Conducted Emission Test Result

Pass.


All the modulation modes were tested the data of the worst mode (AC 120V/60Hz, GFSK TX 2402MHz) are recorded in the following pages and the others modulation methods do not exceed the limits.


No.	Freq MHz	Cable Loss dB	AMN Factor dB	Receiver Reading dBµV	Emission Le∨el dBµV	Limit dBµ∨	O∨er Limit dB	Remark
1.	0.202	0.28	9.59	13.80	23.67	53.54	-29.87	Average
2.	0.202	0.28	9.59	29.91	39.78	63.54	-23.76	QP
3.	0.708	0.44	9.61	15.58	25.63	46.00	-20.37	Average
4.	0.708	0.44	9.61	28.33	38.38	56.00	-17.62	QP
5.	1.184	0.46	9.61	7.94	18.01	46.00	-27.99	Average
6.	1.184	0.46	9.61	18.48	28.55	56.00	-27.45	QP
7.	1.878	0.47	9.61	9.43	19.51	46.00	-26.49	Average
8.	1.878	0.47	9.61	17.35	27.43	56.00	-28.57	QP
9.	3.310	0.47	9.64	5.96	16.07	46.00	-29.93	Average
10.	3.310	0.47	9.64	14.11	24.22	56.00	-31.78	QP
11.	4.978	0.50	9.68	5.10	15.28	46.00	-30.72	Average
12.	4.978	0.50	9.68	13.16	23.34	56.00	-32.66	QP -

Neutral-AC 120V/60Hz

No.	Freq MHz	Cable Loss dB	AMN Factor dB	Receiver Reading dBµV	Emission Le∨el dBµV	Limit dBµ∨	O∨er Limit dB	Remark
1.	0.194	0.27	9.61	13.69	23.57	53.84	-30.27	Average
2.	0.194	0.27	9.61	26.46	36.34	63.84	-27.50	QP
3.	0.307	0.37	9.62	10.71	20.70	50.06	-29.36	Average
4.	0.307	0.37	9.62	21.85	31.84	60.06	-28.22	QP
4. 5.	0.712	0.44	9.64	15.00	25.08	46.00	-20.92	Average
6.	0.712	0.44	9.64	24.46	34.54	56.00	-21.46	QP
7.	1.216	0.46	9.64	6.23	16.33	46.00	-29.67	Average
8.	1.216	0.46	9.64	16.53	26.63	56.00	-29.37	QP
9.	2.554	0.47	9.65	9.12	19.24	46.00	-26.76	Average
10.	2.554	0.47	9.65	17.14	27.26	56.00	-28.74	QP
11.	3.399	0.47	9.67	5.08	15.22	46.00	-30.78	Average
12.	3.399	0.47	9.67	12.09	22.23	56.00	-33.77	QP

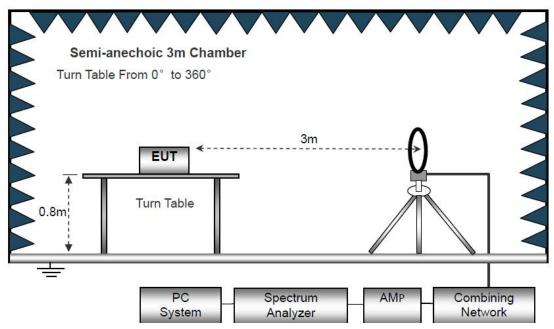
6 Radiated Spurious Emissions

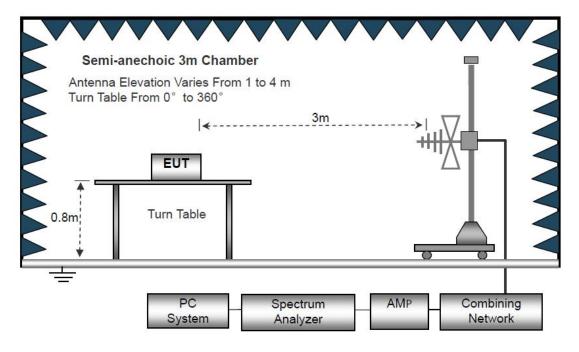
Test Requirement	:	FCC CFR47 Part 15 Section 15.209 & 15.247
Test Method	:	ANSI C63.10:2013
Test Result	:	PASS
Measurement Distance	:	3m
Limit	:	See the follow table

	Field Strer	igth	Field Strength Limit at 3m Measurement Dist		
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

6.1 EUT Operation

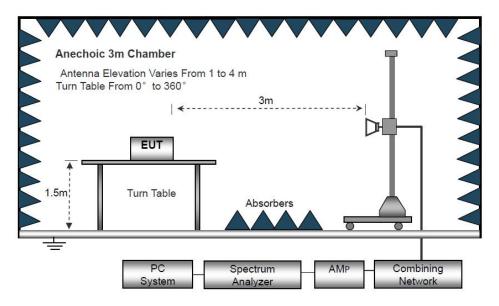
Operating Environment :


Temperature	:	23.5 °C
Humidity	:	51.1 % RH
Atmospheric Pressure	:	101.2kPa


6.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site

The test setup for emission measurement below 30MHz



The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz

6.3 Spectrum Analyzer Setup

	Frequency	Detector	RBW	VBW	Remark
	Below 30MHz		10kHz	10kHz	
Receiver Setup	30MHz ~ 1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
		RMS	1MHz	3MHz	Average Value

6.4 Test Procedure

- 1. The testing follows the guidelines in Spurious Radiated Emissions of ANSI C63.10-2013.
- 2. Below 1000MHz, The EUT was placed on a turn table which is 0.8m above ground plane. And above 1000MHz, The EUT was placed on a styrofoam table which is 1.5m above ground plane.
- 3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (From 1m to 4m) and turntable (from 0 degree to 360 degree) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Final measurement (Above 1GHz): The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1MHz. The measurement will be performed in horizontal and vertical polarization of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 degree to 360 degree in order to have the antenna inside the cone of radiation.
- 7. Test Procedure of measurement (For Above 1GHz):
- 1) Monitor the frequency range at horizontal polarization and move the antenna over all sides of the EUT(if necessary move the EUT to another orthogonal axis).
- 2) Change the antenna polarization and repeat 1) with vertical polarization.
- 3) Make a hardcopy of the spectrum.
- 4) Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 5) Change the analyser mode to Clear/ Write and found the cone of emission.
- 6) Rotate and move the EUT, so that the measuring distance can be enlarged to 3m and the antenna will be still inside the cone of emission.
- 7) Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarization and azimuth and the peak and average detector, which causes the maximum emission.
- 8) Repeat steps 1) to 7) for the next antenna spot if the EUT is larger than the antenna beamwidth.
- 8. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

For Average Measurement:

VBW=10Hz, when duty cycle is no less than 98 percent.

VBW≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Band	Duty Cycle(%)	T(µs)	1/T(KHz)	Average Correction Factor	VBW Setting
2402-2480	100	-	-	0	10Hz

6.5 Summary of Test Results

Test Frequency: 9KHz-30MHz

Freq.	Ant.Pol.	Emission Level	Limit 3m	Over
(MHz)	H/V	(dBuV/m)	(dBuV/m)	(dB)
				>20

Note:

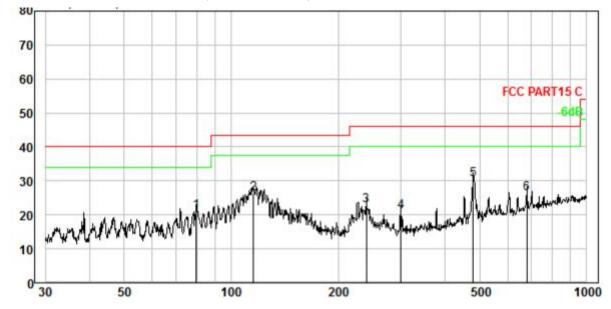
The amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.


Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

Test Frequency: 30MHz ~ 1GHz

Pass.

Please refer to the following test plots for the worst test mode (GFSK (CH00: 2402MHz)).



Antenna Polarization: Horizontal GFSK(CH00: 2402MHz)

No.	Freq MHz	Cable Loss dB	ANT Factor dB/m	Receiver Reading dBuV		Emission Level dBuV/m	Limit dBuV/m	Over Limit dB	Remark
1.	83.816	2.97	8.77	40.48	29.97	22.25	40.00	-17.75	QP
2.	167.824	4.16	13.45	34.41	30.03	21.99	43.50	-21.51	QP
3.	231.718	4.71	11.99	44.09	30.14	30.65	46.00	-15.35	QP
4.	299.316	5.16	13.19	44.47	30.32	32.50	46.00	-13.50	QP
5.	378.584	5.56	14.64	38.25	30.63	27.82	46.00	-18.18	QP
6.	679.960	6.57	19.90	32.89	31.07	28.29	46.00	-17.71	QP

Remark:Emission Level=Reading+Cable Loss+ANT Factor-AMP Factor

Antenna Polarization: Vertical GFSK(CH00: 2402MHz)

No.	Freq MHz	Cable Loss dB	ANT Factor dB/m	Receiver Reading dBuV	Preamp Factor dB	Emission Level dBuV/m	Limit dBuV/m	Over Limit dB	Remark
1.	79.800	2.89	9.02	39.11	29.97	21.05	40.00	-18.95	QP
2.	115.726	3.53	11.50	41.29	30.00	26.32	43.50	-17.18	QP
3.	239.987	4.77	12.23	35.98	30.17	22.81	46.00	-23.19	QP
4.	300.367	5.16	13.21	32.78	30.32	20.83	46.00	-25.17	QP
5.	480.528	5.97	16.65	38.74	30.86	30.50	46.00	-15.50	QP
6.	679.960	6.57	19.90	30.96	31.07	26.36	46.00	-19.64	QP

Remark:Emission Level=Reading+Cable Loss+ANT Factor-AMP Factor

Test Frequency 1GHz-25GHz:

GFSK Low Channel (2402MHz)									
	Detector: Peak Value								
Frequency	Reading Level	Ant. Factor	Cable Loss	Pre-Amp. Gain (dB)	Emission Level	Limit	Margin	Polarity	
(MHz)	(dBuV)	(dB/m)	(dB)		(dBuV/m)	(dBuV/m)	(dB)	(H/V)	
4804.00	35.57	34.04	6.58	34.09	42.10	74.00	-31.90	V	
7206.00	30.68	37.11	7.73	34.50	41.02	74.00	-32.98	V	
9608.00	30.44	39.31	9.23	34.79	44.19	74.00	-29.81	V	
4804.00	39.50	34.04	6.58	34.09	46.03	74.00	-27.97	Н	
7206.00	32.28	37.11	7.73	34.50	42.62	74.00	-31.38	Н	
9608.00	29.70	39.31	9.23	34.79	43.45	74.00	-30.55	Н	
			Detect	or: Average	Value				
4804.00	24.71	34.04	6.58	34.09	31.24	54.00	-22.76	V	
7206.00	19.56	37.11	7.73	34.50	29.90	54.00	-24.10	V	
9608.00	18.75	39.31	9.23	34.79	32.50	54.00	-21.50	V	
4804.00	28.75	34.04	6.58	34.09	35.28	54.00	-18.72	Н	
7206.00	21.62	37.11	7.73	34.50	31.96	54.00	-22.04	Н	
9608.00	18.33	39.31	9.23	34.79	32.08	54.00	-21.92	Н	
			GFSK Mide	lle Channel ((2440MHz)				
			Dete	ctor: Peak V	alue				
Frequency	Reading	Ant.	Cable	Pre-Amp.	Emission	Limit	Margin	Polarity	
	Level	Factor	Loss	Gain (dB)	Level				
(MHz)	(dBuV)	(dB/m)	(dB)		(dBuV/m)	(dBuV/m)	(dB)	(H/V)	
4880.00	36.02	34.38	6.69	34.09	43.00	74.00	-31.00	V	
7320.00	30.98	37.22	7.78	34.53	41.45	74.00	-32.55	V	
9760.00	30.71	39.46	9.35	34.80	44.72	74.00	-29.28	V	
4880.00	40.05	34.38	6.69	34.09	47.03	74.00	-26.97	Н	
7320.00	32.62	37.22	7.78	34.53	43.09	74.00	-30.91	Н	
9760.00	30.01	39.46	9.35	34.80	44.02	74.00	-29.98	Н	
			Detec	tor: Average \	/alue				
4880.00	25.09	34.38	6.69	34.09	32.07	54.00	-21.93	V	
7320.00	19.82	37.22	7.78	34.53	30.29	54.00	-23.71	V	
9760.00	18.97	39.46	9.35	34.80	32.98	54.00	-21.02	V	
4880.00	29.17	34.38	6.69	34.09	36.15	54.00	-17.85	Н	

7320.00	21.91	37.22	7.78	34.53	32.38	54.00	-21.62	н		
9760.00	18.60	39.46	9.35	34.80	32.61	54.00	-21.39	н		
	GFSK High Channel (2480MHz)									
	Detector: Peak Value									
Frequency	Reading	Ant. Factor	Cable	Pre-Amp.	Emission	Limit	Margin	Polarity		
	Level		Loss	Gain (dB)	Level					
(MHz)	(dBuV)	(dB/m)	(dB)		(dBuV/m)	(dBuV/m)	(dB)	(H/V)		
4960.00	36.19	34.72	6.79	34.09	43.61	74.00	-30.39	V		
7440.00	31.09	37.34	7.82	34.57	41.68	74.00	-32.32	V		
9920.00	30.81	39.62	9.46	34.81	45.08	74.00	-28.92	V		
4960.00	40.25	34.72	6.79	34.09	47.67	74.00	-26.33	н		
7440.00	32.75	37.34	7.82	34.57	43.34	74.00	-30.66	н		
9920.00	30.13	39.62	9.46	34.81	44.40	74.00	-29.60	Н		
			Deteo	ctor: Average `	Value					
4960.00	25.27	34.72	6.79	34.09	32.69	54.00	-21.31	V		
7440.00	19.94	37.34	7.82	34.57	30.53	54.00	-23.47	V		
9920.00	19.08	39.62	9.46	34.81	33.35	54.00	-20.65	V		
4960.00	29.38	34.72	6.79	34.09	36.80	54.00	-17.20	Н		
7440.00	22.04	37.34	7.82	34.57	32.63	54.00	-21.37	Н		
9920.00	18.72	39.62	9.46	34.81	32.99	54.00	-21.01	н		

Note: 1. The testing has been conformed to 10*2480MHz=24800MHz.

2. All other emissions more than 30dB below the limit.

3. Factor = Antenna Factor + Cable Loss – Pre-amplifier. Emission Level = Reading + Factor Margin=Emission Level-Limit

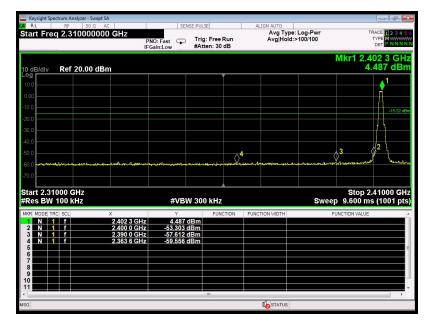
Test Mode: BLE Low Channel 2402MHz									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over (dB)	Polarity H/V	Test Value
2390.00	45.62	29.15	3.41	34.01	44.17	74.00	-29.83	Н	Peak
2400.00	62.80	29.16	3.43	34.01	61.38	74.00	-12.62	Н	Peak
2390.00	46.43	29.15	3.41	34.01	44.98	74.00	-29.02	V	Peak
2400.00	65.13	29.16	3.43	34.01	63.71	74.00	-10.29	V	Peak
2390.00	35.55	29.15	3.41	34.01	34.10	54.00	-19.90	Н	AV
2400.00	46.95	29.16	3.43	34.01	45.53	54.00	-8.47	Н	AV
2390.00	35.69	29.15	3.41	34.01	34.24	54.00	-19.76	V	AV
2400.00	43.86	29.16	3.43	34.01	42.44	54.00	-11.56	V	AV

Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

		Test	Mode:BLE	E High Cha	nnel 2480MI	Hz			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over (dB)	Polarity H/V	Test Value
2483.50	48.05	29.28	3.53	34.03	46.83	74.00	-27.17	Н	Peak
2500.00	46.70	29.30	3.56	34.03	45.53	74.00	-28.47	Н	Peak
2483.50	49.35	29.28	3.53	34.03	48.13	74.00	-25.87	V	Peak
2500.00	47.96	29.30	3.56	34.03	46.79	74.00	-27.21	V	Peak
2483.50	38.41	29.28	3.53	34.03	37.19	54.00	-16.81	Н	AV
2500.00	36.02	29.30	3.56	34.03	34.85	54.00	-19.15	Н	AV
2483.50	39.85	29.28	3.53	34.03	38.63	54.00	-15.37	V	AV
2500.00	36.17	29.30	3.56	34.03	35.00	54.00	-19.00	V	AV

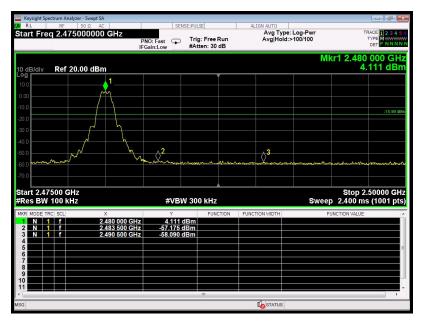
7 Conduct Band Edge And Spurious Emissions Measurement

Test Requirement	:	Section 15.247(d) In addition, radiated emissions which fall in the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).
Test Method	:	ANSI C63.10:2013
Test Limit	:	Regulation 15.247 (d),In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).


7.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold



7.2 Test Result

Low Band Edge Plot on Channel 00



For Conduct spurious emissions

Low Channel Worstcase

Mid Channel Worstcase

50 Ω AC	SE	NSE:PULSE	ALIGN AUTO		
00000 MHz	PNO: Fast 😱 IFGain:Low	Trig: Free Run #Atten: 30 dB			TRACE 1 2 3 4 5 TYPE M WWWW DET P N N N N
0.00 dBm					Mkr1 2.480 GH 3.914 dBr
		Ť			
					-16.10 d
			1 the bottom	monorman	www.www
all play and all some way	Hernet Market and Market	lybar motor war	Ned and the second		
	#1/(P)	N 300 kHz		Swaan	Stop 25.00 GH 2.386 s (1001 pt
	0.000 MHz	50 2 AC SET	So AC SENSERULSE D00000 MHz PNO: Fast IFGain:Low Trig: Free Run #Atten: 30 dB 0.00 dBm 0.00 dBm	Is a AC SENSE-PULSE ALTON AUTO TO THE PRO: PNO: Fast Trig: Free Run Avg Hold: : PNO: Fast Trig: Free Run #Atten: 30 dB Avg Hold: : 0.00 dBm 0.00	Is a a a sense Pulse ALION AUTO D00000 MHz PRO: Fast IFGain:Low 0.00 dBm 0.00 dBm

Hig Channel Worstcase

8 6dB Bandwidth Measurement

Test Requirement	:	FCC CFR47 Part 15 Section 15.247
Test Method	:	ANSI C63.10:2013
Test Limit		Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

8.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

8.2 Test Result

Channel number	Channel frequency (MHz)	Measurement level	Required Limit	
	((((((((((((((((((((((((((((((((((((((((KHz)	(KHz)	
00	2402	710.8	>500	
19	2440	710.3	>500	
39	2480	708.3	>500	

Keysight Spectrum Analyzer - Occupied BW			N AUTO	
Center Freq 2.40200000	GHz	Center Freq: 2.402000000 G Trig: Free Run	Hz Avg Hold:>10/10	Radio Std: None
	#IFGain:Low	#Atten: 30 dB		Radio Device: BTS
and showing the				
5 dB/div Ref 20.00 dBm				
5.00				
10.0				
25.0				
40.0				
70.0				
85.0				
-100				
-115				
Center 2.402 GHz				Span 3 MH
Res BW 100 kHz		#VBW 300 kHz		Sweep 1 m
Occupied Bandwidth		Total Power	11.6 dBm	
	516 MHz			
Transmit Freq Error	3.349 kHz	% of OBW Power	99.00 %	
x dB Bandwidth	710.8 kHz	x dB	-6.00 dB	
SG			STATUS	

www.www.com/analyzer - Occupied BW				
RL RF 50 Ω AC Center Freq 2.440000000 (Center Freq: 2.44000000	IGN AUTO O GHz Avg Hold:>10/10	Radio Std: None Radio Device: BTS
15 dB/div Ref 20.00 dBm				
5.00				
-10.0				
40.0				
55.0				
70.0				
-100				
-115				
Center 2.44 GHz #Res BW 100 kHz		#VBW 300 kH:	z	Span 3 MHz Sweep 1 ms
Occupied Bandwidth		Total Power	11.5 dBm	
1.0	556 MHz			
Transmit Freq Error	4.262 kHz	% of OBW Power	99.00 %	
x dB Bandwidth	710.3 kHz	x dB	-6.00 dB	
ISG			STATUS	

Keysight Spectrum Analyzer - Occupied BW				
Image: Weight of the state in th		Center Freq: 2.48000000	GHz Avg Hold:>10/10	Radio Std: None Radio Device: BTS
15 dB/div Ref 20.00 dBm				
5.00 -10.0 -25.0				
-25.0 -40.0 -55.0				
-70.0 -85.0				
-115 Center 2.48 GHz				Onen 2 Mile
#Res BW 100 kHz		#VBW 300 kHz		Span 3 MHz Sweep 1 ms
Occupied Bandwidth 1.0	501 MHz	Total Power	11.1 dBm	
Transmit Freq Error x dB Bandwidth	4.760 kHz 708.3 kHz	% of OBW Power x dB	99.00 % -6.00 dB	
MSG		٥	STATUS	

9 Maximum Peak Output Power

Test Requirement	:	FCC CFR47 Part 15 Section 15.247
Test Method	:	ANSI C63.10:2013
Test Limit	:	Regulation 15.247 (b)(3), For systems using digital modulation in the 902- 928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power.

9.1 Test Procedure

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Measure the conducted output power and record the results in the test report.

9.2 Test Result

Channel number	Channel Frequency(MHz)	Peak Power Output(dBm)	Peak Power Output(W)	Peak Power Limit(W)	Verdict
00	2402	6.082	0.0041	1	PASS
19	2440	6.944	0.0049	1	PASS
39	2480	6.693	0.0047	1	PASS

Keysight Spectrum			SE	NSE:PULSE	-	ALIGN AUTO			- F
larker 1 2.4	021450000		PNO: Fast 🕞 FGain:Low	Trig: Free #Atten: 30	Run dB	Avg Type Avg Hold:	Log-Pwr >100/100	т	RACE 1 2 3 4 TYPE MWWW DET PNNN
0 dB/div Re	f 20.00 dBm	1					N	lkr1 2.402 6	145 GH .082 dB
0.0					1				
100					<u> </u>				
0.0	/								
0.0									
0.0									and the second second
D.O									~~~~
0.0									
0.0									
0.0									
enter 2.4020 Res BW 1.0 I			#\/B	W 3.0 MHz			Swa	Spar ep 1.000 m	5.000 M
	WI112		#VD	W 5.0 WHZ		STATUS	Swe	op 1.000 m	5 (100 T P

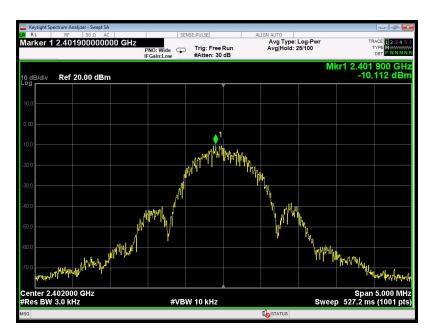
Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω AC	SENSE:PULSE	ALIGN AUTO	
enter Freq 2.480000000 C	PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 1 2 3 4 TYPE MWWW DET P NNN
0 dB/div Ref 20.00 dBm		Mkr	1 2.480 160 GH 6.693 dB
og		-	
10.0		1	
0.0			
0.0			
0.0			
0.0			
0.0			
0.0			
enter 2.480000 GHz	#2 (D)#2 0 0 MU-	•	Span 5.000 MI 1.000 ms (1001 pt
Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep	1.000 ms (1001 pi

10 Power Spectral density

Test Requirement	:	FCC CFR47 Part 15 Section 15.247
Test Method	:	ANSI C63.10:2013
Test Limit	:	Regulation 15.247(f) The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

10.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.


2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

10.2 Test Result

Channel	Channel	Measurement level	Required	Pass/Fail
number	frequency (MHz)	(dBm)	Limit	
		PSD/3kHz	(dBm/3kHz)	
00	2402	-10.112	8	PASS
19	2440	-10.357	8	PASS
39	2480	-10.518	8	PASS

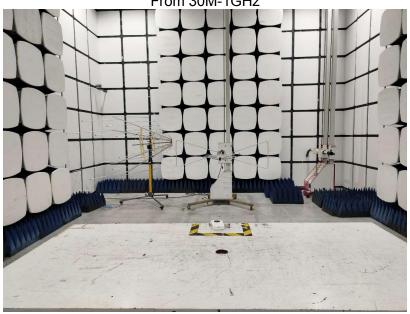
11 Antenna Application

11.1 Antenna Requirement

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

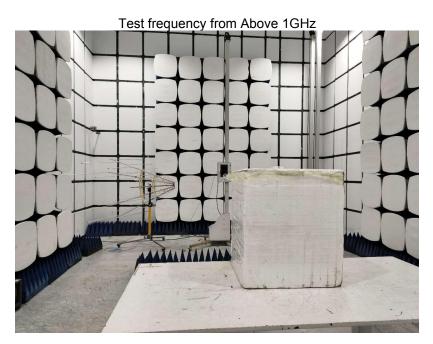
11.2 Result

The EUT'S antenna, permanent attached antenna, is internal PCB antenna. The antenna's gain is 0dBi and meets the requirement.

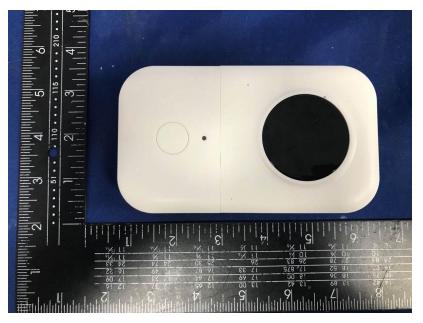


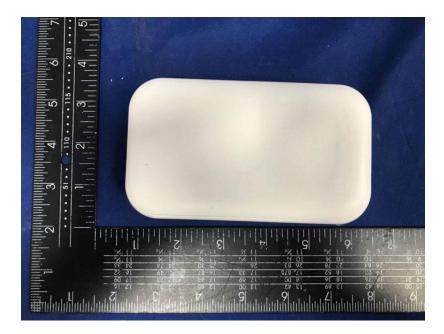
12 Test Setup

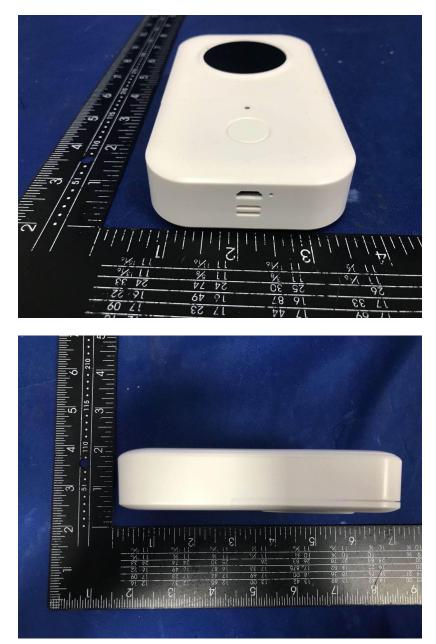
Conducted Emissions

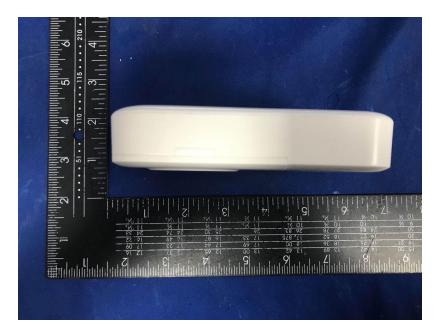


Radiated Spurious Emissions From 30M-1GHz

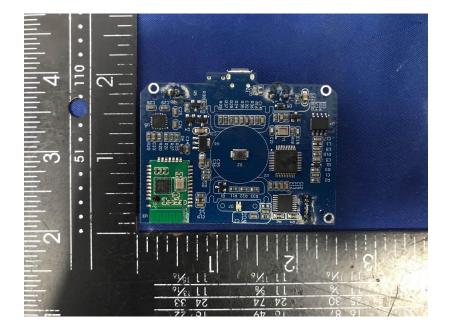

Page 42 of 50


APPENDIX II -- EXTERNAL PHOTOGRAPH

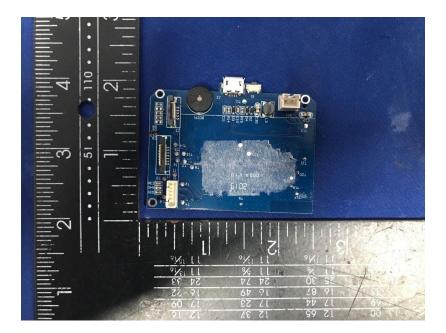

Page 44 of 50

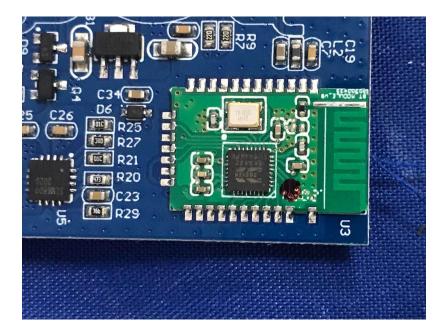


APPENDIX III -- INTERNAL PHOTOGRAPH



Page 48 of 50





Page 49 of 50

----- End of Report ------

Page 50 of 50