

Test Report

Report No.: MTi211215008-05E3

Date of issue: Mar. 30, 2022

Applicant: ShenZhen chileaf electronics Co., Ltd

Product: armband heart rate monitor

Model(s): CL838

FCC ID: 2ASQ9-CL838

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Contents

1	General Description	5
	1.1 Description of EUT	5
	1.2 Description of test modes	5
	1.3 Measurement uncertainty	5
2	Summary of Test Result	7
3	Test Facilities and Accreditations	8
	3.1 Test laboratory	8
4	Equipment List	9
5	Test Result	10
	5.1 Antenna requirement	10
	5.2 AC power line conducted emissions	11
	5.3 6dB occupied bandwidth	12
	5.4 Conducted peak output power	13
	5.5 Power spectral density test	14
	5.6 Conducted emissions at the band edge	15
	5.7 Conducted spurious emissions	17
	5.8 Duty Cycle	19
	5.9 Radiated spurious emission	20
P	hotographs of the Test Setup	28
P	hotographs of the EUT	29

Pass

Test result:

Report No.: MTi211215008-05E3 **Test Result Certification**

rest Nesult Certification				
Applicant:	ShenZhen chileaf electronics Co., Ltd			
Address:	5#D Skyworth Innovation valley No.8, Tongtou 1st Rd, ShiYan, BaoAn ShenZhen, China			
Manufacturer:	Shenzhen Chileaf electronics Co., LTD			
Address:	4/F, Building 5A, Sky worth innovation valley, Tongtau 1st RD, Shi'yan Town, Bao'an District, Shenzhen			
Factory:	Shenzhen Chileaf electronics Co., LTD			
Address:	4/F, Building 5A, Sky worth innovation valley, Tongtau 1st RD, Shi'yan Town, Bao'an District, Shenzhen			
Product descriptio	n			
Product name: armband heart rate monitor				
Trademark:	CHILEAF			
Model name:	CL838			
Serial Model:	N/A			
Standards:	FCC 47 CFR Part 15 Subpart C			
Test method:	ANSI C63.10-2013			
Date of Test				
Date of test: 2022-01-04 ~ 2022-03-29				

Test Engineer	:	Yanice Xie		
		(Yanice Xie)		
Reviewed By:	:	leon chen		
		(Leon Chen)		
Approved By:	:	Tom Xue		

(Tom Xue)

1 General Description

1.1 Description of EUT

	1	
Product name:	armband heart rate monitor	
Model name:	CL838	
Series Model:	N/A	
Model difference:	N/A	
Electrical rating:	Input: DC 4.2V Battery: DC 3.7V 85mAh	
Hardware version:	1.0.7	
Software version: V0.0		
Accessories: Cable: Magnetic USB charging cable(0.75m)		
EUT serial number: MTi211215008-05-S0001		
RF specification:		
Operation frequency:	2457MHz	
Modulation type: GFSK		
Antenna designation: PCB antenna, antenna Gain: -1 dBi		
Max. peak conducted output power:	-0.79 dBm	

1.2 Description of test modes

1.2.1 Test channels

Frequency
2457MHz

Note: The test software has been used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

1.2.2 Description of support units

Support equipment list				
Description	Model	Serial No.	Manufacturer	
/	/	/	/	

1.3 Measurement uncertainty

Parameter	Measurement uncertainty	
AC power line conducted emission (9 kHz~30 MHz)	±2.5 dB	
Occupied Bandwidth	±3 %	
Conducted RF output power	±0.16 dB	

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: www.mtitest.com E-mail: mti@51mti.com

Conducted spurious emissions	±0.21 dB		
Radiated emission (9 kHz ~ 30 MHz)	±4.0 dB		
Radiated emission (30 MHz~1 GHz)	±4.2 dB		
Radiated emission (above 1 GHz)	±4.3 dB		

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	FCC reference	Description of test	Result
1	§ 15.203	Antenna requirement	Pass
2	§ 15.207	AC power line conducted emissions	N/A
3	15.247(a)(2)	6dB occupied bandwidth	Pass
4	15.247(b)(3)	Conducted peak output power	Pass
5	15.247(e)	Power Spectral Density	Pass
6	15.247(d)	Conducted emission at the band edge	Pass
7	15.247(d)	Conducted spurious emissions	Pass
8	/	Duty Cycle	Pass
9	15.247(d)	Radiated spurious emissions	Pass

Note: N/A means not applicable.

3 Test Facilities and Accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone: (86-755)88850135	
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573

4 Equipment List

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
MTi-E002	EMI Test Receiver	R&S	ESCI3	101368	2021/06/02	2022/06/01
MTi-E023	Artificial power network	Schwarzbeck	NSLK8127	NSLK8127# 841	2021/06/02	2022/06/01
MTi-E025	Artificial power network	Schwarzbeck	NSLK8127	8127183	2021/06/02	2022/06/01
MTI-E043	EMI test receiver	R&S	ESCI7	101166	2021/06/02	2022/06/01
MTI-E046	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00044	2021/05/30	2023/05/29
MTI-E044	Broadband antenna	Schwarzbeck	VULB9163	9163-1338	2021/05/30	2023/05/29
MTI-E045	Horn antenna	Schwarzbeck	BBHA9120D	9120D-2278	2021/05/30	2023/05/29
MTI-E047	Pre-amplifier	Hewlett-Packard	8447F	3113A06184	2021/06/02	2022/06/01
MTI-E048	Pre-amplifier	Agilent	8449B	3008A01120	2021/06/02	2022/06/01
MTi-E120	Broadband antenna	Schwarzbeck	VULB9163	9163-1419	2021/05/30	2023/05/29
MTi-E121	Pre-amplifier	Hewlett-Packard	8447D	2944A09365	2021/04/16	2022/04/15
MTi-E123	Pre-amplifier	Agilent	8449B	3008A04723	2021/05/06	2022/05/05
MTi-E135	Horn antenna	Schwarzbeck	BBHA 9170	00987	2021/05/30	2023/05/29
MTi-E136	Pre-amplifier	Space-Dtronics	EWLAN1840G -G45	210405001	2021/06/02	2022/06/01
MTi-E062	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2021/06/23	2022/06/22
MTi-E067	RF Control Unit	Tonscend	JS0806-1	19D8060152	2021/06/02	2022/06/01
MTi-E068	RF Control Unit	Tonscend	JS0806-2	19D8060153	2021/06/02	2022/06/01
MTi-E069	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2021/06/02	2022/06/01
MTI-E010S	EMI Measurement Software	Farad	EZ-EMC Ver. EMEC-3A1	/	/	/
MTI-E014S	RF Test System	Tonscend	TS®JS1120 V2.6.88.0330	/	/	/

5 Test Result

5.1 Antenna requirement

15.203 requirement

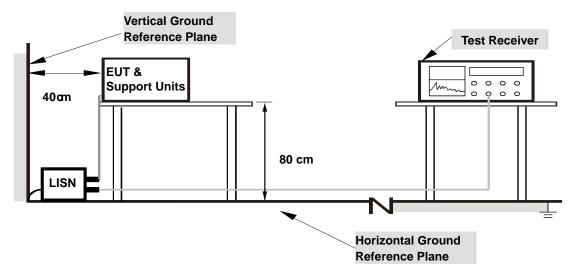
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Description of the antenna of EUT

The antenna of EUT is PCB antenna (Antenna Gain: -1 dBi). which is no consideration of replacement.

5.2 AC power line conducted emissions

5.2.1 Limits


Frequency (MHz)	Detector type / Bandwidth	Limit-Quasi-peak dBµV	Limit-Average dBµV
0.15 -0.5	Average / 9 kHz	66 to 56	56 to 46
0.5 -5		56	46
5 -30		60	50

Note 1: the limit decreases with the logarithm of the frequency in the range of 0.15 MHz to 0.5 MHz.

5.2.2 Test Procedures

- a) The test setup is refer to the standard ANSI C63.10-2013.
- b) The EUT is connected to the main power through a line impedance stabilization network (LISN). All support equipment is powered from additional LISN(s).
- c) Emissions were measured on each current carrying line of the EUT using an EMI test receiver connected to the LISN powering the EUT.
- d) The test receiver scanned from 150 kHz to 30 MHz for emissions in each of the test modes described in Item 1.2.
- e) The test data of the worst-case condition(s) was recorded.

5.2.3 Test setup

For the actual test configuration, please refer to the related item – Photographs of the test setup.

5.2.4 Test Result

Notes:

Note: Not applicate. Because the product does not TX when it is charged, so this item not applicate.

5.3 6dB occupied bandwidth

5.3.1 Limits

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

5.3.2 Test setup

5.3.3 Test procedures

- a) Test method: ANSI C63.10-2013 Section 11.8.2.
- b) The transmitter output of EUT is connected to the spectrum analyzer.
- c) Spectrum analyzer setting: RBW = 100 kHz, VBW = 300 kHz, detector = Peak

5.3.4 Test results

Mode	Mode Frequency (MHz)		Limit (MHz)	
ANT+	2457	0.5011	≥ 0.5	

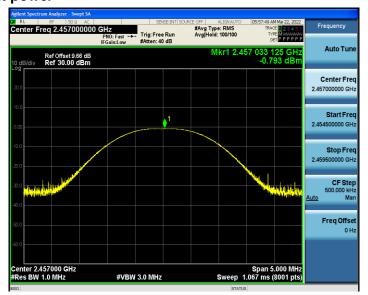
6dB occupied bandwidth

5.4 Conducted peak output power

5.4.1 Limits

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.

5.4.2 Test setup


5.4.3 Test procedure

- a) Test method: ANSI C63.10-2013 Section 11.9.1.1.
- b) The EUT was set to continuously transmitting in the max power during the test.
- c) The transmitter output of EUT is connected to the spectrum analyzer.
- d) Spectrum analyzer setting: RBW ≥ 6dB occupied bandwidth, VBW ≥ 3 x RBW, detector = Peak

5.4.4 Test results

Mode	Frequency (MHz)	Conducted peak output power (dBm)	Limit (dBm)
ANT+	2457	-0.79	≤ 30

Peak conducted output power

5.5 Power spectral density test

5.5.1 Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

5.5.2 Test setup

5.5.3 Test Procedure

- a) Test method: ANSI C63.10-2013 Section 11.10.2.
- b) The EUT was set to continuously transmitting in the max power during the test.
- c) The transmitter output of EUT is connected to the spectrum analyzer.
- d) Spectrum analyzer setting: RBW = 3 kHz, VBW = 10 kHz, detector = Peak

5.5.4 Test Results

Mode	Frequency (MHz)	Power spectral density (dBm/3kHz)	Limit (dBm/3kHz)
ANT+	2457	-11.61	≤ 8

Power spectral density

5.6 Conducted emissions at the band edge

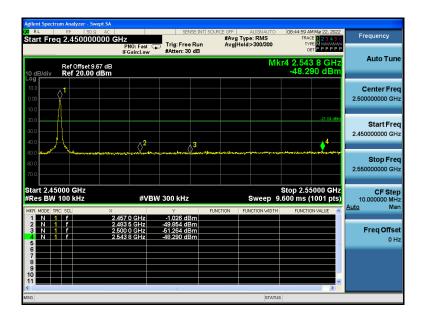
5.6.1 Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

5.6.2 Test setup

5.6.3 Test procedure

- a) Test method: ANSI C63.10-2013 Section 11.13
- b) The EUT was set to continuously transmitting in the max power during the test.
- c) The transmitter output of EUT is connected to the spectrum analyzer.
- d) Spectrum analyzer setting: RBW = 100 kHz, VBW = 300 kHz, Detector = Peak.


5.6.4 Test results

conducted emissions at the band edge

band-edge

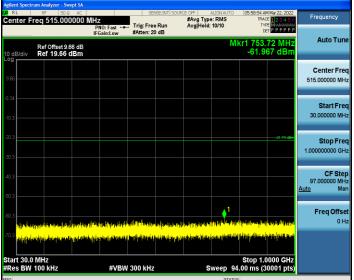
5.7 Conducted spurious emissions

5.7.1 Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

5.7.2 Test setup


5.7.3 Test procedure


- a) Test method: ANSI C63.10-2013 Section 11.11 & 11.12.
- b) The EUT was set to continuously transmitting in the max power during the test.
- c) The transmitter output of EUT is connected to the spectrum analyzer.
- d) Spectrum analyzer setting: RBW = 100 kHz, VBW = 300 kHz, Detector = Peak.

5.7.4 Test results

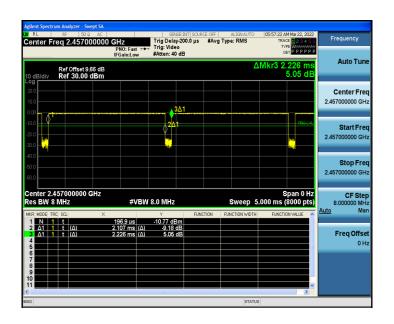
ANT + conducted spurious emissions

5.8 Duty Cycle

5.8.1 Conformance Limit

None, for reporting purposes only.

5.8.2 Test setup


5.8.3 Test procedure

- a) Test method: KDB 558074 Zero-span spectrum analyzer method.
- b) The EUT was set to continuously transmitting in the max power during the test.
- c) The transmitter output of EUT is connected to the spectrum analyzer.
- d) Spectrum analyzer setting: RBW = 100 kHz, VBW = 300 kHz, Detector = Peak.

5.8.4 Test Results

TestMode	TestMode Transmission Duration (ms]		Duty Cycle (%)
ANT+	2.107	2.226	94.65

ANT+

5.9 Radiated spurious emission

5.9.1 Limits

§ 15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

§ 15.209 Radiated emission limits at restricted bands:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Note 1: the tighter limit applies at the band edges.

Note 2: the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector

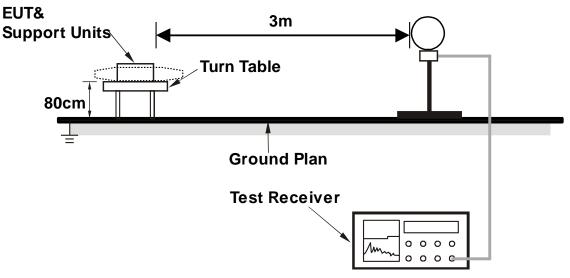
§ 15.35 (b) requirements:

When average radiated emission measurements are specified in this part, including average emission measurements below 1000 MHz, there also is a limit on the peak level of the radio frequency emissions. Unless otherwise specified, e.g., see §§ 15.250, 15.252, 15.253(d), 15.255, 15.256, and 15.509 through 15.519, the limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

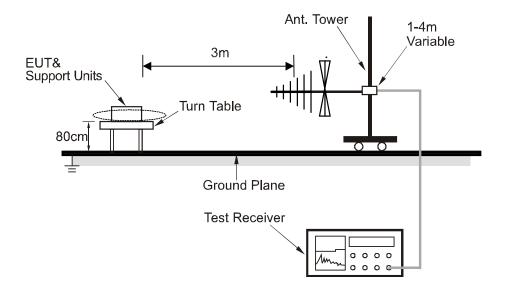
According to ANSI C63.10-2013, the tests shall be performed in the frequency range shown in the following table:

Frequency range of measurements for unlicensed wireless device

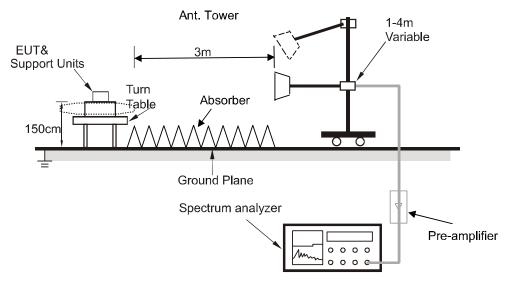
Lowest frequency generated in the device	Upper frequency range of measurement
9 kHz to below 10 GHz	10th harmonic of highest fundamental frequency or to 40 GHz, whichever is lower
At or above 10 GHz to below 30 GHz	5th harmonic of highest fundamental frequency or to 100 GHz, whichever is lower
At or above 30 GHz	5th harmonic of highest fundamental frequency or to 200 GHz, whichever is lower, unless otherwise specified


Frequency range of measurements for unlicensed wireless device with digital device

Highest frequency generated or used in the device or on which the device operates or tunes	Upper frequency range of measurement
Below 1.705 MHz	30 MHz
1.705 MHz to 108 MHz	1000 MHz
108 MHz to 500 MHz	2000 MHz
500 MHz to 1000 MHz	5000 MHz
IANOVA TURKUMA	5th harmonic of the highest frequency or 40 GHz, whichever is lower



5.9.2 Test setup


Below 30MHz:

30MHz~1GHz:

Above 1GHz:

For the actual test configuration, please refer to the related item – Photographs of the test setup.

5.9.3 Test procedure

- a) Test method: ANSI C63.10-2013 Section 6.3, 6.4, 6.5, 6.6, 11.11, 11.12, 11.13.
- b) The EUT is placed on an on-conducting table 0.8 meters above the ground plane for measurement below 1GHz, 1.5 meters above the ground plane for measurement above 1GHz.
- c) Emission blew 18 GHz were measured at a 3 meters test distance, above 18 GHz were measured at 1-meter test distance with the application of a distance correction factor
- d) The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Test instrument setup

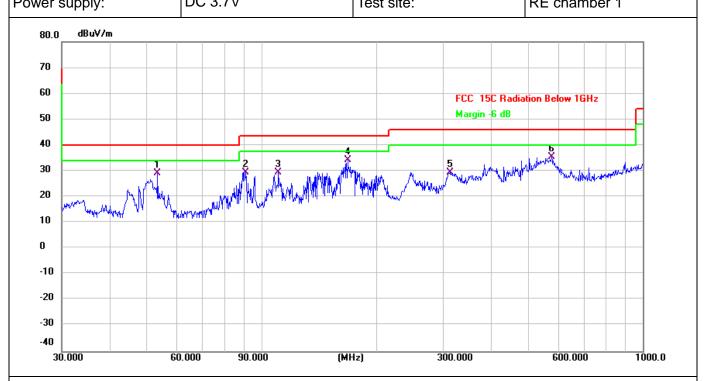
Frequency	Test receiver / Spectrum analyzer setting
9 kHz ~ 150 kHz	Quasi Peak / RBW: 200 Hz
150 kHz ~ 30 MHz	Quasi Peak / RBW: 9 kHz
30 MHz ~ 1 GHz	Quasi Peak / RBW: 120 kHz
Above 1 GHz	Peak / RBW: 1 MHz, VBW: 3MHz, Peak detector AVG / RBW: 1 MHz, VBW: 3MHz, Average detector

5.9.4 Test results

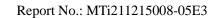
Notes:

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported. There were no emissions found below 30MHz within 20dB of the limit.


Calculation formula:

Measurement ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Correct Factor (dB/m) Over (dB) = Measurement ($dB\mu V/m$) – Limit ($dB\mu V/m$)



Radiated emissions between 30MHz - 1GHz

Test mode:	ANT+ 2457 MHz TX mode	Polarization:	Horizontal
Power supply:	DC 3.7V	Test site:	RF chamber 1

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		53.5052	37.50	-8.30	29.20	40.00	-10.80	QP
2		91.1744	38.20	-8.86	29.34	43.50	-14.16	QP
3		110.9569	38.45	-8.90	29.55	43.50	-13.95	QP
4	* *	168.4137	43.84	-9.64	34.20	43.50	-9.30	QP
5	3	312.1792	34.58	-5.22	29.36	46.00	-16.64	QP
6	1	576.6443	35.78	-0.24	35.54	46.00	-10.46	QP

Radiated emissions between 30MHz - 1GHz

Vertical	Polarization	est mode: ANT+ 2457 MHz TX mode									
RE chamber 1	Test site: RE chamber 1		Test site: RE chamber 1		Test site: RE chamber		7V	DC 3.		upply:	ower s
						dBuV/m	80.0				
							70				
FCC 15C Radiation Below 1GHz							60				
Margin -6 dB							50				
<u> </u>		_ 5			2		40				
Market Branch and Comment of the Com		3 4 3			Å.	<u>.</u>	30				
propholistic market and the state of the sta	They be a first they have a like because I	CALLAND AND AND AND AND AND AND AND AND AND	halle had	x λ $L_{1}N$		ATTLA ATTLA ATTA	20				
		K.	1.1/W	A KIM	<u>'</u> "Y		10				
							0				
							-10				
							-20				
							-30				
300.000 600.000 1000.0							-40				
300.000 600.000	lz))) (MH	90.00	000	60	.000	l l				

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		31.7312	37.98	-8.63	29.35	40.00	-10.65	QP
2	*	51.1208	41.25	-7.85	33.40	40.00	-6.60	QP
3		116.5400	40.66	-9.72	30.94	43.50	-12.56	QP
4		147.4036	41.20	-10.50	30.70	43.50	-12.80	QP
5		167.8241	42.17	-9.66	32.51	43.50	-10.99	QP
6		350.4766	36.83	-4.67	32.16	46.00	-13.84	QP

Radiated emissions 1 GHz ~ 25 GHz

Frequency	Reading Level	Correct Factor	Measurement	Limits	Over	Detector	Polarization				
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Peak/AVG	H/V				
ANT + 2457 MHz TX mode											
4914	48.51	1.52	50.03	74.00	-23.97	Peak	V				
4914	42.10	1.52	43.62	54.00	-10.38	AVG	V				
7371	38.64	5.46	44.10	74.00	-29.90	Peak	V				
7371	29.46	5.46	34.92	54.00	-19.08	AVG	V				
9828	40.71	6.33	47.04	74.00	-26.96	Peak	V				
9828	30.62	6.33	36.95	54.00	-17.05	AVG	V				
4914	45.83	1.52	47.35	74.00	-26.65	Peak	Н				
4914	41.75	1.52	43.27	54.00	-10.73	AVG	Н				
7371	38.16	5.46	43.62	74.00	-30.38	Peak	Н				
7371	28.60	5.46	34.06	54.00	-19.94	AVG	Н				
9828	40.21	6.33	46.54	74.00	-27.46	Peak	Н				
9828	30.47	6.33	36.80	54.00	-17.20	AVG	Н				

Radiated emissions at band edge

	Dandina	0	1		1	T	
Frequency	Reading Level	Correct Factor	Measurement	Limits	Over	Detector	Polarization
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	$(dB\mu V/m)$	(dB)	Peak/AVG	H/V
			ANT+ Low	band-edge			
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Peak/AVG	H/V
2310	45.57	-6.60	38.97	74	35.03	Peak	V
2310	35.37	-6.60	28.77	54	-25.23	AVG	V
2390	45.18	-6.23	38.95	74	-35.05	Peak	V
2390	34.01	-6.26	27.78	54	-26.22	AVG	V
2310	47.32	-6.60	40.72	74	-33.28	Peak	Н
2310	37.04	-6.60	30.44	54	-23.56	AVG	Н
2390	47.51	-6.23	41.28	74	-32.72	Peak	Н
2390	37.65	-6.26	31.42	54	-22.58	AVG	Н
			ANT+ High	band-edge			
2483.5	46.58	-5.79	40.79	74	-33.21	Peak	V
2483.5	36.16	-5.79	30.37	54	-23.63	AVG	V
2500	47.74	-5.72	42.02	74	-31.98	Peak	V
2500	38.30	-5.72	32.58	54	-21.42	AVG	V
2483.5	50.02	-5.79	44.23	74	-29.77	Peak	Н
2483.5	37.32	-5.79	31.53	54	-22.47	AVG	Н
2500	48.72	-5.72	43.00	74	-31.00	Peak	Н
2500	38.71	-5.72	32.99	54	-21.01	AVG	Н

Photographs of the Test Setup

See the appendix – Test Setup Photos.

Photographs of the EUT

See the appendix - EUT Photos.

----End of Report----