

TEST REPORT

KOSTEC Co., Ltd.

28(175-20, Annyeong-dong) 406-gil sejaro,
Hwaseong-si, Gyeonggi-do, Korea
Tel:031-222-4251, Fax:031-222-4252

Report No.: KST-FCR-190009(1)

KOSTEC Co., Ltd.
<http://www.kostec.org>

1. Applicant

- Name : Geoplan Co., Ltd.
- Address : #501, Anyang Finance Center, Simin-daero 260 Dongan-gu, Anyang-si, Gyeonggi-do, 14067, Korea

2. Test Item

- Product Name: RTLS AP
- Model Name: GEO-DA300
- Brand: None
- FCC ID: 2ASPN-GEO-DA300

3. Manufacturer

- Name : Geoplan Co., Ltd.
- Address : #501, Anyang Finance Center, Simin-daero 260 Dongan-gu, Anyang-si, Gyeonggi-do, 14067, Korea

4. Date of Test : 2019. 04. 19. ~ 2019. 04. 23.,
2019. 05. 02

5. Test Method Used : FCC CFR 47, Part 15. Subpart F-15.517
ANSI C 63.10-2013

6. Test Result : Compliance

7. Note: None

Supplementary Information

The device bearing the brand name and FCC ID specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with measurement procedures specified in ANSI C 63.10-2013.

We attest to the accuracy of data and all measurements reported herein were performed by KOSTEC Co., Ltd. and were made under Chief Engineer's supervision. We assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.
This test report is not related to KOLAS accreditation.

Affirmation	Tested by Name : Choo, Kwang-Yeol (Signature)	Technical Manager Name : Park, Gyeong-Hyeon (Signature)
-------------	---	---

2019. 05. 03.

KOSTEC Co., Ltd.

Table of Contents

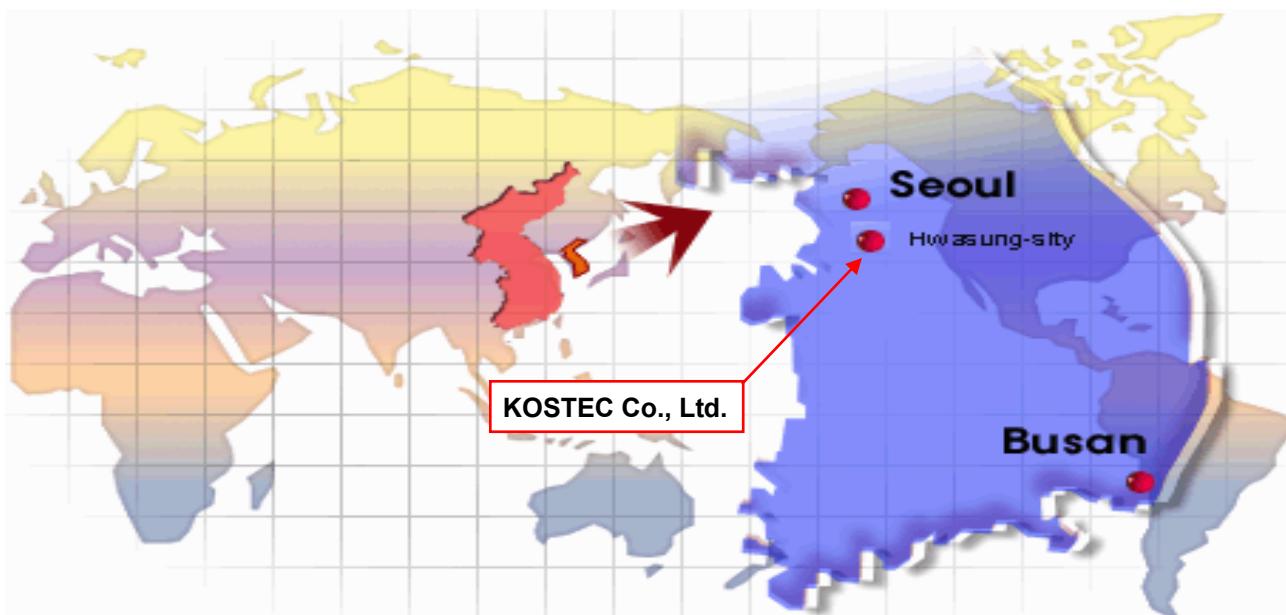
1. GENERAL INFORMATION	3
1.1 Test Facility	3
1.2 Location	3
1.3 Revision History of test report	4
2. EQUIPMENT DESCRIPTION	5
3. SYSTEM CONFIGURATION FOR TEST	6
3.1 Characteristics of equipment	6
3.2 Used peripherals list	6
3.3 Product Modification	6
3.4 Operating Mode	6
3.5 Test Setup of EUT	6
3.6 Parameters of Test Software Setting	7
3.7 Used Test Equipment List	8
4. SUMMARY TEST RESULTS	10
5. MEASUREMENT RESULTS	11
5.1 Transmission time	11
5.2 UWB Bandwidth Measurement	13
5.3 Spurious RF Radiated emissions	15
5.4 Radiated Emissions in GPS Bands Measurement	23
5.5 Peak Emissions within a 50 MHz Bandwidth Measurement	26
5.6 Antenna requirement	28
5.7 AC Power Conducted emissions	29

1. GENERAL INFORMATION

1.1 Test Facility

Test laboratory and address

KOSTEC Co., Ltd.


128(175-20, Annyeong-dong)406-gil sejaro, Hwaseong-si Gyeonggi-do, Korea

Registration information

KOLAS No. : 232

FCC/IC Designation No. : KR0041

1.2 Location

1.3 Revision History of test report

Rev.	Revisions	Effect page	Reviewed	Date
-	Initial issue	All	Gyeong Hyeon, Park	2019. 04. 25.
1	Added radiated test for simultaneous emissions	19, 22	Gyeong Hyeon, Park	2019. 05. 03.

2. EQUIPMENT DESCRIPTION

The product specification described herein was declared by manufacturer. And refer to user's manual for the details.

Equipment Name	RTLS AP
Model No	GEO-DA300
Usage	RTLS AP
Use Environment	Indoor use only
Serial Number	Proto type
Modulation type	BPSK/BPM
Emission Type	IEEE 802.15.4-2011 UWB
Maximum Output Power	73.87 dB μ V/m
Operated Frequency	6 489.6 MHz
Channel Number	1
Operation temperature	-10 °C ~ 55 °C
Power Source	DC 12 V(Adapter), DC 48 V(PoE)
Antenna Description	Internal Chip antenna, max gain : 3.5 dBi
Remark	<ol style="list-style-type: none"> 1. The device was operating at its maximum output power for all measurements. 2. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case (Y) is shown in the report. 3. The above DUT's information was declared by manufacturer. Please refer to the specifications or user manual for more detailed description. 4. After having scan all input voltage mode, found the input voltage mode(PoE) which it was worst case, so only the worst case's on the test report.
FCC ID	2ASPN-GEO-DA300

3. SYSTEM CONFIGURATION FOR TEST

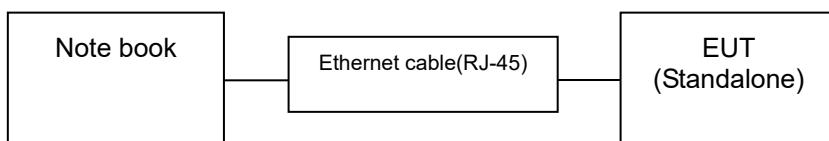
3.1 Characteristics of equipment

RTLS AP

3.2 Used peripherals list

Description	Model No.	Serial No.	Manufacture	Remark
Notebook	NT300E4S	0T4391JJ800909K	Samsung Electronics	-
Adapter	PA-1400-96	CN60BA4400313AD2 VHJFP086	LITE-ON TECHNOLOGY CHANGZHOU CO.,LTD	For notebook
PoE Switch Hub	PoE-504ST	WR141200516	WooriTech	-
Light	S50L-DC12V-G	None	Q-Light	-
Switch	None	None	None	-
Barcode Scanner	GD4500	Z18P02466	None	-
Adapter	PSC15R-050	None	Phihong(Dongguan) Electronics Co., Ltd.	For barcode scanner
RTLS Smart Tag	None	None	Geoplan Co., Ltd.	-

3.3 Product Modification

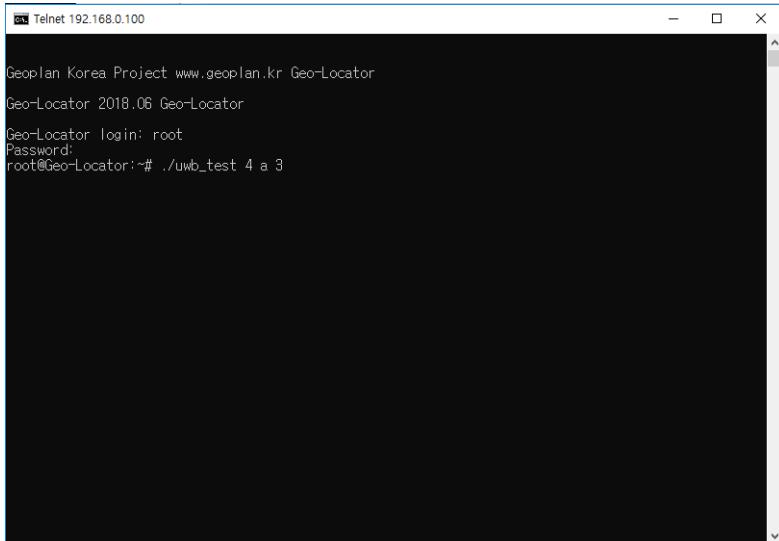

N/A

3.4 Operating Mode

The EUT was used for making continuous transmitting and receiving mode during the test.

3.5 Test Setup of EUT

The measurements were taken in continuous transmit mode using the test mode which controlled by Telnet command. The test command and the test Jig and cables were provided by the applicant.


3.6 Parameters of Test Software Setting

During testing, Channel & Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

TX Power setting value during test

Band	TX Power setting value (Telnet command)
6 489.6 MHz	./uwb_test 4 6 9

Test Program : Telnet


```
Geoplan Korea Project www.geoplan.kr Geo-Locator
Geo-Locator 2018.06 Geo-Locator
Geo-Locator login: root
Password:
root@Geo-Locator:~# ./uwb_test 4 a 3
```

3.7 Used Test Equipment List

No.	Instrument	Model	S/N	Manufacturer	Next Cal Date	Cal interval	used
1	T & H Chamber	PL-3J	15003623	ESPEC	2019.11.12	1 year	<input type="checkbox"/>
2	T & H Chamber	SH-662	93000067	ESPEC CORP	2019.09.28	1 year	<input type="checkbox"/>
3	Spectrum Analyzer	8563EC	3046A00527	Agilent Technology	2020.01.25	1 year	<input type="checkbox"/>
4	Signal Analyzer	FSV13	101247	Rohde & Schwarz	2020.01.24	1 year	<input type="checkbox"/>
5	Spectrum Analyzer	FSV30	20-353063	Rohde& Schwarz	2020.01.25	1 year	<input type="checkbox"/>
6	Signal Analyzer	N9010A	MY56070441	Agilent Technologies	2019.05.25	1 year	<input checked="" type="checkbox"/>
7	EMI Test Receiver	ESCI7	100823	Rohde& Schwarz	2020.01.22	1 year	<input checked="" type="checkbox"/>
8	EMI Test Receiver	ESI	837514/004	Rohde& Schwarz	2019.09.03	1 year	<input type="checkbox"/>
9	Vector Signal Analyzer	89441A	3416A02620	Agilent Technology	2020.01.25	1 year	<input type="checkbox"/>
10	Network Analyzer	8753ES	US39172348	AGILENT	2019.09.03	1 year	<input type="checkbox"/>
11	EPM Series Power meter	E4418B	GB39512547	Agilent Technology	2020.01.23	1 year	<input type="checkbox"/>
12	RF Power Sensor	E9300A	MY41496631	Agilent Technology	2020.01.23	1 year	<input type="checkbox"/>
13	Microwave Frequency Counter	5352B	2908A00480	Agilent Technology	2020.01.24	1 year	<input type="checkbox"/>
14	Audio Analyzer	8903B	3514A16919	Agilent Technology	2020.01.23	1 year	<input type="checkbox"/>
15	Audio Telephone Analyzer	DD-5601CID	520010281	CREDIX	2020.01.23	1 year	<input type="checkbox"/>
16	Modulation Analyzer	8901A	3041A0576	H.P	2020.01.24	1 year	<input type="checkbox"/>
17	Digital storage Oscilloscope	TDS3052	B015962	Tektronix	2019.09.04	1 year	<input type="checkbox"/>
18	ESG-D Series Signal Generator	E4436B	US39260458	Agilent Technology	2020.01.25	1 year	<input type="checkbox"/>
19	Vector Signal Generator	SMBV100A	257557	Rohde & Schwarz	2020.01.25	1 year	<input type="checkbox"/>
20	GNSS Signal Generator	TC-2800A	2800A000494	TESCOM CO., LTD.	2020.01.24	1 year	<input type="checkbox"/>
21	Signal Generator	SMB100A	179628	Rohde & Schwarz	2019.05.09	1 year	<input checked="" type="checkbox"/>
22	SLIDAC	None	0207-4	Myoung sung Ele.	2020.01.23	1 year	<input type="checkbox"/>
23	DC Power supply	DRP-5030	9028029	Digital Electronic Co.,Ltd	2020.01.23	1 year	<input type="checkbox"/>
24	DC Power supply	E3610A	KR24104505	Agilent Technology	2020.01.23	1 year	<input type="checkbox"/>
25	DC Power supply	UP-3005T	68	Unicon Co.,Ltd	2020.01.23	1 year	<input type="checkbox"/>
26	DC Power Supply	SM 3400-D	114701000117	DELTA ELEKTRONIKA	2020.01.22	1 year	<input type="checkbox"/>
27	DC Power supply	6632B	MY43004005	Agilent Technology	2020.01.23	1 year	<input type="checkbox"/>
28	DC Power Supply	6632B	MY43004137	Agilent Technology	2020.01.23	1 year	<input type="checkbox"/>
29	Termination	1433-3	LM718	WEINSCHEL	2019.07.09	1 year	<input type="checkbox"/>
30	Termination	1432-3	QR946	AEROFLEX/WEINSCHEL	2019.07.09	1 year	<input type="checkbox"/>
31	Attenuator	24-30-34	BX5630	Aeroflex / Weinschel	2019.12.19	1 year	<input type="checkbox"/>
32	Attenuator	8498A	3318A09485	HP	2020.01.24	1 year	<input type="checkbox"/>
33	Step Attenuator	8494B	3308A32809	HP	2020.01.24	1 year	<input type="checkbox"/>
34	RF Step Attenuator	RSP	100091	Rohde & Schwarz	2020.01.24	1 year	<input type="checkbox"/>
35	Attenuator	18B50W-20F	64671	INMET	2020.01.24	1 year	<input type="checkbox"/>
36	Attenuator	10 dB	1	Rohde & Schwarz	2019.05.04	1 year	<input type="checkbox"/>
37	Attenuator	10 dB	2	Rohde & Schwarz	2019.05.04	1 year	<input type="checkbox"/>
38	Attenuator	10 dB	3	Rohde & Schwarz	2019.05.04	1 year	<input type="checkbox"/>
39	Attenuator	10 dB	4	Rohde & Schwarz	2019.05.04	1 year	<input type="checkbox"/>
40	Attenuator	54A-10	74564	WEINSCHEL	2019.09.04	1 year	<input checked="" type="checkbox"/>
41	Attenuator	56-10	66920	WEINSCHEL	2019.05.09	1 year	<input type="checkbox"/>
42	Attenuator	48-20-11	BV2658	Aeroflex/Weinschel	2019.08.06	1 year	<input type="checkbox"/>
43	Attenuator	48-30-33-LIM	BL5350	Weinschel Corp.	2019.07.09	1 year	<input type="checkbox"/>
44	Power divider	11636B	51212	HP	2020.01.28	1 year	<input type="checkbox"/>
45	3Way Power divider	KPDSU3W	00070365	KMW	2019.09.03	1 year	<input type="checkbox"/>
46	4Way Power divider	70052651	173834	KRYTAR	2020.01.28	1 year	<input type="checkbox"/>
47	3Way Power divider	1580	SQ361	WEINSCHEL	2019.05.09	1 year	<input type="checkbox"/>
48	OSP	OSP120	101577	Rohde & Schwarz	2019.05.04	1 year	<input type="checkbox"/>
49	White noise audio filter	ST31EQ	101902	SoundTech	2019.09.04	1 year	<input type="checkbox"/>

No.	Instrument	Model	S/N	Manufacturer	Next Cal Date	Cal interval	used
50	Dual directional coupler	778D	17693	HEWLETT PACKARD	2020.01.24	1 year	<input type="checkbox"/>
51	Dual directional coupler	772D	2839A00924	HEWLETT PACKARD	2020.01.24	1 year	<input type="checkbox"/>
52	Band rejection filter	3TNF-0006	26	DOVER Tech	2020.01.24	1 year	<input type="checkbox"/>
53	Band rejection filter	3TNF-0007	311	DOVER Tech	2020.01.24	1 year	<input type="checkbox"/>
54	Band rejection filter	WTR-BRF2442-84NN	09020001	WAVE TECH Co.,LTD	2020.01.24	1 year	<input type="checkbox"/>
55	Band rejection filter	WRCJV12-5695-5725-5825-5855-50SS	1	Wainwright Instruments GmbH	2019.05.04	1 year	<input type="checkbox"/>
56	Band rejection filter	WRCJV12-5120-5150-5350-5380-40SS	4	Wainwright Instruments GmbH	2019.05.04	1 year	<input type="checkbox"/>
57	Band rejection filter	WRCGV10-2360-2400-2500-2540-50SS	2	Wainwright Instruments GmbH	2019.05.04	1 year	<input type="checkbox"/>
58	Band rejection filter	CTF-155M-S1	001	RF One Electronics	2019.09.06	1 year	<input type="checkbox"/>
59	Band rejection filter	CTF-435M-S1	001	RF One Electronics	2019.09.06	1 year	<input type="checkbox"/>
60	Highpass Filter	WHJS1100-10EF	1	WAINWRIGHT	2020.01.24	1 year	<input type="checkbox"/>
61	Highpass Filter	WHJS3000-10EF	1	WAINWRIGHT	2020.01.24	1 year	<input type="checkbox"/>
62	Highpass Filter	WHNX6-5530-7000-26500-40CC	2	Wainwright Instruments GmbH	2019.05.09	1 year	<input type="checkbox"/>
63	Highpass Filter	WHNX6-2370-3000-26500-40CC	4	Wainwright Instruments GmbH	2019.05.09	1 year	<input type="checkbox"/>
64	WideBand Radio Communication Tester	CMW500	102276	Rohde & Schwarz	2020.01.24	1 year	<input type="checkbox"/>
65	Bluetooth Tester	TC-3000B	3000B6A0166	TESCOM CO., LTD.	2020.01.24	1 year	<input type="checkbox"/>
66	Loop Antenna	6502	9203-0493	EMCO	2019.05.29	2 year	<input checked="" type="checkbox"/>
67	BiconiLog Antenna	3142B	1745	EMCO	2020.05.10	2 year	<input checked="" type="checkbox"/>
68	Biconical Antenna	VUBA9117	9117-342	Schwarz beck	2020.03.12	2 year	<input type="checkbox"/>
69	Trilog-Broadband Antenna	VULB 9168	9168-606	SCHWARZBECK	2020.09.14	2 year	<input checked="" type="checkbox"/>
70	Horn Antenna	3115	2996	EMCO	2020.02.14	2 year	<input checked="" type="checkbox"/>
71	Horn Antenna	3115	9605-4834	EMCO	2020.03.12	2 year	<input type="checkbox"/>
72	Horn Antenna	BBHA9170	743	SCHWARZBECK	2021.01.22	2 year	<input checked="" type="checkbox"/>
73	PREAMPLIFIER(3)	8449B	3008A00149	Agilent	2019.09.05	1 year	<input type="checkbox"/>
74	AMPLIFIER(10)	TK-PA6S	120009	TESTEK	2020.01.22	1 year	<input checked="" type="checkbox"/>
75	AMPLIFIER	TK-PA18	150003	TESTEK	2020.01.24	1 year	<input checked="" type="checkbox"/>
76	AMPLIFIER	TK-PA1840H	160010-L	TESTEK	2020.01.22	1 year	<input checked="" type="checkbox"/>
77	AMPLIFIER	8447D	2944A07881	H.P	2020.01.24	1 year	<input type="checkbox"/>

4. SUMMARY TEST RESULTS

Description of Test	FCC Rule	Reference Clause	Used	Test Result
Transmission time	§ 15.517(a)(5)	Clause 5.1	<input checked="" type="checkbox"/>	Compliance
UWB Bandwidth	§ 15.517(b)	Clause 5.2	<input checked="" type="checkbox"/>	Compliance
Radiated Emissions	§ 15.517(c)/15.209	Clause 5.3	<input checked="" type="checkbox"/>	Compliance
Radiated Emissions in GPS Bands	§ 15.517(d)	Clause 5.4	<input checked="" type="checkbox"/>	Compliance
Peak Emissions within a 50MHz Bandwidth	§ 15.517(e)/15.521(g)	Clause 5.5	<input checked="" type="checkbox"/>	Compliance
Antenna Requirement	§ 15.203	Clause 5.6	<input checked="" type="checkbox"/>	Compliance
AC Power Conducted emissions	§ 15.207	Clause 5.7	<input checked="" type="checkbox"/>	Compliance
Compliance: The EUT complies with the essential requirements in the standard.				
Not Compliance : The EUT does not comply with the essential requirements in the standard.				
N/A : The test was not applicable in the standard.				

Procedure Reference

FCC CFR 47, Part 15. Subpart F-15.517

ANSI C 63.10-2013

5. MEASUREMENT RESULTS

5.1 Transmission time

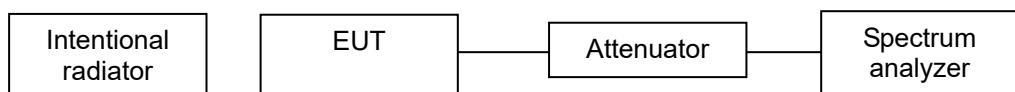
5.1.1 Standard Applicable [FCC §15.517(a)(5)]

A communications system shall transmit only when the intentional radiator is sending information to an associated receiver.

5.1.2 Test Environment conditions

- Ambient temperature : (21 ~ 22) °C • Relative Humidity : (49 ~ 51) % R.H.

5.1.3 Measurement Procedure

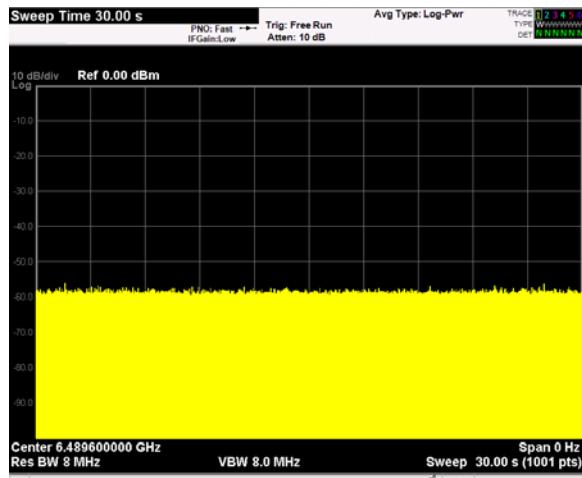

For test purpose the UWB port of the EUT is connected with the spectrum analyzer through a RF cable. The intentional radiator is located close by EUT. In this measurement intentional radiator is RTLS Smart Tag.

The measurement is made in time domain by the central frequency of the channel. Measurement duration 30 s. RBW = 50 MHz.

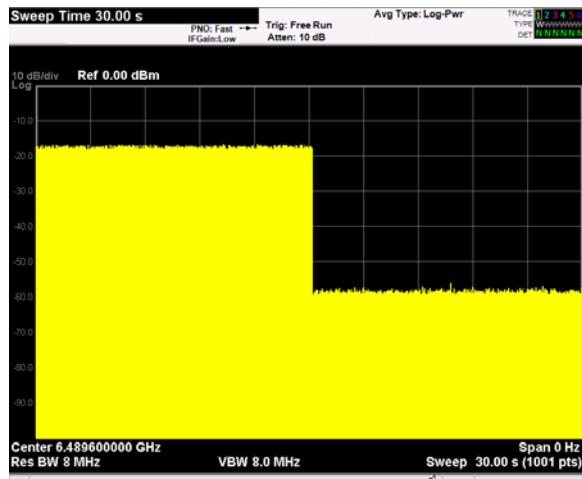
The first measurement is made without turning on intentional radiator. It will be checked, that the EUT doesn't transmit.

Shortly before the second measurement an intentional radiator is switched on. Then the measurement is started by the spectrum analyzer. It is checked, whether the EUT transmits, when the intentional radiator is switched on. After 15 s the intentional radiator is switched off. And it will be checked, whether the EUT continues to transmit and if so then how long.

5.1.4 Test setup



5.1.5 Measurement Result


The EUT stops to transmit immediately after the intentional radiator is switched off.

5.1.6 Test Plot

Intentional radiator is switched off

Intentional radiator is switched on and after 15 s is switched off

5.2 UWB Bandwidth Measurement

5.2.1 Standard Applicable [FCC §15.517(b)]

The UWB bandwidth of a UWB system operating under the provisions of this section must be contained between 3100 MHz and 10,600 MHz.

5.2.2 Test Environment conditions

- Ambient temperature : (21 ~ 22) °C
- Relative Humidity : (49 ~ 51) % R.H.

5.2.3 Measurement Procedure

The frequency at which the maximum power level is measured with the peak detector is designated f_M (RBW=1 MHz, VBW= 3 MHz, peak detection, maxhold). The outermost 1 MHz segments above and below f_M , where the peak power falls by 10 dB relative to the level at f_M , are designated as f_H and f_L . The UWB transmission, and the -10 dB bandwidth ($B - 10$), is defined as $(f_H - f_L)$. -10 dB bandwidth should be ≥ 500 MHz and must be contained between 3100 MHz and 10,600 MHz.

5.2.4 Measurement Result

The frequency at which the maximum power f_M [MHz]	Power of the frequency f_M [dBuV]	f_L [MHz]	f_H [MHz]	-10 dB bandwidth [MHz]
6 488	79.36	6 226	6 778	552

• Operation mode: PoE 48 vdc(Worst case)

5.2.6 Test Plot

UWB Bandwidth

5.3 Spurious RF Radiated emissions

5.3.1 Standard Applicable [FCC §15.517(c)/15.209]

The radiated emissions at or below 960 MHz from a device operating under the provisions of this section shall not exceed the emission levels in § 15.209.

§15.209 limits for radiated emissions measurements (distance at 3 m)

Frequency Band [MHz]	DISTANCE [Meters]	Limit [μ V/m]	Limit [dB μ V/m]
0.009 ~ 0.490	300	2400/F(kHz)	67.6-20log(F)
0.490 ~ 1.705	30	24000/F(kHz)	87.6-20log(F)
1.705 ~ 30.0	30	30	29.54
30 - 88	3	100 **	40.00
88 - 216	3	150 **	43.52
216 - 960	3	200 **	46.02
Above 960	3	500	54.00

** fundamental emissions from intentional radiators operation under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz, or 470-806 MHz. However, operation within these Frequency bands is permitted under other sections of this Part Section 15.231 and 15.241

The radiated emissions above 960 MHz from a device operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of 1 MHz:

§15.517(c)

Frequency Band [MHz]	EIRP[dBm]	E-Field[dBuV/m] at 3 m	E-Field[dBuV/m] at 1 m
960-1 610	-75.3	19.9	29.5
1 610-1 990	-53.3	41.9	51.5
1 990-3 100	-51.3	43.9	53.5
3 100-10 600	-41.3	53.9	63.5
Above 10 600	-51.3	43.9	53.5

Note 1: This may be converted to a peak field strength level at 3 meters using $E(\text{dBuV/m}) = P(\text{dBm EIRP}) + 95.2$

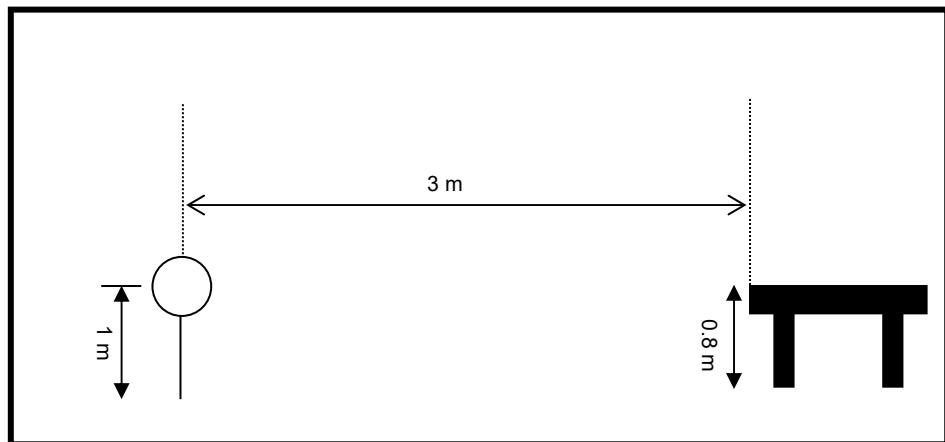
Note 2: Above 960 MHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade from 3m to 1m. Distance extrapolation factor = $20 \log(\text{specific distance [3m] / test distance [1m]})$ (dB); Limit line = specific limits (dBuV) + distance extrapolation factor [9.54 dB]

From 47 CFR Section 15.517(c): Emissions from digital circuitry used to enable the operation of the UWB transmitter shall comply with the limits in Section 15.209 of this chapter, rather than the limits specified in this subpart, provided it can be clearly demonstrated that those emissions from the UWB device are due solely to emissions from digital circuitry contained within the transmitter and that the emissions are not intended to be radiated from the transmitter's antenna. Emissions from associated digital devices, as defined in Section 15.3(k) of this chapter, e.g., emissions from digital circuitry used to control additional functions or capabilities other than the UWB transmission, are subject to the limits contained in Subpart B of Part 15 of this chapter.

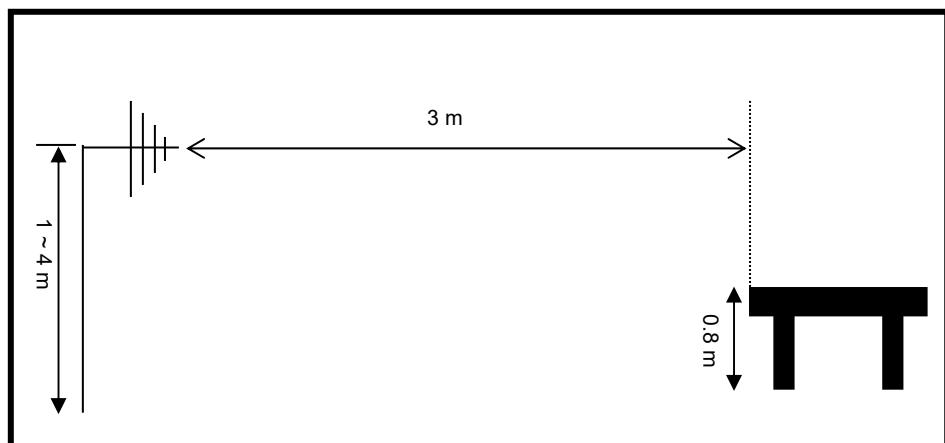
5.3.2 Test Environment conditions

- Ambient temperature : (21 ~ 22) °C • Relative Humidity : (49 ~ 51) % R.H.

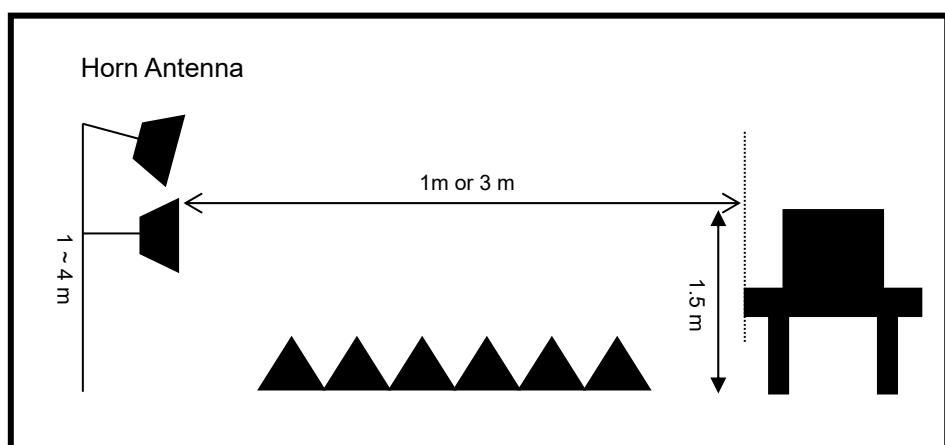
5.3.3 Measurement Procedure


1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable for measured the frequency range below 960 MHz and antenna tower was placed below 1 meters far away from the turntable for measured the frequency range above 960 MHz.
2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
5. The measurements made over the frequency range from 9 kHz to 960 MHz were maximized using an EMI receiver with peak detector capabilities. Measurements of the radiated field from 9 kHz to 960 MHz were made with the measurement antenna located a distance of 3 meters from the EUT. If the emissions level of the EUT in peak mode was 3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
6. Measurements above 960 MHz were maximized using a spectrum analyzer with RMS detector capabilities. A spectrum analyzer was used for the final measurements utilizing an RMS detector at the frequencies with the largest amplitudes. The prescribed RBW of 1 MHz and VBW of 3 MHz, and a1 msec averaging time were used for these measurements. Measurements of the radiated field at frequencies above 960 MHz were made with the measurement antenna located a distance of below 1 meter from the EUT.
7. The spectrum between 9 kHz and 960 MHz contained no intentional radiation and lies below the limits. The spectrum from 960MHz to 18GHz contained intentional UWB signals between 3100 MHz and 10600 MHz and lie below the limits. No other emissions above 10600 MHz were detected. The maximum frequency tested was 40 GHz.
8. Per 47 CFR, Part 15, Subpart F, §15.521(c) (§15.209) all digital emissions from the transmitter not intended to be radiated from the antenna port meet the 15.209 subpart C limits.
9. Additional measurements in the 960 MHz to 40 GHz range were performed to determine the nature of all unintentional emissions in this span. Conducted antenna port measurement and terminated antenna port measurement were done in the 960 MHz to 8 GHz range show that all noise peaks have the same frequency and polarization and are determined to be emission from the digital circuit and are not radiated from the antenna.

5.3.4 Measurement Uncertainty


Radiated Emission measurement: Below 1 GHz: 3.56 dB (CL: Approx 95 %, k=2)
Above 1 GHz: 3.60 dB (CL: Approx 95 %, k=2)

5.3.5 Test Configuration


Radiated emission setup, below 30 MHz

Radiated emission setup, below 1 000 MHz

Radiated emission setup, above 1 GHz

5.3.6 Measurement Result

Above 1 GHz

Measurement distance: 1m

Freq. (MHz)	Reading (dB μ V/m)	Detector Mode	Antenna			CL (dB)	AMP (dB)	Meas Result (dB μ V/m)	Limit (dB μ V/m)	Mgn. (dB)	Result
			Height (m)	Pol. (H/V)	Fctr. (dB/m)						
1 200.08	48.47	Average	1.5	H	24.40	0.69	-45.72	27.84	29.5	1.66	Compliance
1 920.08	46.44	Average	1.5	H	27.10	0.88	-45.80	28.62	51.5	22.88	Compliance
2 131.00	43.95	Average	1.5	H	27.79	0.94	-45.80	26.88	53.5	26.62	Compliance
3 370.00	49.10	Average	1.5	H	30.92	1.19	-45.37	35.84	63.5	27.66	Compliance
12 072.60	39.08	Average	1.5	H	39.62	3.58	-44.59	37.69	53.5	15.81	Compliance
1 200.08	47.56	Average	1.5	V	24.40	0.69	-45.72	26.93	29.5	2.57	Compliance
1 920.08	47.11	Average	1.5	V	27.10	0.88	-45.80	29.29	51.5	22.21	Compliance
2 242.00	44.63	Average	1.5	V	28.03	0.96	-45.79	27.83	53.5	25.67	Compliance
4 247.50	50.90	Average	1.5	V	32.50	1.35	-45.06	39.70	63.5	23.8	Compliance
12 072.60	39.18	Average	1.5	V	39.62	3.58	-44.59	37.79	53.5	15.71	Compliance

※Note

- Limit: 54 dB μ V/m(Average), 74 dB μ V/m(Peak), Attenuated more than 20 dB below the permissible value.
- It is not recorded on the report that the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to measured.
- The transmitter radiated spectrum was investigated from 9 kHz to 40 GHz.
- Operation mode: PoE 48 vdc(Worst case)

Below 1 GHz

Measurement distance: 3m

Freq. (MHz)	Reading (dB μ V/m)	Table (Deg)	Antenna			CL (dB)	AMP (dB)	Meas Result (dB μ V/m)	Limit (dB μ V/m)	Mgn (dB)	Result
			Height (m)	Pol. (H/V)	Fctr. (dB/m)						
49.86	69.88	160	1.5	H	8.74	0.82	-42.43	37.02	40.00	2.98	Compliance
50.43	69.83	160	1.0	V	8.64	0.82	-42.44	36.86	40.00	3.14	Compliance
55.34	70.30	160	1.5	V	7.95	0.87	-42.40	36.72	40.00	3.28	Compliance
87.38	70.62	180	1.5	V	7.29	1.19	-42.22	36.88	40.00	3.12	Compliance
155.64	72.16	180	1.0	H	9.18	1.62	-41.72	41.24	43.52	2.28	Compliance
250.82	68.28	160	1.0	H	12.90	2.12	-41.39	41.92	46.02	4.10	Compliance
350.48	65.95	160	1.0	H	15.71	2.63	-41.09	43.21	46.02	2.81	Compliance
358.24	61.26	160	1.5	V	15.90	2.67	-41.06	38.77	46.02	7.25	Compliance

Freq.(MHz) : Measurement frequency, Reading(dB μ V/m) : Indicated value for test receiver, Table (Deg) : Directional degree of Turn table
Antenna (Height, Pol, Fctr) : Antenna Height, Polarization and Factor, Cbl(dB) : Cable loss, Pre AMP(dB) : Preamplifier gain(dB)

Meas Result (dB μ V/m) : Reading(dB μ V/m) + Antenna factor.(dB/m) + CL(dB) - Pre AMP(dB)

Limit(dB μ V/m) : Limit value specified with FCC Rule, Mgn(dB) : FCC Limit (dB μ V/m) - Meas Result(dB μ V/m)

- Operation mode: PoE 48 vdc(Worst case)

Simultaneous TX Radiated Spurious Emissions Measurements (Worst case)

Measurement distance: 3m

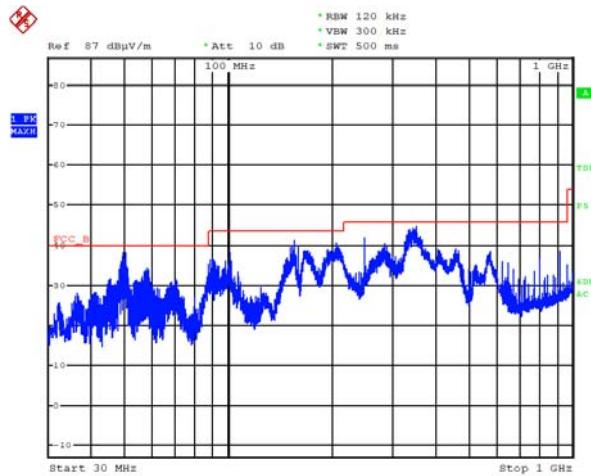
DXX Module 1: 2 480 MHz

DXX Module 2: 2 402 MHz

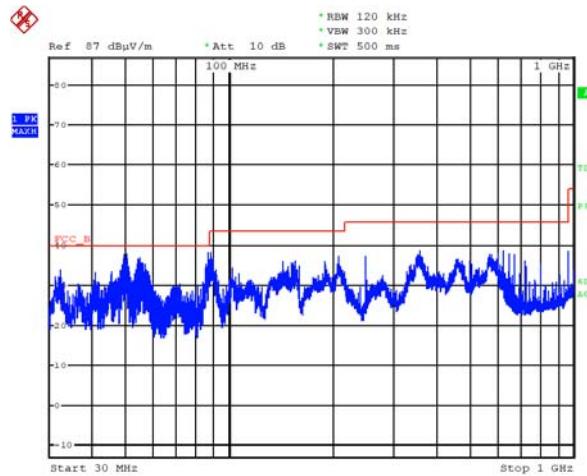
UWB: 6 489.6 MHz

Freq. (GHz)	Reading (dB μ V/m)		Table (Deg)	Antenna			CL (dB)	AMP (dB)	Meas Result (dB μ V/m)		Limit (dB μ V/m)		Mgn. (dB)		Result
	PK	AV		Height (m)	Pol. (H/V)	Fctr. (dB/m)			PK	AV	PK	AV	PK	AV	
1 660.00	56.76	-	180	1.5	H	25.80	6.03	-45.78	42.82	-	74	54	31.18	-	Compliance
1 828.00	56.19	-	180	1.5	H	26.64	6.26	-45.79	43.29	-	74	54	30.71	-	Compliance
2 660.00	58.33	-	180	1.5	H	29.18	7.43	-45.70	49.23	-	74	54	24.77	-	Compliance
4 875.00	54.53	-	180	1.5	H	33.00	10.51	-45.19	52.84	-	74	54	21.16	-	Compliance
1 044.00	58.88	-	180	1.5	V	24.09	4.67	-45.77	41.86	-	74	54	32.14	-	Compliance
4 875.00	52.56	-	180	1.5	V	33.00	10.51	-45.19	50.87	-	74	54	23.13	-	Compliance

※Note

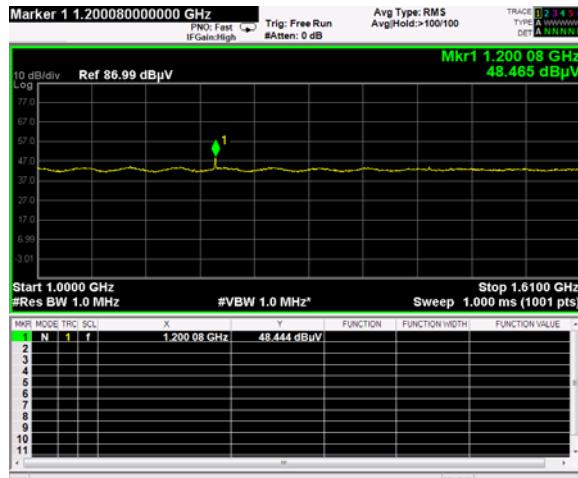

- Limit: 54 dB μ V/m(Average), 74 dB μ V/m(Peak), Attenuated more than 20 dB below the permissible value.
- It is not recorded on the report that the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to measured.
- The transmitter radiated spectrum was investigated from 9 kHz to 40 GHz.
- Operation mode: PoE 48 vdc(Worst case)
- Average test would be performed if the peak result were greater than the average limit.

5.3.7 Plots


*The worst case only.

- Below 1 GHz

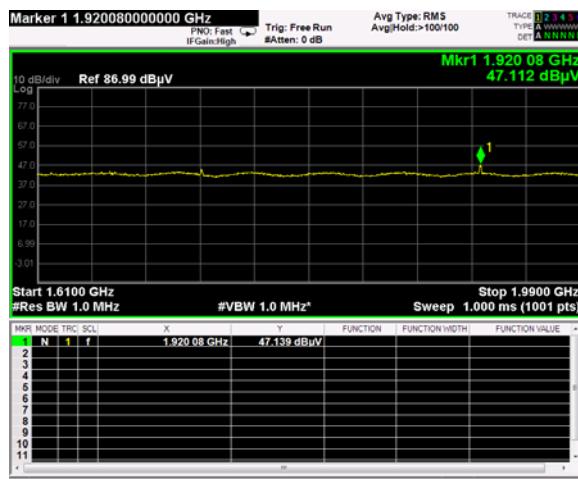
Horizontal



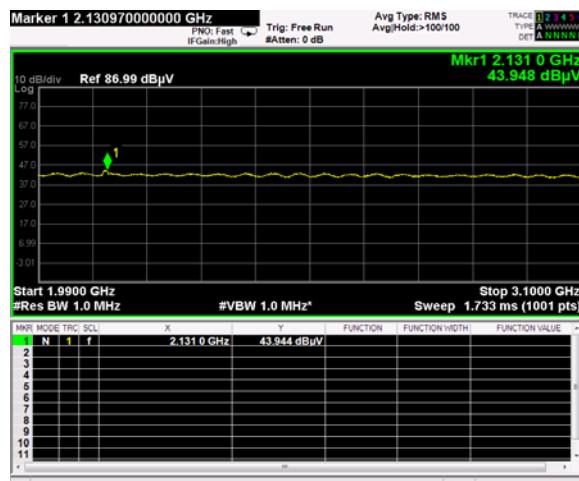
Vertical

- Above 1 GHz

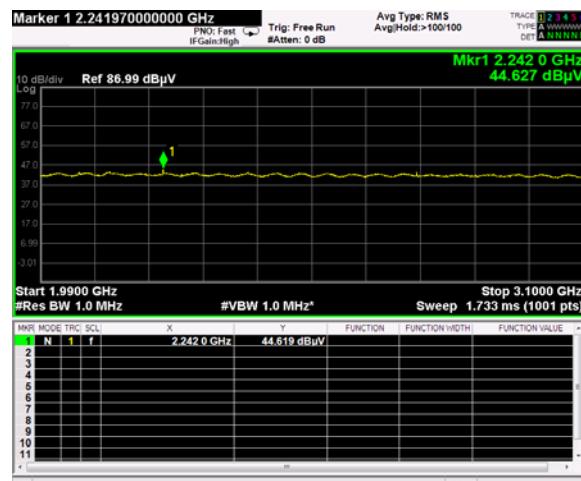
Horizontal(960-1 610 MHz)

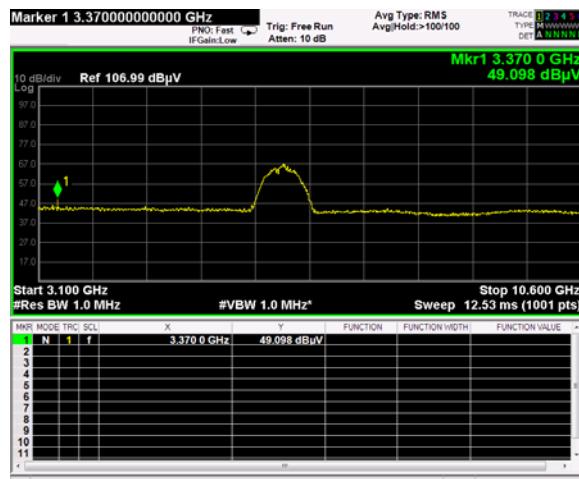

Vertical(960-1 610 MHz)

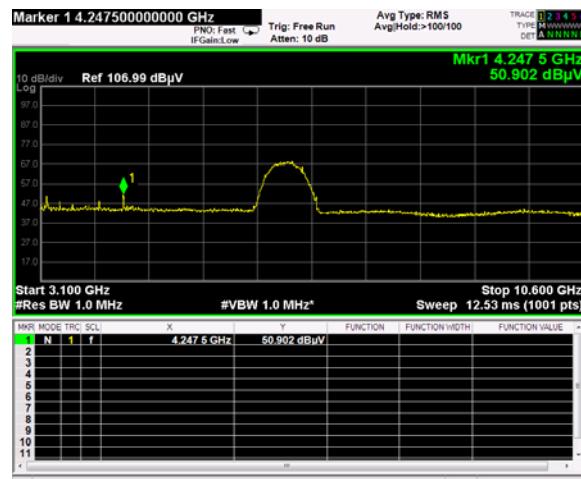
Horizontal(1 610-1 990 MHz)



Vertical(1 610-1 990 MHz)



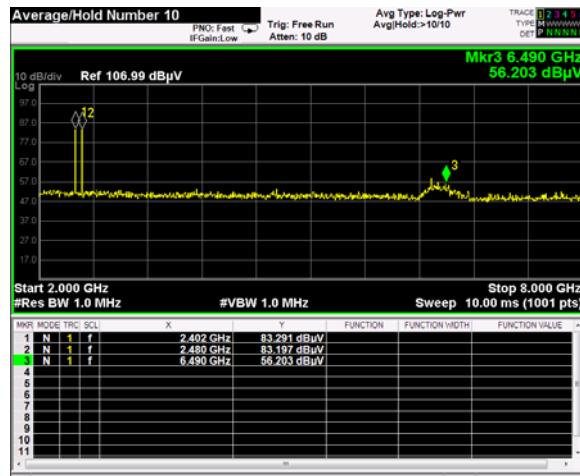

Horizontal(1 990-3 100 MHz)


Vertical(1 990-3 100 MHz)

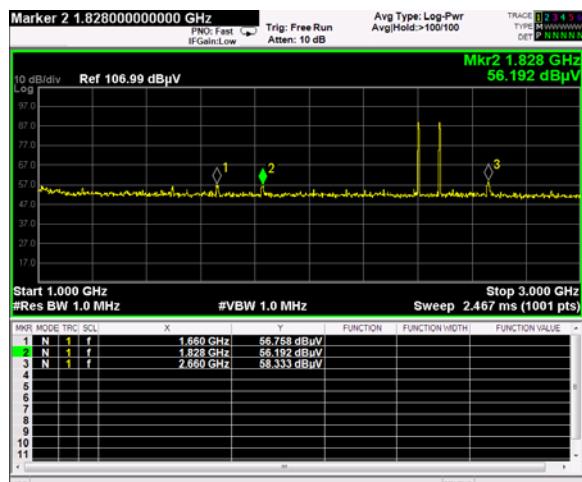
Horizontal(3 100-10 600 MHz)

Vertical(3 100-10 600 MHz)

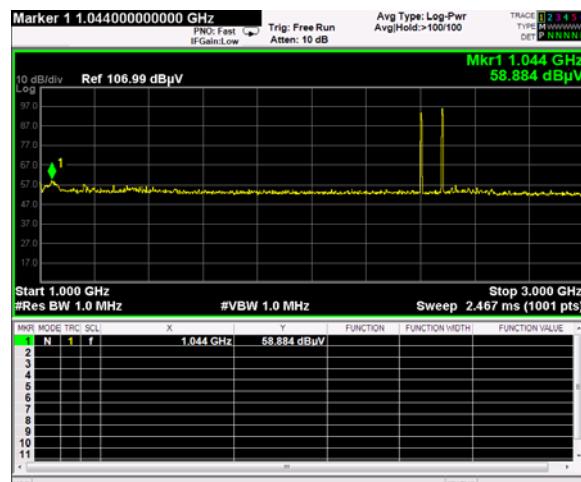
Horizontal(Above 10 600 MHz)



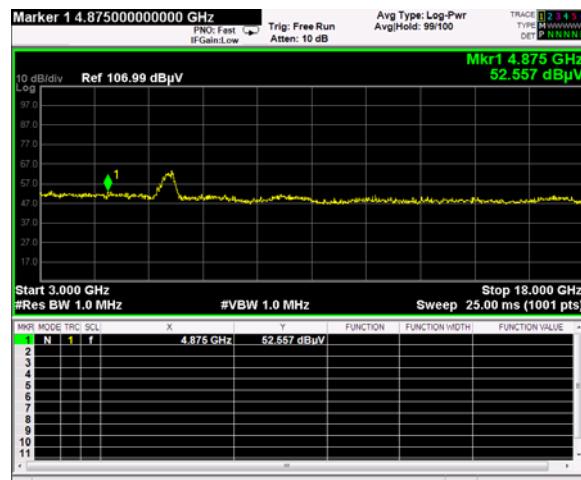
Vertical(Above 10 600 MHz)



-Simultaneous TX Radiated Spurious Emissions


Simultaneous TX check

Horizontal


Vertical

Horizontal

Vertical

5.4 Radiated Emissions in GPS Bands Measurement

5.4.1 Standard Applicable [FCC §15.517(d)]

In addition to the radiated emission limits specified in the table in paragraph (c) of this section, UWB transmitters operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of no less than 1 kHz:

Frequency Band [MHz]	EIRP[dBm]	E-Field[dBuV/m] at 3 m	E-Field[dBuV/m] at 1 m
1 164-1 240	-85.3	9.9	19.44
1 559-1 610	-85.3	9.9	19.44

Note 1: This may be converted to a peak field strength level at 3 meters using $E(\text{dBuV/m}) = P(\text{dBm EIRP}) + 95.2 \text{ dB}$.

Note 2: Above 960MHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade from 3m to 1m. Distance extrapolation factor = $20 \log (\text{specific distance [3m] / test distance [1m]})$ (dB); Limit line = specific limits (dBuV) + distance extrapolation factor [9.54 dB].

Note 3: Above 960MHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade from 3m to 1m. Distance extrapolation factor = $20 \log (\text{specific distance [3m] / test distance [1m]})$ (dB); Limit line = specific limits (dBuV) + distance extrapolation factor [9.54 dB]. from 3m to 0.5m. Distance extrapolation factor = $20 \log (\text{specific distance [3m] / test distance [0.5m]})$ (dB); Limit line = specific limits (dBuV) + distance extrapolation factor [15.56 dB]

5.4.2 Test Environment conditions

- Ambient temperature : (21 ~ 22) °C • Relative Humidity : (49 ~ 51) % R.H.

5.4.3 Measurement Procedure

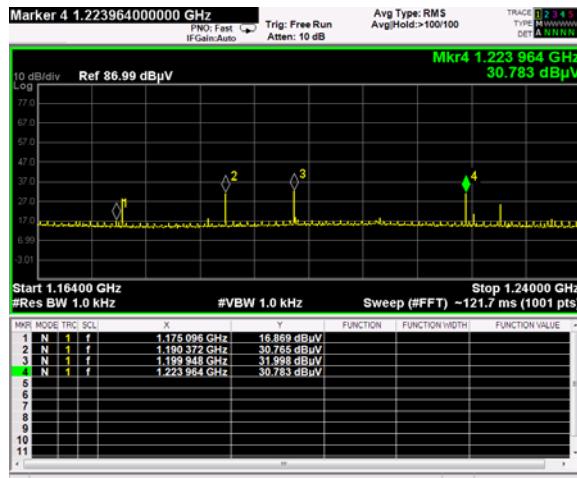
1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 1 meters far away from the turntable.
2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
5. Measurements frequencies were maximized using a spectrum analyzer with RMS detector capabilities. A spectrum analyzer was used for the final measurements utilizing an RMS detector at the frequencies with the largest amplitudes. The prescribed RBW of 1 kHz and VBW of 1 kHz, and a 1 msec averaging time were used for these measurements.
6. Per 47 CFR, Part 15, Subpart F, §15.521© (§15.209) all digital emissions from the transmitter not intended to be radiated from the antenna port meet the 15.209 subpart C limits.

5.4.5 Measurement Result

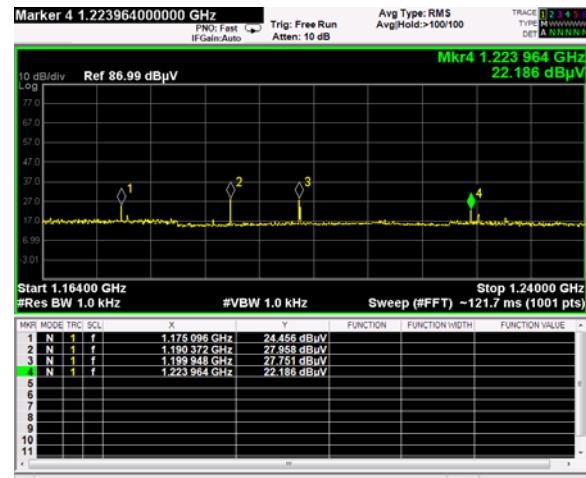
1 164 MHz ~ 1 240 MHz

Freq. (MHz)	Reading (dB μ V/m)	Detector Mode	Antenna			CL (dB)	AMP (dB)	Meas Result (dB μ V/m)	Limit (dB μ V/m)	Mgn. (dB)	Result
			Height (m)	Pol. (H/V)	Fctr. (dB/m)						
1190.37	30.77	Average	1.5	H	24.38	0.69	-45.72	10.11	19.44	9.33	Compliance
1199.95	32.00	Average	1.5	H	24.40	0.69	-45.72	11.37	19.44	8.07	Compliance
1223.96	30.78	Average	1.5	H	24.45	0.70	-45.72	10.21	19.44	9.23	Compliance
1175.10	24.46	Average	1.5	V	24.35	0.68	-45.73	3.76	19.44	15.68	Compliance
1190.37	27.96	Average	1.5	V	24.38	0.69	-45.72	7.30	19.44	12.14	Compliance
1199.95	27.75	Average	1.5	V	24.40	0.69	-45.72	7.12	19.44	12.32	Compliance

1 559 MHz ~ 1 610 MHz

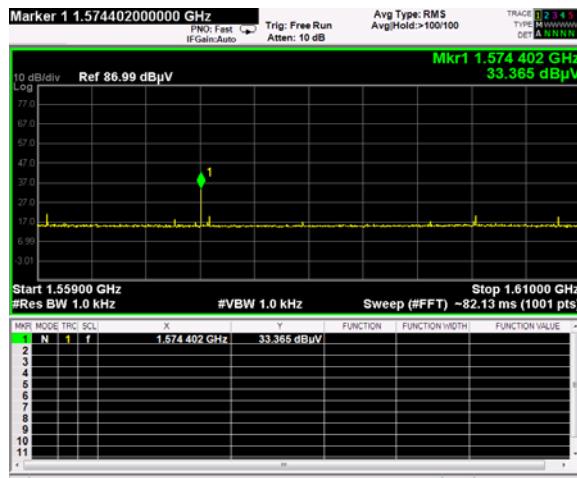

Freq. (MHz)	Reading (dB μ V/m)	Detector Mode	Antenna			CL (dB)	AMP (dB)	Meas Result (dB μ V/m)	Limit (dB μ V/m)	Mgn. (dB)	Result
			Height (m)	Pol. (H/V)	Fctr. (dB/m)						
1574.40	33.37	Average	1.5	H	25.37	0.79	-45.76	13.77	19.44	5.67	Compliance
1574.40	34.81	Average	1.5	V	25.37	0.79	-45.76	15.21	19.44	4.23	Compliance

- Operation mode: PoE 48 vdc(Worst case)

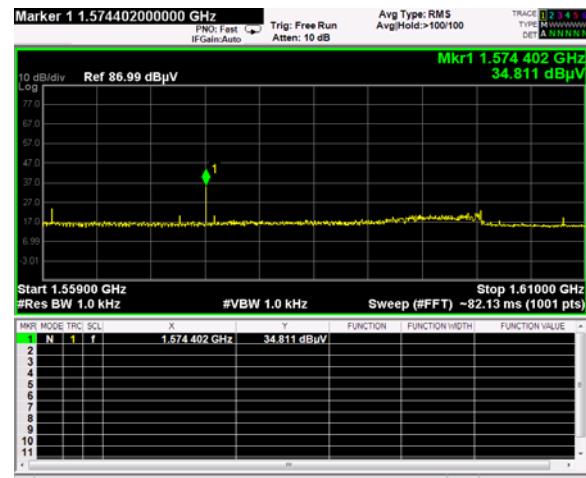

5.4.6 Test plot

□ 1 164 MHz ~ 1 240 MHz

Horizontal



Vertical



□ 1 559 MHz ~ 1 240 MHz

Horizontal

Vertical

5.5 Peak Emissions within a 50 MHz Bandwidth Measurement

5.4.1 Standard Applicable [FCC §15.517(e)/15.521(g)]

15.517(e) There is a limit on the peak level of the emissions contained within a 50 MHz bandwidth centered on the frequency at which the highest radiated emission occurs, f_M . That limit is 0 dBm EIRP. It is acceptable to employ a different resolution bandwidth, and a correspondingly different peak emission limit.

15.521(g) When a peak measurement is required, it is acceptable to use a resolution bandwidth other than the 50 MHz specified in this subpart. This resolution bandwidth shall not be lower than 1 MHz or greater than 50 MHz, and the measurement shall be centered on the frequency at which the highest radiated emission occurs, f_M . If a resolution bandwidth other than 50 MHz is employed, the peak EIRP limit shall be $20 \log(RBW/50)$ dBm where RBW is the resolution bandwidth in megahertz that is employed. This may be converted to a peak field strength level at 3 meters using $E(dBuV/m) = P(dBm EIRP) + 95.2$. If RBW is greater than 3 MHz, the application for certification filed with the Commission must contain a detailed description of the test procedure, calibration of the test setup, and the instrumentation employed in the testing.

Peak EIRP Limit [dBm] (RBW: 50 MHz)	Peak EIRP Limit [dBm] (RBW: 10 MHz)	E-Field [dBuV/m] at 3 m (RBW: 10 MHz)	E-Field [dBuV/m] at 1 m (RBW: 10 MHz)
0	-15.91	79.29	88.83

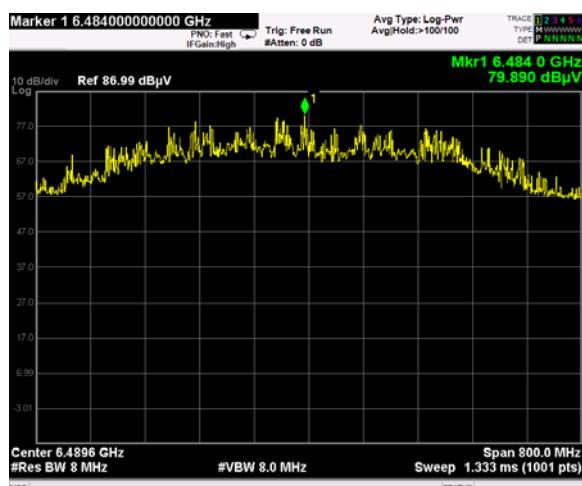
EIRP limit has to be adjusted by the resolution bandwidth ratio of $20\log(RBW/50)$ dB, where RBW is the resolution bandwidth used for the measurement expressed in MHz. In addition, This may be converted to a peak field strength level at 3 meters using $E(dBuV/m) = P(dBm EIRP) + 95.2$ dB. And Peak emission shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade from 3m to 1m. Distance extrapolation factor = $20 \log(\text{specific distance [3m] / test distance [1m]})$ (dB); Limit line = specific limits (dBuV) + distance extrapolation factor [9.54 dB]

5.4.2 Test Environment conditions

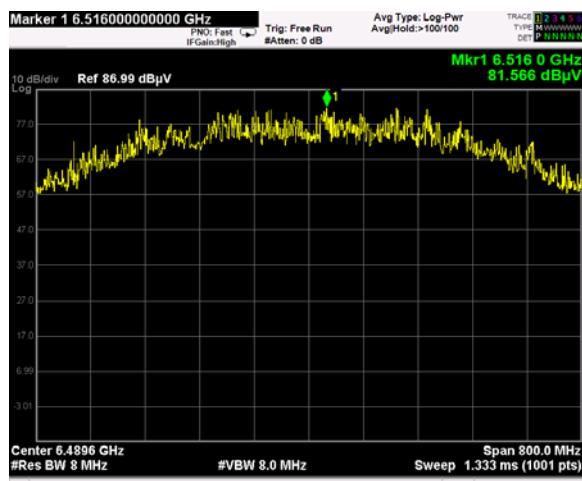
- Ambient temperature : (21 ~ 22) °C
- Relative Humidity : (49 ~ 51) % R.H.

5.4.3 Measurement Procedure

1. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 1 meters far away from the turntable.
2. The horn receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
3. For maximum peak emission amplitude, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading and was used to determine the frequency at which the highest radiated emission occurs, f_M .
4. The individual UWB bandwidths were measured for each BAND_ID (nb) of the UWB spectrum. Both horizontal and vertical polarizations were taken into account to determine the full UWB BW on the maximized (in azimuth and elevation) signals.
5. A spectrum analyzer was used for the final measurement utilizing a peak detector at the frequency with the largest amplitude. The prescribed resolution bandwidth of 50 MHz was not supported by the spectrum analyzer. However, when a peak measurement is required, The resolution bandwidth for this measurement was set to 8 MHz, and the measurement was centered on the frequency at which the highest radiated emission occurred, f_M . The video bandwidth was 8 MHz.


5.4.5 Measurement Result

Freq. (MHz)	Reading (dB μ V/m)	Detector Mode	Antenna			CL (dB)	AMP (dB)	Meas Result (dB μ V/m)	Limit (dB μ V/m)	Mgn. (dB)	Result
			Height (m)	Pol. (H/V)	Fctr. (dB/m)						
6489.60	79.89	Average	1.5	H	35.04	1.86	-44.60	72.19	88.83	16.64	Compliance
6489.60	81.57	Average	1.5	V	35.04	1.86	-44.60	73.87	88.83	14.96	Compliance


- Operation mode: PoE 48 vdc(Worst case)

5.4.6 Test plot

□ Horizontal at 1 m

□ Vertical at 1 m

5.6 Antenna requirement

5.6.1 Standard applicable [FCC §15.203]

For intentional device, according to §15.203, an intentional radiator shall be designed to ensure that no antenna other than furnished by responsible party shall be used with the device.

The use of a permanently attached antenna or of an antenna that user a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The manufacturer may design the unit so that broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

5.6.2 Antenna details

Frequency Band	Antenna Type	Gain [dBi]	Results
6.2~8.0 GHz	SMD UWB Chip antenna	3.5	Compliance

5.7 AC Power Conducted emissions

5.7.1 Standard Applicable [FCC §15.207(a)]

For intentional radiator that is designed to be connected to the public utility(AC)power line, the radio frequency. Voltage that is conducted back onto the AC power line on any frequencies hopping mode within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line Impedance stabilization network(LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

§15.207 limits for AC line conducted emissions;

Frequency of Emission(MHz)	Conducted Limit (dB μ V)	
	Quasi-peak	Average
0.15 ~ 0.5	66 to 56 *	56 to 46 *
0.5 ~ 5	56	46
5 ~ 30	60	50

* Decreases with the logarithm of the frequency

5.7.2 Test Environment conditions

- Ambient temperature : (21 ~ 22) °C • Relative Humidity : (49 ~ 51) % R.H.

5.7.3 Measurement Procedure

EUT was placed on a non- metallic table height of 0.8 m above the reference ground plane. Cables connected to EUT were fixed to cause maximum emission. Test was made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna was varied in height above the conducting ground plane to obtain the Maximum signal strength.

5.7.4 Used equipment

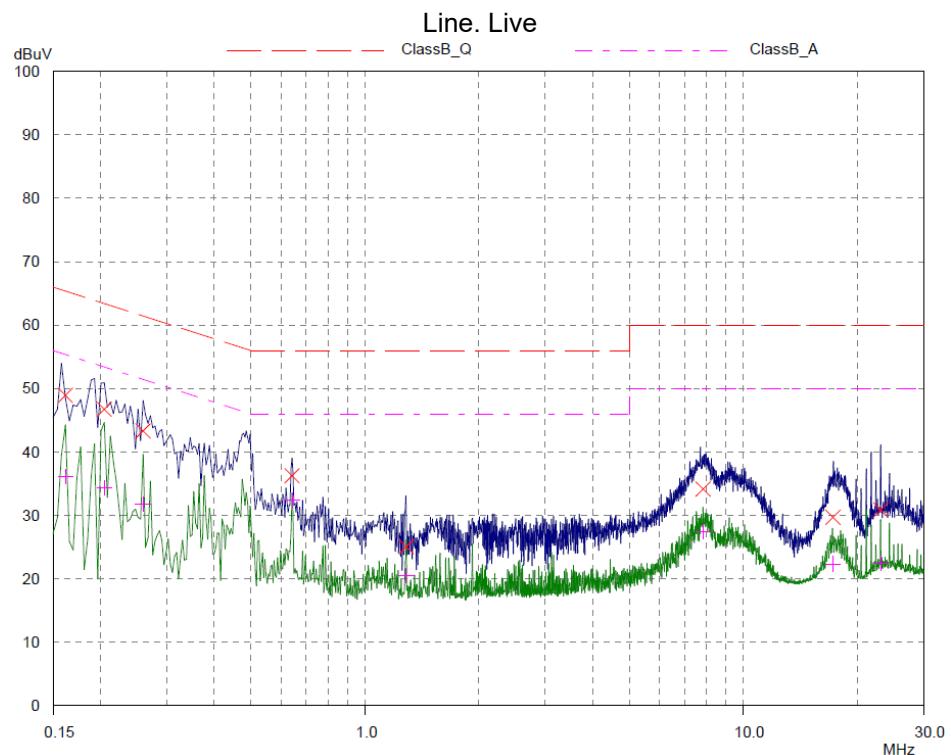
Equipment	Model No.	Serial No.	Manufacturer	Next cal date	Cal interval	Used
Test receiver	ESCS30	100111	Rohde & Schwarz	2020. 01. 22	1 year	<input checked="" type="checkbox"/>
Pulse Limiter	ESH3-Z2	100097	Rohde & Schwarz	2020. 01. 22	1 year	<input checked="" type="checkbox"/>
LISN	ESH2-Z5	100044	R&S	2020. 01. 22	1 year	<input type="checkbox"/>
	ESH3-Z5	100147	R&S	2020. 01. 22	1 year	<input checked="" type="checkbox"/>

*Test Program: " ESXS-K1 V2.2"

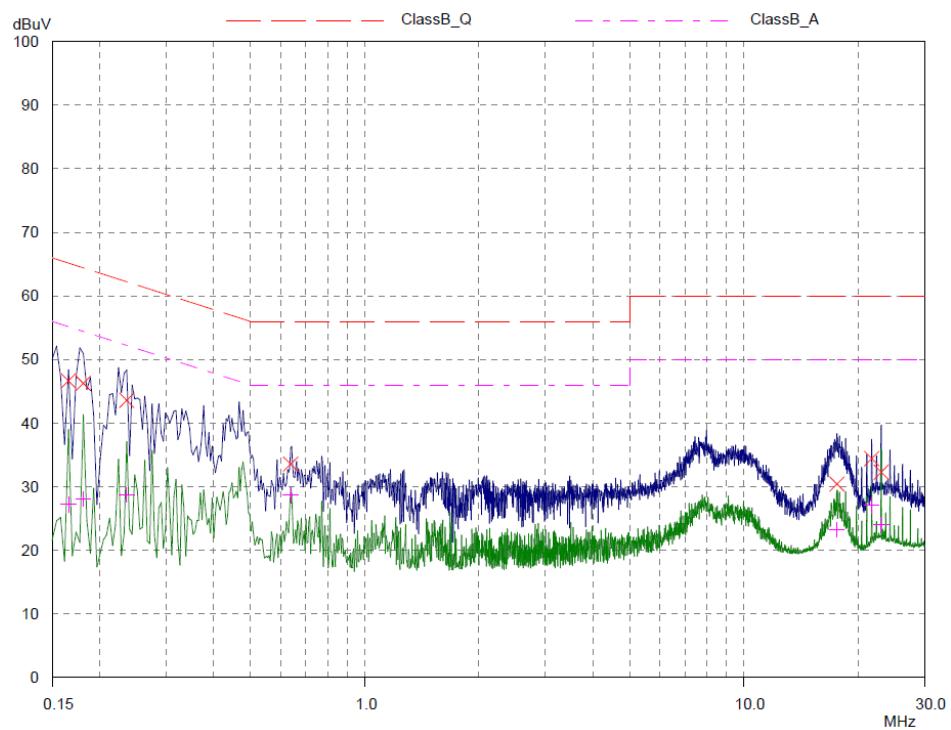
Measurement uncertainty

0.15 ~ 30 MHz : ± 3.34 (CL: Approx 95 %, $k=2$)

5.7.5 Measurement Result


Freq. [MHz]	Factor [dB]		POL	QP			CISPR AV		
				Limit [dB μ V]	Reading [dB μ V]	Result [dB μ V]	Limit [dB μ V]	Reading [dB μ V]	Result [dB μ V]
	LISN	CABLE +P/L							
0.162	0.08	9.98	L	65.38	48.93	49.01	55.38	35.59	35.67
0.205	0.08	9.99	L	63.42	46.74	46.82	53.42	33.88	33.96
0.259	0.08	10.00	L	61.45	43.33	43.41	51.45	31.25	31.33
0.642	0.08	10.04	L	56.00	36.25	36.33	46.00	31.91	31.99
1.287	0.11	10.07	L	56.00	25.03	25.14	46.00	20.01	20.12
7.826	0.34	10.33	L	60.00	34.15	34.49	50.00	26.93	27.27
17.267	0.67	10.51	L	60.00	29.70	30.37	50.00	21.78	22.45
23.088	0.77	10.64	L	60.00	30.87	31.64	50.00	21.95	22.72
0.166	0.09	9.98	N	65.18	46.64	46.73	55.18	26.70	26.79
0.181	0.09	9.99	N	64.43	46.26	46.35	54.43	27.53	27.62
0.236	0.09	10.00	N	62.24	43.58	43.67	52.24	28.22	28.31
0.638	0.09	10.04	N	56.00	33.56	33.65	46.00	28.15	28.24
17.607	0.64	10.52	N	60.00	30.43	31.07	50.00	22.75	23.39
21.755	0.70	10.61	N	60.00	34.42	35.12	50.00	26.49	27.19
23.048	0.71	10.63	N	60.00	32.29	33.00	50.00	23.56	24.27

* LISN: LISN insertion Loss, Cable: Cable Loss, P/L:pulse limiter factor


* L: Line. Live, N: Line. Neutral

* Reading: test receiver reading value (with cable loss & pulse limiter factor)

* Result = LISN + Reading

Line. Neutral

