

Report No: JYTSZB-R12-2000040

FCC REPORT

Applicant:	MAXWEST COMMUNICATION LIMITED
Address of Applicant:	ROOM 1802B FORTRESS TOWER 250 KING'S ROAD, NORTH POINT HONG KONG
Equipment Under Test (E	EUT)
Product Name:	MOBILE PHONE
Model No.:	VICE LTE
Trade mark:	MAXWEST
FCC ID:	2ASP8VICELTE
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	14 Dec., 2020
Date of Test:	15 Dec., to 28 Dec., 2020
Date of report issued:	28 Jan., 2021
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	29 Dec., 2020	Original
01	28 Jan., 2021	Update Page 26

Tested by:

lang

Test Engineer

Date: 28 Jan., 2021

Reviewed by:

Winner Thang

Project Engineer

Date: 28 Jan., 2021

Project No.: JYTSZE2012044

3 Contents

	Page
1 COVER PAGE	1
2 VERSION	2
3 CONTENTS	
	_
4 TEST SUMMARY	4
5 GENERAL INFORMATION	5
5.1 Client Information	5
5.2 GENERAL DESCRIPTION OF E.U.T.	5
5.3 TEST ENVIRONMENT AND MODE	6
5.4 DESCRIPTION OF SUPPORT UNITS	6
5.5 MEASUREMENT UNCERTAINTY	
5.6 LABORATORY FACILITY	6
5.7 LABORATORY LOCATION	6
5.8 Test Instruments list	7
6 TEST RESULTS AND MEASUREMENT DATA	8
6.1 ANTENNA REQUIREMENT:	8
6.2 CONDUCTED EMISSION	9
6.3 CONDUCTED OUTPUT POWER	
6.4 OCCUPY BANDWIDTH	
6.5 POWER SPECTRAL DENSITY	
6.6 BAND EDGE	
6.6.1 Conducted Emission Method	
6.6.2 Radiated Emission Method	
6.7 SPURIOUS EMISSION	
6.7.1 Conducted Emission Method 6.7.2 Radiated Emission Method	
7 TEST SETUP PHOTO	
8 EUT CONSTRUCTIONAL DETAILS	28
APPENDIX A - BLE	29
TEST DATA	29

Test Summary 4

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass
Remark: 1. Pass: The EUT complies with the esse 2. N/A: Not Applicable.	ntial requirements in the standard.	

The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by З. the customer).

Test Method:

ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	MAXWEST COMMUNICATION LIMITED
Address:	ROOM 1802B FORTRESS TOWER 250 KING'S ROAD, NORTH POINT HONG KONG
Manufacturer:	MAXWEST COMMUNICATION LIMITED
Address:	ROOM 1802B FORTRESS TOWER 250 KING'S ROAD, NORTH POINT HONG KONG

5.2 General Description of E.U.T.

Product Name:	MOBILE PHONE
Model No.:	VICE LTE
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-3.0 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-1400mAh
AC adapter:	 Model: VICELTE Input: AC100-240V, 50/60Hz Output: DC 5.0V, 500mA Model: TPA-97H050055UW01 Input: AC100-240V, 50/60Hz, 0.15A Output: DC 5.0V, 550mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and mode

Operating Environment:

Operating Environment.	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info@ccis-cb.com, Website: <u>http://www.ccis-cb.com</u>

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-21-2020	07-20-2021
Loop Antenna	SCHWARZBECK	FMZB1519B	044	03-07-2020	03-06-2021
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-20-2020	06-19-2021
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-16-2020	11-15-2021
EMI Test Software	AUDIX	E3	١	/ersion: 6.110919t)
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-16-2020	11-15-2021
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due date
				(mm-dd-yy)	(mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	07-17-2021
Cable	HP	10503A	N/A	03-05-2020	03-04-2021
EMI Test Software	AUDIX	E3	١	/ersion: 6.110919	0

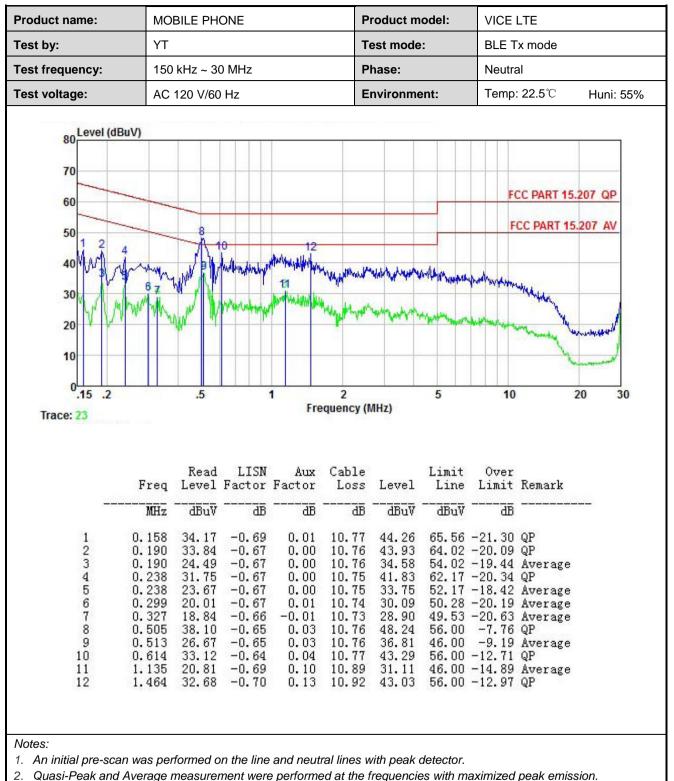
Conducted method:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021	
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021	
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021	
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021	
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021	
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A	
PDU	MWRF-test	XY-G10	N/A	N/A	N/A	
Test Software	MWRF-tes	MTS 8310	Version: 2.0.0.0			
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021	
Temperature Humidity Chamber	ZhongZhi	CZ-C-150D	ZH16491	09-23-2020	09-22-2021	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement:	FCC Part 15 C Section 15.203 /247(b)
15.203 requirement:	
An intentional radiator shall	be designed to ensure that no antenna other than that furnished by the
	sed with the device. The use of a permanently attached antenna or of an
	coupling to the intentional radiator, the manufacturer may design the unit
	an be replaced by the user, but the use of a standard antenna jack or
electrical connector is prohi	bited.
15.247(b) (4) requirement:	
	ower limit specified in paragraph (b) of this section is based on the use of
	ains that do not exceed 6 dBi. Except as shown in paragraph (c) of this
	nnas of directional gain greater than 6 dBi are used, the conducted output
	adiator shall be reduced below the stated values in paragraphs (b)(1),
	tion, as appropriate, by the amount in dB that the directional gain of the
antenna exceeds 6 dBi.	
E.U.T Antenna:	
The BLE antenna is an Interr	nal antenna which cannot replace by end-user, the best-case gain of the
antenna is -3.0 dBi.	

6.2 Conducted Emission


Test Requirement:	FCC Part 15 C Section 15.207	7	
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9kHz, VBW=30kHz		
Limit:	Frequency range (MHz)	Limit (dBuV)
	· · · · · · · · · · · · · · · · · · ·	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithm		
Test procedure:	 The E.U.T and simulators line impedance stabilizati 50ohm/50uH coupling implication The peripheral devices and LISN that provides a 50ol termination. (Please refer photographs). Both sides of A.C. line and interference. In order to fi positions of equipment and according to ANSI C63.10 	on network (L.I.S.N.), wh pedance for the measuring re also connected to the hm/50uH coupling imped to the block diagram of the checked for maximum and the maximum emission and all of the interface cab	nich provides a ng equipment. main power through a lance with 50ohm the test setup and conducted on, the relative les must be changed
Test setup:	Reference	80cm Filter EMI Receiver	– AC power
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Refer to section 5.3 for details	i	
Test results:	Passed		

Measurement Data:

Product name:	MO	BILE PH	ONE		Pr	oduct m	odel:	VICE	LTE	
Test by:	ΥT				Те	est mode	:	BLE T	x mode	
Test frequency:	150	kHz ~ 30) MHz		Pl	nase:		Line		
Test voltage:	AC	120 V/60	Hz		Er	nvironme	ent:	Temp:	: 22.5 ℃	Huni: 55%
80 Level (dB 70 60 50 13 45 40 13 45 40 13 45 40 13 45 20 10 0.15 .2 Trace: 21	man	.5	vitte and	1	2 quency (N	nele Marte	5	F	the second	
	Freq	Read Level dBuV	Factor	Factor	Cable Loss dB	Level dBuV	Limit Line dBuV	Over Limit aB	Remark	
1 2 3 4	0.154 0.154 0.162 0.186 0.198	32.35 18.93 32.14 30.21 31.01 20.00	-0.57 -0.57	-0.06 -0.06 -0.08 -0.13	10.78 10.78 10.77 10.76 10.76 10.75 10.76	42.50 29.08 42.25 40.25 41.02 29.97 31.44	65.78 55.78 65.34 64.20 63.71 51.91	-23.28 -26.70 -23.09 -23.95 -22.69 -21.94	Average QP QP	

3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table
	Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data: Refer to Appendix A - BLE

6.4 Occupy Bandwidth

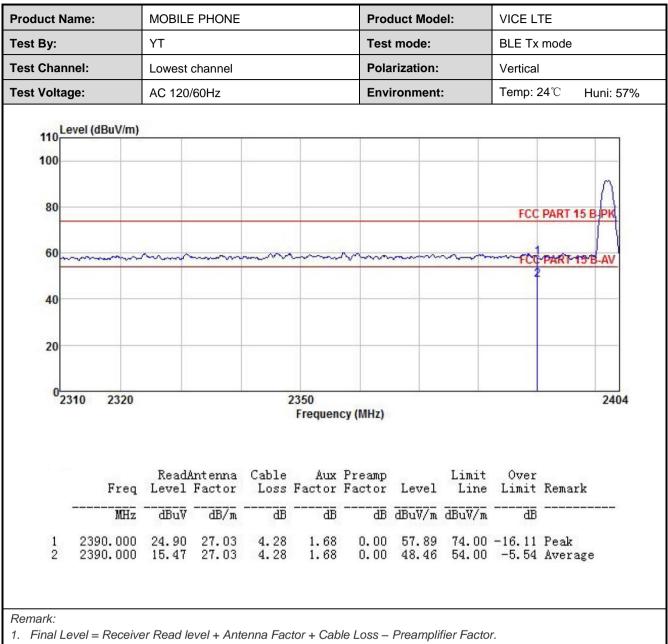
Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)
Limit:	>500kHz
Test setup:	
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Measurement Data:	Refer to Appendix A - BLE

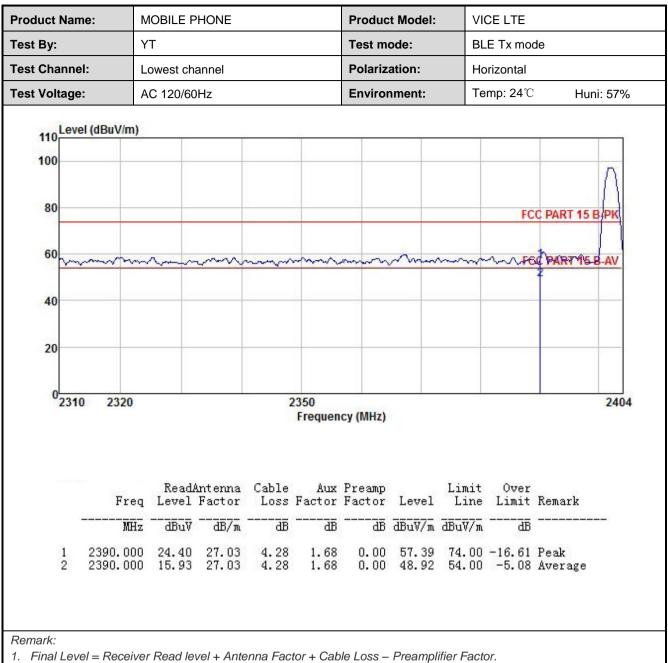
6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Limit:	8 dBm/3kHz
Test setup:	
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Measurement Data:	Refer to Appendix A - BLE

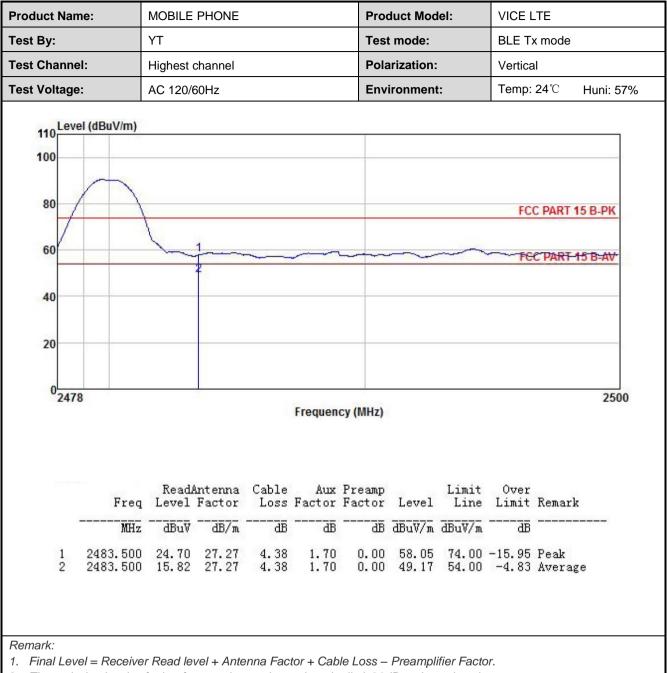
6.6 Band Edge

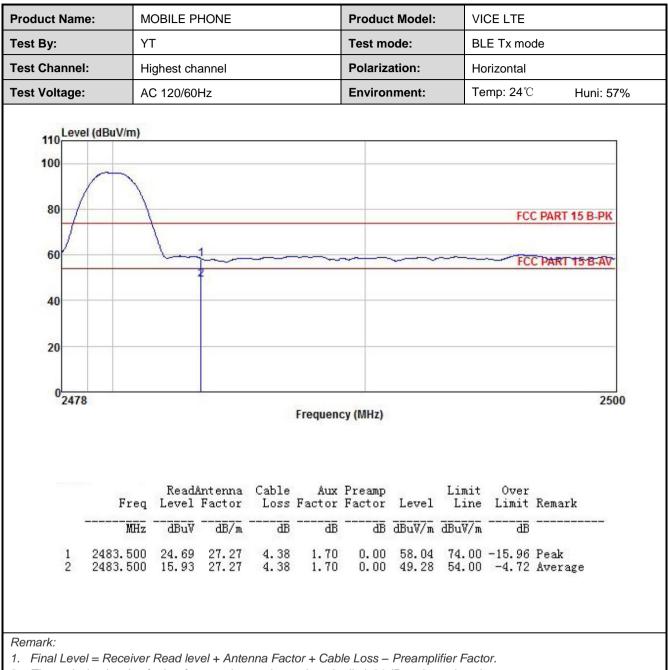
6.6.1 Conducted Emission Method


Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Measurement Data:	Refer to Appendix A - BLE


6.6.2 Radiated Emission Method

Test Requirement:		Section 15.	205 and 15.209		
Test Frequency Range:	2310 MHz to 2	390 MHz an	d 2483.5MHz to 2	2500 MHz	
Test Distance:	3m				
Receiver setup:	Frequency	Detector	RBW	VBW	Remark
· ·	Above 1GHz	Peak	1MHz	3MHz	Peak Value
		RMS	1MHz	3MHz	Average Value
Limit:	Frequen	icy l	<u>_imit (dBuV/m @:</u>	3m)	Remark
	Above 10	GHz –	54.00 74.00		Average Value Peak Value
Test Procedure:	 the groun to determ The EUT antenna, tower. The anter the groun Both horiz make the For each case and meters ar to find the The test-r Specified If the emis the limit s of the EU have 10 c 	d at a 3 meterine the positi was set 3 meterine which was meterine and height is d to determinized to determinized suspected en then the anterine then the anterine d the rota ta execeiver system Bandwidth wission level of pecified, ther T would be rota B margin wood	er camber. The ta on of the highest eters away from t ounted on the top varied from one in the the maximum entical polarization nt. mission, the EUT enna was tuned to ble was turned fr eading. em was set to Pe vith Maximum Ho the EUT in peak in testing could be eported. Otherwise	able was rot radiation. the interfere p of a varia meter to for value of the as of the an was arrang o heights fr om 0 degre ak Detect F ld Mode. mode was e stopped a se the emis one by one	ble-height antenna ur meters above e field strength. tenna are set to ged to its worst rom 1 meter to 4 ses to 360 degrees Function and a 10 dB lower than nd the peak values isions that did not using peak, quasi-
Test setup:		LEUT urritable) Gro Test Receive	Horn Antenna am Horn Antenna am Horn Antenna am Horn Antenna am Horn Antenna am Horn Antenna am Horn Antenna am Horn Antenna Amplier Con	Antenna Tower	Swwww
Test Instruments:	Refer to section	on 5.8 for deta	ails		
Test mode:	Refer to section	on 5.3 for deta	ails		
Test results:	Passed				





6.7 Spurious Emission

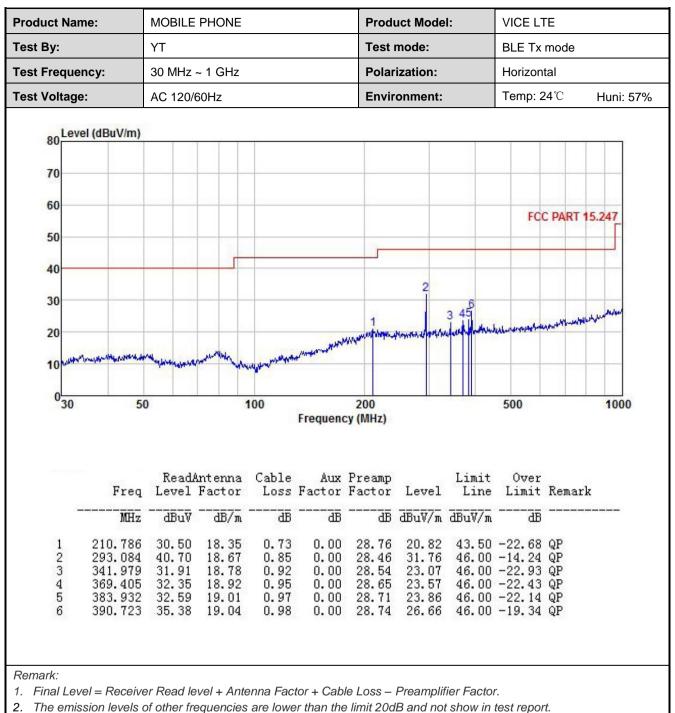
6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Measurement Data:	Refer to Appendix A - BLE

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.2	205 and 15.209)		
Test Frequency Range:	9kHz to 25GHz					
Test Distance:	3m					
Receiver setup:	Frequency	Detector	RBW	VB	W	Remark
	30MHz-1GHz	Quasi-peak	120KHz	300KHz		Quasi-peak Value
	Above 1GHz	Peak	1MHz	3M	3MHz Peak Value	
	Above IGI12	RMS	1MHz	3M	Hz	Average Value
Limit:	Frequency		Limit (dBuV/m @	23m)	Remark	
	30MHz-88MHz		40.0		G	Quasi-peak Value
	88MHz-216MHz		43.5		G	Quasi-peak Value
	216MHz-960I	MHz	46.0			Quasi-peak Value
	960MHz-1G	Hz	54.0			Quasi-peak Value
	Above 1GF	17	54.0			Average Value
			74.0			Peak Value table 0.8m(below
	 The table of highest rad The EUT antenna, we tower. The antenni the ground Both horized make the n For each se case and the meters and to find the n The test-rest specified E If the emission the limit sp of the EUT have 10 dE 	was rotated iation. was set 3 hich was m ha height is to determine ontal and ven heasurement suspected e hen the ant the rota tal maximum re eceiver syst Bandwidth w sion level of ecified, then would be r margin wo	360 degrees to meters away ounted on the varied from of ne the maxim ertical polarizant. emission, the fe enna was tuned ble was turned tading. tem was set ith Maximum H the EUT in per testing could eported. Other uld be re-tested	to deter from the top of a une met um value tions of EUT wate from 0 to Pea lold More be stop wise the d one b	rmine ne inten varial er to f ue of f the a as arra eights degre k Def de. de was ped ar ne emis y one	a 3 meter camber. the position of the erference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 set to 360 degrees tect Function and a 10 dB lower than nd the peak values ssions that did not using peak, quasi- reported in a data
Test setup:		3m <			Antenna Search Antenn Test eiver –	

	Horn Antenna Tower Horn Antenna Tower UTUTTAble) Ground Reference Plane Test Receiver
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30MHz is lower than the limit 20dB, so only shows the data of above 30MHz in this report.


Measurement Data (worst case):

Below 1GHz:

oduct Name	:	MOBILE	E PHONE			Produ	uct Mode	l:	VICE LTE	Ξ		
est By:		ΥT				Test	mode:		BLE Tx n	node		
est Frequenc	;y:	30 MHz	~ 1 GHz			Polar	Polarization: Environment:			Vertical		
est Voltage:		AC 120/	/60Hz			Envir				Temp: 24°C Huni:		
80 70 60 50 40 30 20 1	(dBuV/m)		2		3 Water Hall	4 Annalista	5	6 trader armage	FCC I	PART 15.	.247	
030		io ReadA	ntenna	100 Cable	Frequend	Preamp	Level	Limit		Remari	1000	
030		ReadA	ntenna Factor dB/m	Cable	Aux	c <mark>y (MHz)</mark> Preamp Factor	Level dBuV/m	Line	Over Limit	Remark		

3. The Aux Factor is a notch filter switch box loss, this item is not used.

3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz

			Т	est chanr	el: Lowest	channel			
				Detect	or: Peak Va	lue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	47.95	30.78	6.80	2.44	41.81	46.16	74.00	-27.84	Vertical
4804.00	48.26	30.78	6.80	2.44	41.81	46.47	74.00	-27.53	Horizontal
				Detector	r: Average \	/alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	40.36	30.78	6.80	2.44	41.81	38.57	54.00	-15.43	Vertical
4804.00	39.95	30.78	6.80	2.44	41.81	38.16	54.00	-15.84	Horizontal
			T		nel: Middle o				
			a	1	or: Peak Va	lue		-	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	49.87	30.96	6.86	2.47	41.84	48.32	74.00	-25.68	Vertical
4884.00	48.17	30.96	6.86	2.47	41.84	46.62	74.00	-27.38	Horizontal
				Detector	r: Average \	/alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	41.52	30.96	6.86	2.47	41.84	39.97	54.00	-14.03	Vertical
4884.00	40.29	30.96	6.86	2.47	41.84	38.74	54.00	-15.26	Horizontal
			Т		el: Highest				
				1	or: Peak Va	lue			Γ
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	48.95	31.11	6.91	2.49	41.87	47.59	74.00	-26.41	Vertical
4960.00	49.35	31.11	6.91	2.49	41.87	47.99	74.00	-26.01	Horizontal
				Detector	r: Average \	/alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	38.74	31.11	6.91	2.49	41.87	37.38	54.00	-16.62	Vertical
4960.00	40.51	31.11	6.91	2.49	41.87	39.15	54.00	-14.85	Horizontal
Remark: 1. Final Le	vel =Recei	ver Read lev	el + Anten	na Factor	+ Cable Loss	+ Aux Factor	r – Preamplifie	er Factor.	

Final Level =Receiver Read level + Antenna Factor + Cable Loss + Aux Factor – Preamplifier Factor.
 The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Appendix A - BLE Test Data

Maximum Conducted Output Power

		•						
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	-0.284	0	-0.284	30	Pass
NVNT	BLE	2442	Ant1	0.472	0	0.472	30	Pass
NVNT	BLE	2480	Ant1	-1.102	0	-1.102	30	Pass

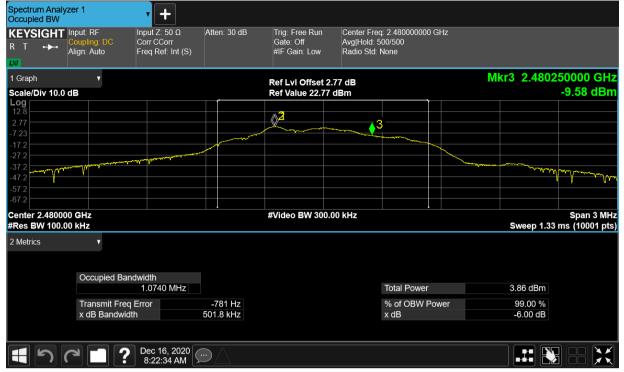
Power NVNT BLE 2402MHz Ant1

Power NVNT BLE 2442MHz Ant1

Power NVNT BLE 2480MHz Ant1

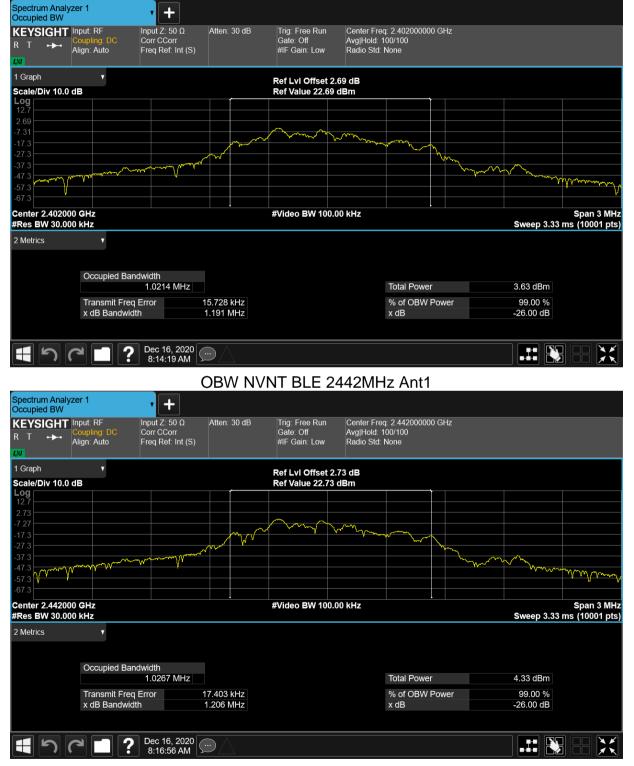
-6dB Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE	2402	Ant1	0.504	0.5	Pass
NVNT	BLE	2442	Ant1	0.503	0.5	Pass
NVNT	BLE	2480	Ant1	0.502	0.5	Pass



-6dB Bandwidth NVNT BLE 2402MHz Ant1

-6dB Bandwidth NVNT BLE 2480MHz Ant1



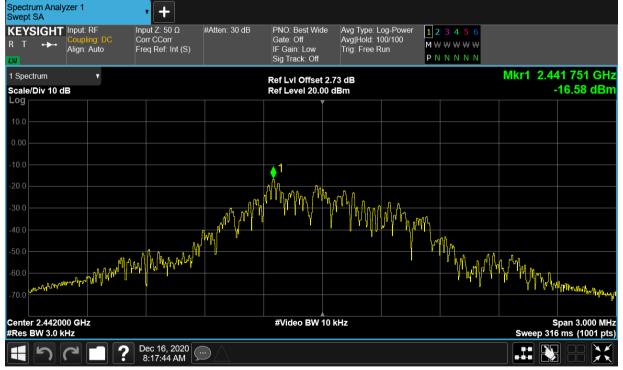
Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE	2402	Ant1	1.021352161
NVNT	BLE	2442	Ant1	1.026717784
NVNT	BLE	2480	Ant1	1.023338314

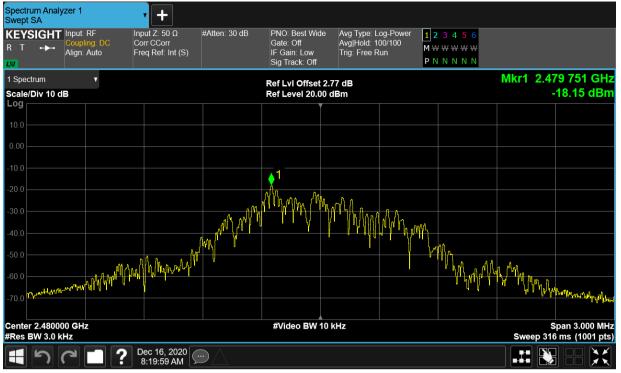
OBW NVNT BLE 2402MHz Ant1

OBW NVNT BLE 2480MHz Ant1

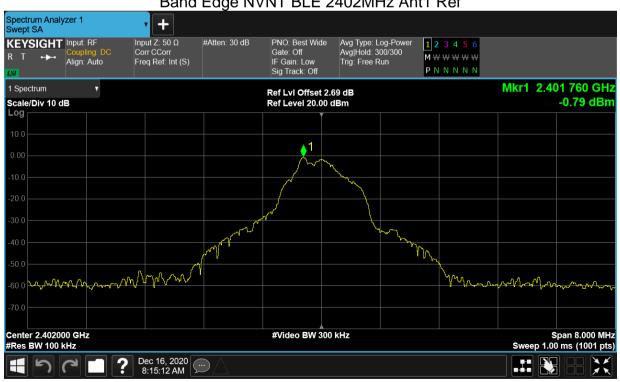
Maximum Power Spectral Density Level


Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	-17.377	8	Pass
NVNT	BLE	2442	Ant1	-16.582	8	Pass
NVNT	BLE	2480	Ant1	-18.151	8	Pass

PSD NVNT BLE 2402MHz Ant1

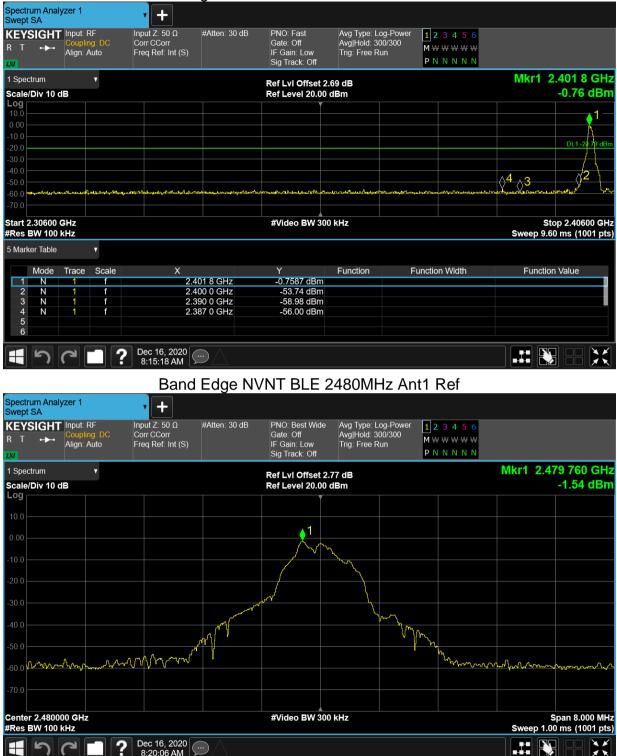


PSD NVNT BLE 2442MHz Ant1



PSD NVNT BLE 2480MHz Ant1

Band Edge


Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-55.21	-20	Pass
NVNT	BLE	2480	Ant1	-54.9	-20	Pass

Band Edge NVNT BLE 2402MHz Ant1 Ref

Band Edge NVNT BLE 2402MHz Ant1 Emission

Band Edge NVNT BLE 2480MHz Ant1 Emission

Spectrum Swept SA KEYSIC R T •	GHT	Input: I	ng: DC	Input Z: 50 Ω Corr CCorr Freq Ref: Int (S)	#Atten: 30 dB	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: L Avg Hold: 3 Trig: Free R	00/300	1 2 3 4 5 6 M₩₩₩₩₩₩ P N N N N N		
1 Spectrun	n		v			Ref LvI Offset 2	2.77 dB			Mkr1 2	.479 8 GHz
Scale/Div	/ 10 dE	3				Ref Level 20.00					-1.50 dBm
Log 10.0 0.00 -10.0 -20.0 -30.0 -40.0 -50.0 -60.0	1	×4	de table og	<u>}3</u>	gazeti - Andrean		dt.rovel.eegetys/Mgaard	مى مەرىپى مەرىپىيى بىلىغى ب مەرىپىيى بىلىغى بىلىغ		n star frikanssaye ether Augerija	DL1-21.54 dBm
-70.0 Start 2.47 #Res BW						#Video BW 30	00 kHz				op 2.57600 GHz 0 ms (1001 pts)
5 Marker T	Table		V								
Mc	ode ⁻	Trace	Scale	Х		Y	Function	Fu	nction Width	Function	n Value
1	N	1	f		79 8 GHz	-1.498 dBm					
	N	1	f		83 5 GHz	-59.52 dBm					
	N	1	f		00 0 GHz	-58.02 dBm					
4 N 5 6	N	1	f	2.4	84 4 GHz	-56.44 dBm					
	ה			Dec 16, 2020 8:20:12 AM							

Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-42.41	-20	Pass
NVNT	BLE	2442	Ant1	-40.01	-20	Pass
NVNT	BLE	2480	Ant1	-48.66	-20	Pass

Tx. Spurious NVNT BLE 2402MHz Ant1 Ref

Tx. Spurious NVNT BLE 2402MHz Ant1 Emission

Swept S/ KEYSI R T		Input: I Coupli Align: J	ng: DC	Co	ut Z: 50 Ω rr CCorr eq Ref: Int (S)	#Atten: 30 d	dB	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg	Type: L Hold: 10 Free R		M₩	3456 ₩₩₩₩ NNNNN	1			
1 Spectru	um		v					Ref Lvl Offset	2.69 dB						M	(r1 2	.402 GH
Scale/Di	iv 10 d	в						Ref Level 20.0								-	2.92 dBn
Log 10.0								Ť									
0.00		(1														
-10.0																	
20.0																	DL1 -20.75 dBn
30.0 —		∧2															
40.0		° −			2	× /	5										
50.0			Lanor Alerry	<u> </u>	hanner and		June	- asher hay the game	markelled	arrow Marke	alater the state of the	Angen a	نەرلەرسەرمە ر مە	manter	hand the second s	www	and the state of t
60.0	A PARAMAN AND A PARAMAN																
70.0																	
Start 30 Res BV		Hz						#Video BW 3	00 kHz						Swee		op 25.00 GH s (1001 pts
5 Marker	Table		▼														
M	lode	Trace	Scale		Х			Y	Func	tion	Fu	unctior	Width		Fun	iction V	alue
1	N	1	f			2.402 GHz		-2.920 dBm									
2	N N	1 1	f			1.703 GHz 1.799 GHz		-43.17 dBm -54.54 dBm									_
	N	1	f			7.196 GHZ		-55.01 dBm									
5	N	1	f			9.494 GHz		-53.20 dBm									
6																	
					ec 16, 2020 🗸	<u> </u>											

Tx. Spurious NVNT BLE 2442MHz Ant1 Ref

Tx. Spurious NVNT BLE 2442MHz Ant1 Emission

Avg Hold: 10/10 M ₩ ₩ ₩ ₩ ₩ ₩ ow Trig: Free Run	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	#Atten: 30 dB	Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S)	: DC	Input: F Couplin Align: A	SIGH1 -≁-	τ Τ
ffset 2.73 dB Mkr1 2.452 G	Ref LvI Offset 2.7			v		rum	pect
	Ref Level 20.00 dl				B	Div 10 (
	Ť						g
					•		
							.0
DL1 -19.96							.0
					<u>∧2</u>		.0
		1	A 3 A		¥−∦		.0
manun hill an and a have a second to second a shift - second a shift - second a second to second a second second	males Markenson	4	Letter and	J. Shan May Song			0
						1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	.0
							.0
	#Video BW 300 I				kU=	0 MHz W 100	
Succes = 2.40 = /4004					KHZ		
Sweep ~2.49 s (1001				•		er Table	larke
Sweep ~2.49 s (1001							
Sweep ~2.49 s (1001) Function Function Width Function Value	Y		Х	Scale	Trace	Mode	
Function Function Width Function Value	-0.1589 dBm	452 GHz	2.	Scale f	Trace 1	N	1
Function Function Width Function Value	-0.1589 dBm -39.98 dBm	.753 GHz	<u>2</u> . 1.	f f	1	N N	1 2
Function Function Width Function Value dBm	-0.1589 dBm -39.98 dBm -53.13 dBm	.753 GHz .774 GHz	2. 1. 4.	Scale f f f	1 1 1	N N N	1 2 3
Function Function Width Function Value dBm	-0.1589 dBm -39.98 dBm -53.13 dBm -54.37 dBm	753 GHz 774 GHz 196 GHz	2. 1. 4. 7.	f f f f	1 1 1 1	N N N	1 2 3 4
Function Function Width Function Value dBm	-0.1589 dBm -39.98 dBm -53.13 dBm	.753 GHz .774 GHz	2. 1. 4. 7.	f f	1 1 1	N N N	1 2 3
Function Function Width Function Va dBm dBm dBm dBm	-0.1589 dBm -39.98 dBm -53.13 dBm -54.37 dBm	753 GHz 774 GHz 196 GHz	2. 1. 4. 7.	f f f f	1 1 1 1	N N N	1 2 3 4 5

Tx. Spurious NVNT BLE 2480MHz Ant1 Ref

Tx. Spurious NVNT BLE 2480MHz Ant1 Emission

	Input: RF Coupling Align: Au	DC	Input Z: 50 Ω Corr CCorr Freq Ref: Int (S)	#Atten: 30 dB	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Lo Avg Hold: 10 Trig: Free R	D/10	1 2 3 4 5 6 M W W W W W P N N N N N		
pectrum		,			Ref LvI Offset 2	.77 dB			Mkr1	2.477 GI
ale/Div 10	dB				Ref Level 20.00					-3.08 dB
g					Ţ					
.0 0.	1									
.0										
0										DL1 -21.51
o — —										
0	<u>^2</u>									
.0		- ە ەەب الىسى	. ∲ ³ . (<mark>∕4</mark>	∆ 5	an of hidro			المسكرين والمراجد ومرار والماجة ومر	40.000 all all all all all all all all all
0 million	and a second second			agaalaan ahaan ah	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and the second sec				
.0										
					#Video BW 30	0 kHz			-	Stop 25.00 (
										49 s (1001
rt 30 MHz es BW 100 larker Table	kHz v								Sweep ~2.	
es BW 100 arker Table Mode	kHz v	Scale	×		Y	Function	Fi	unction Width		
es BW 100 arker Table Mode 1 N	kHz Trace	Scale f	2	.477 GHz	-3.076 dBm	Function	Fi	unction Width	Sweep ~2.	
es BW 100 arker Table Mode 1 N 2 N	kHz v		2	.753 GHz	-3.076 dBm -50.17 dBm	Function	F	unction Width	Sweep ~2.	
es BW 100 arker Table Mode 1 N	KHz Trace	Scale f	2 1 5		-3.076 dBm	Function	Fi	unction Width	Sweep ~2.	
es BW 100 arker Table Mode 1 N 2 N 3 N	kHz Trace 1 1 1 1	Scale f f f	2 1 5 7	.753 GHz .049 GHz	-3.076 dBm -50.17 dBm -53.60 dBm	Function	Fi	unction Width	Sweep ~2.	49 s (1001 Value

-----End of report-----