SAR evaluation

MPE Calculation Method

 $E (V/m) = (30*P*G)^{0.5}/d$

Power Density: Pd $(W/m2) = E^2/377$

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

 $Pd = (30*P*G) / (377*d^2)$

From the peak EUT RF output power, the minimum mobile separation distance, $d\!=\!0.2m,\;\text{as well}$

as the gain of the used antenna, the RF power density can be obtained.

Calculated Result and Limit (WORSE CASE IS AS BELOW)

EIRP	Power Density	Limit of Power	Test
	(S)(mW/cm2)	Density (S)	Result
		(mW/cm2)	
$\{ [10^{(104.77/20)}/10^6 \text{ x3}]^2/30 \}$	9/4X3.14X400 =	1	Compiles
x1000 mW = 9 mW	0.0018		