Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone: 86-755-26748019 Fax: 86-755-26748089 http://www.szhtw.com.cn

TEST REPORT

Report No....: CHTEW2004000101 Report Verification:

SHT2001005811EW Project No.....

FCC ID.....:: 2ASNSRB18

Applicant's name.....: Shenzhen Retevis Technology Co., Ltd.

Room 700, 7/F, 13-C, Zhonghaixin Science&Technology Park, Address....:

No.12 Ganli 6th Road, Jihua Street, Longgang District, Shenzhen,

China

Manufacturer..... Shenzhen Retevis Technology Co., Ltd.

Address....: Room 700, 7/F, 13-C, Zhonghaixin Science&Technology Park,

No.12 Ganli 6th Road, Jihua Street, Longgang District, Shenzhen,

China

Test item description:: Two Way Radio

Trade Mark: **RETEVIS**

Model/Type reference..... **RB18**

Listed Model(s)

47 CFR FCC Part 15 Subpart B Standard::

Date of receipt of test sample..... Mar.17, 2020

Date of testing..... Mar.17, 2020- Mar.31, 2020

Date of issue..... Apr.01, 2020

Result....: **Pass**

Compiled by

(position+printed name+signature)..: File administrators Echo Wei

Supervised by

(position+printed name+signature)..: Project Engineer Gaosheng Pan Echo Wei Gaosheng. Pan

Approved by

(position+printed name+signature)..: RF Manager Hans Hu

Testing Laboratory Name:: Shenzhen Huatongwei International Inspection Co., Ltd.

1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Address....:

Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely corresponds to the test sample.

Report No.: CHTEW2004000101 Page: 2 of 16 Issued: 2020-04-01

Contents

<u>1.</u>	IESI STANDARDS AND REPORT VERSION	J
1.1.	Test Standards	3
1.2.	Report version information	3
_		
<u>2.</u>	TEST DESCRIPTION	<u> 4</u>
2	CHMMADY	_
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Radio Specification Description	5
3.4.	Testing Laboratory Information	5
<u>4.</u>	TEST CONFIGURATION	6
4.1.	Test mode	6
4.2.	Support unit used in test configuration and system	6
4.3.	Testing environmental condition	6
4.4.	Statement of the measurement uncertainty	6
4.5.	Equipments Used during the Test	7
<u>5.</u>	TEST CONDITIONS AND RESULTS	8
5.1.	Conducted Emissions	8
5.2.	Radiated Emissions	11
<u>6.</u>	TEST SETUP PHOTOS	. 15
	<u></u>	<u> </u>
_		
7	EXTERANAL AND INTERNAL PHOTOS	16

Report No.: CHTEW2004000101 Page: 3 of 16 Issued: 2020-04-01

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

FCC CFR Title 47 Part 15 Subpart B - Unintentional Radiators

ANSI C63.4: 2014 – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz

1.2. Report version information

Revision No.	Date of issue	Description
N/A	2020-04-01	Original

Report No.: CHTEW2004000101 Page: 4 of 16 Issued: 2020-04-01

2. TEST DESCRIPTION

Test Item	Section in CFR 47	Result	Test Engineer
Conducted Emissions	15.107(a)	Pass	Jianquan Wu
Radiated Emissions	15.109(a)	Pass	Kang Yang

Note: The measurement uncertainty is not included in the test result.

Report No.: CHTEW2004000101 Page: 5 of 16 Issued: 2020-04-01

3. **SUMMARY**

3.1. Client Information

Applicant:	Shenzhen Retevis Technology Co., Ltd.		
Address:	Room 700, 7/F, 13-C, Zhonghaixin Science&Technology Park, No.12 Ganli 6th Road, Jihua Street, Longgang District, Shenzhen, China		
Manufacturer:	Shenzhen Retevis Technology Co., Ltd.		
Address:	Room 700, 7/F, 13-C, Zhonghaixin Science&Technology Park, No.12 Ganli 6th Road, Jihua Street, Longgang District, Shenzhen, China		

3.2. Product Description

Name of EUT:	Two Way Radio
Trade Mark:	RETEVIS
Model No.:	RB18
Listed Model(s)	-
Power supply:	DC 3.7V
	Model: DSA-5PF07-05 FUS 050100
Adapter information:	Input:100-240Va.c.,50/60Hz 0.2A
	Output: +5Vd.c.,1A

3.3. Radio Specification Description

Weather receive frequency:	162.400MHz, 162.425MHz, 162.450MHz, 162.475MHz, 162.500MHz, 162.525MHz, 162.550MHz, 161.650MHz, 161.775MHz, 163.275MHz
Modulation Type:	FM
Antenna Type:	Integral

3.4. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.				
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China				
	Туре	Accreditation Number			
	CNAS	L1225			
Qualifications	A2LA	3902.01			
	FCC	762235			
	Canada	5377A			

Report No.: CHTEW2004000101 Page: 6 of 16 Issued: 2020-04-01

4. TEST CONFIGURATION

4.1. Test mode

Test mode	Describe		
Charging + Weather receive mode	Keep the EUT in weather receiving mode in 162.475MHz frequency, and keep the EUT charging mode.		

4.2. Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Wheth	Whether support unit is used?							
✓	✓ No							
Item	em Equipement Trade Name Model No. FCC ID Power cord							
1	1							
2								

4.3. Testing environmental condition

Туре	Requirement	Actual	
Temperature:	15~35°C	25°C	
Relative Humidity:	25~75%	50%	
Air Pressure:	860~1060mbar	1000mbar	

4.4. Statement of the measurement uncertainty

Test item	Range	Measurement uncertainty	
Radiated Emissions	30~1000MHz	4.90 dB	
Radiated Emissions	1~18GHz	4.96 dB	
Conducted Disturbance	0.15~30MHz	3.02 dB	

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: CHTEW2004000101 Page: 7 of 16 Issued: 2020-04-01

4.5. Equipments Used during the Test

•	Conducted Emission						
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Shielded Room	Albatross projects	HTWE0114	N/A	N/A	2018/09/28	2023/09/27
•	EMI Test Receiver	R&S	HTWE0111	ESCI	101247	2019/10/26	2020/10/25
•	Artificial Mains	SCHWARZBECK	HTWE0113	NNLK 8121	573	2019/10/23	2020/10/22
•	Pulse Limiter	R&S	HTWE0033	ESH3-Z2	100499	2019/10/23	2020/10/22
•	RF Connection Cable	HUBER+SUHNER	HTWE0113-02	ENVIROFLE X_142	EF-NM- BNCM-2M	2019/10/23	2020/10/22
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A

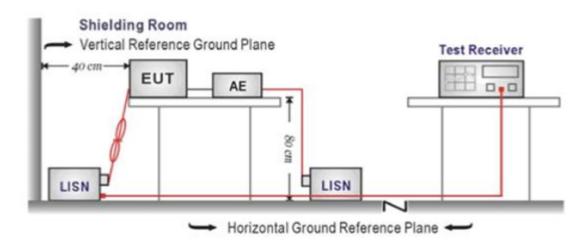
•	Radiated Emission-6th test site									
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)			
•	Semi-Anechoic Chamber	Albatross projects	HTWE0127	SAC-3m-02	C11121	2018/09/30	2021/09/29			
•	EMI Test Receiver	R&S	HTWE0099	ESCI	100900	2019/10/26	2020/10/25			
•	Ultra-Broadband Antenna	SCHWARZBEC K	HTWE0119	VULB9163	546	2017/04/05	2020/04/04			
•	Pre-Amplifer	SCHWARZBEC K	HTWE0295	BBV 9742	N/A	2019/11/14	2020/11/13			
•	RF Connection Cable	HUBER+SUHN ER	HTWE0062-01	N/A	N/A	2019/08/21	2020/08/20			
•	RF Connection Cable	HUBER+SUHN ER	HTWE0062-02	SUCOFLEX10 4	501184/4	2019/05/27	2020/05/26			
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A			

•	Radiated emission-7th test site								
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	N/A	2018/09/30	2021/09/29		
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2019/10/26	2020/10/25		
•	Horn Antenna	SCHWARZBE CK	HTWE0126	9120D	1011	2017/04/01	2020/03/31		
•	Broadband Pre- amplifier	SCHWARZBE CK	HTWE0201	BBV 9718	9718-248	2019/05/23	2020/05/22		
•	RF Connection Cable	HUBER+SUH NER	HTWE0121-01	RE-7-FH	N/A	2019/05/10	2020/05/09		
•	Test Software	Audix	N/A	E3	N/A	N/A	N/A		

Report No.: CHTEW2004000101 Page: 8 of 16 Issued: 2020-04-01

5. TEST CONDITIONS AND RESULTS

5.1. Conducted Emissions

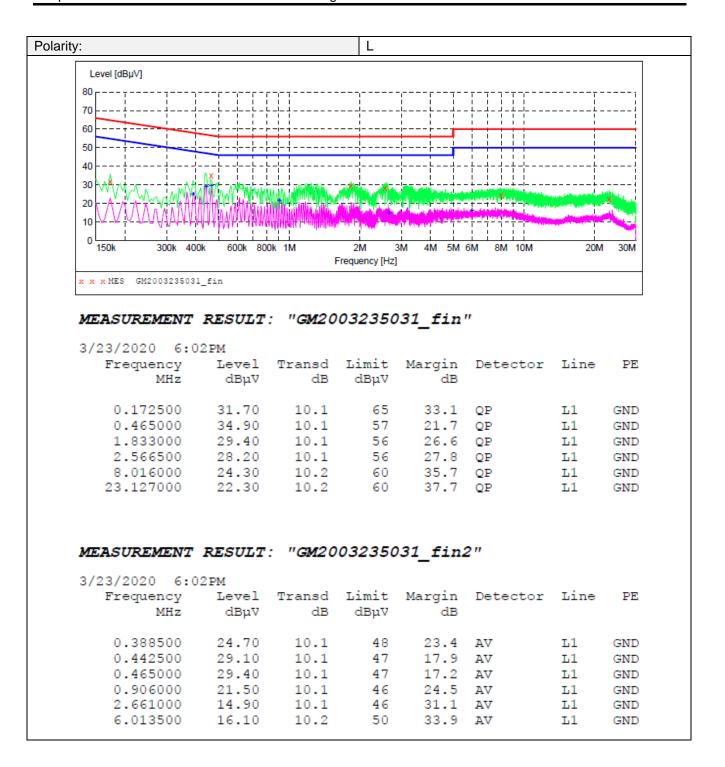

LIMIT

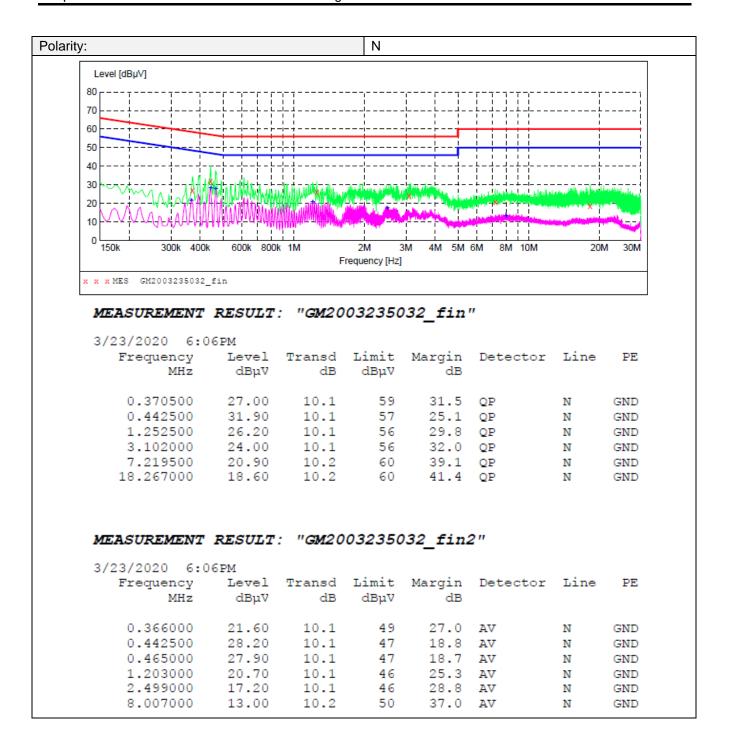
FCC CFR Title 47 Part 15 Subpart B Section 15.107:

Frequency range (MHz)	Limit (dBuV)			
Frequency range (IVII 12)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION


TEST PROCEDURE


- 1. The EUT was setup according to ANSI C63.4:2014
- 2. The EUT was placed on a plat form of nominal size, 1 m by 1.5 m, raised 10 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 10 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50ohm / 50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

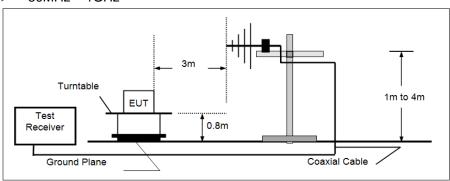
TEST MODE:

Please refer to the clause 4.1

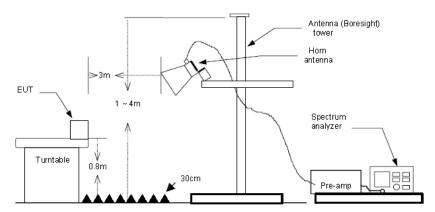
TEST RESULTS

Report No.: CHTEW2004000101 Page: 11 of 16 Issued: 2020-04-01

5.2. Radiated Emissions


LIMIT

FCC CFR Title 47 Part 15 Subpart B Section 15.109


Frequency	Limit (dBuV/m @3m)	Value					
30MHz-88MHz	40.00	Quasi-peak					
88MHz-216MHz	43.50	Quasi-peak					
216MHz-960MHz	46.00	Quasi-peak					
960MHz-1GHz	54.00	Quasi-peak					
Above 1GHz	54.00	Average					
Above IGIIZ	74.00	Peak					

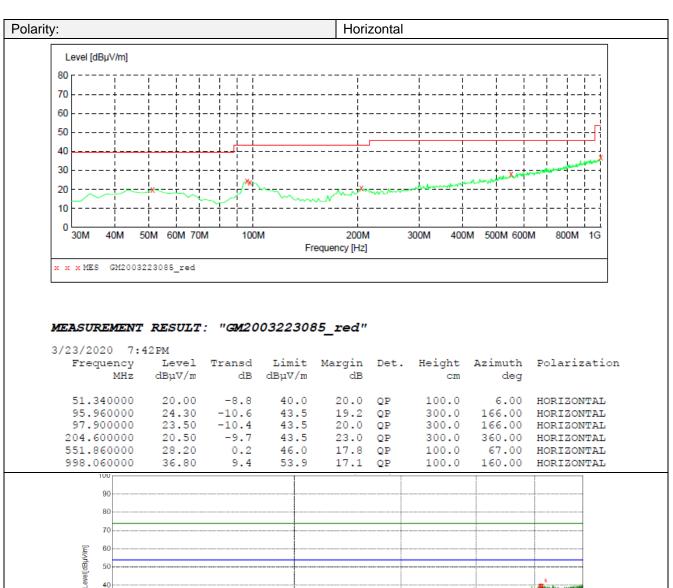
TEST CONFIGURATION

➤ 30MHz ~ 1GHz

Above 1GHz

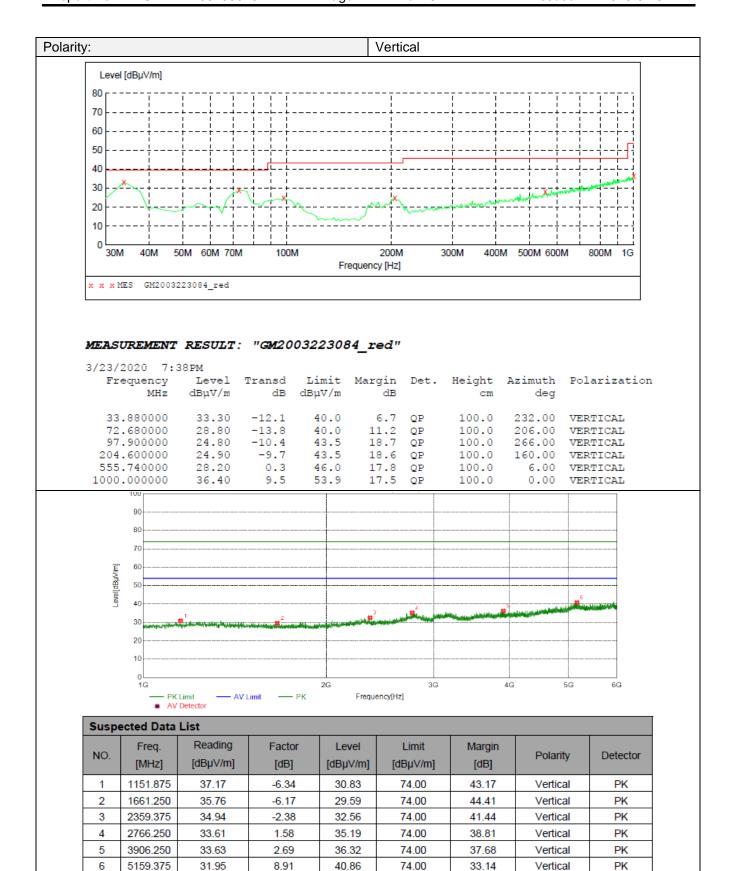
TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.4:2014.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground.
- 3. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 4. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 5. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1GHz,
 - RBW=120KHz, VBW=300KHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, theemission measurement will be repeated using the quasi-peak detector and reported.
 - (3) From 1GHz to 5th harmonic, RBW=1MHz, VBW=3MHz


Report No.: CHTEW2004000101 Page: 12 of 16 Issued: 2020-04-01

TEST MODE:

Please refer to the clause 4.1


TEST RESULTS

Note: Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor The emission levels of frequency above 6GHz are very lower than limit and not show in test report.

10					
20	And had been been been to be the second and the sec				
30	2 3	±4 ±wat	المارية	and the second second	
50					
60					
70					
80					
90					
	i				

Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector
1	1237.500	35.98	-5.73	30.25	74.00	43.75	Horizontal	PK
2	1528.125	35.98	-5.81	30.17	74.00	43.83	Horizontal	PK
3	2141.250	34.06	-3.58	30.48	74.00	43.52	Horizontal	PK
4	2786.250	32.25	1.88	34.13	74.00	39.87	Horizontal	PK
5	3894.375	32.00	2.63	34.63	74.00	39.37	Horizontal	PK
6	5116.875	30.98	8.83	39.81	74.00	34.19	Horizontal	PK

Report No.: CHTEW2004000101 Page: 15 of 16 Issued: 2020-04-01

6. TEST SETUP PHOTOS

Conducted Emissions (AC Mains)

Radiated Emissions

Report No.: CHTEW2004000101 Page: 16 of 16 Issued: 2020-04-01

7. EXTERANAL AND INTERNAL PHOTOS

Reference to the test report No.: CHTEW20040001.

-----End of Report-----