

FCC Part 15.407

TEST REPORT

For

ANSER-NET CO.,LTD

3F., No.108, Shanghai Rd., Taoyuan Dist., Taoyuan City 330, Taiwan (R.O.C.)

FCC ID: 2ASNE221014ACN

Report Type: Original Report	Product Name: Wireless Solution
Report Producer : <u>Coco Lin</u>	
Report Number : <u>RXZ2208</u>	03003RF02
Report Date : <u>2022-11-2</u>	5
Reviewed By: <u>Andy Shir</u>	Nond-1. Shih
Prepared By: Bay Area Compl	iance Laboratories Corp.
(New Taipei Labo	pratory)
70, Lane 169, Sec	. 2, Datong Road, Xizhi Dist.,
New Taipei City 2	22183, Taiwan, R.O.C.
Tel: +886 (2) 264'	7 6898
Fax: +886 (2) 264	7 6895
www.bacl.com.tw	,

Revision History

Revision	No.	No. Report Number		Description	Author/ Revised by
0.0	RXZ220803003	RXZ220803003RF02	2022-11-25	Original Report	Coco Lin

TABLE OF CONTENTS

1	Ger	neral Information	5
	1.1	Product Description for Equipment under Test (EUT)	5
	1.2	Objective	
	1.3	Related Submittal(s)/Grant(s)	6
	1.4	Test Methodology	6
	1.5	Statement	
	1.6	Measurement Uncertainty	
	1.7	Environmental Conditions	
	1.8	Test Facility	
2	Sys	tem Test Configuration	8
	2.1	Description of Test Configuration	
	2.2	Equipment Modifications	
	2.3	EUT Exercise Software	
	2.4	Test Mode	
	2.5	Support Equipment List and Details	
	2.6 2.7	External Cable List and Details	
	2.7	Block Diagram of Test Setup Duty Cycle	
2			
3	Sun	nmary of Test Results	18
4	Tes	t Equipment List and Details	19
5	FC	C §15.407(f), §1.1307(b)(3)(i) - RF Exposure	21
	5.1		
	5.1 5.2	Applicable Standard RF Exposure Evaluation Result	
	-	-	
6	FC	C §15.203 – Antenna Requirements	
	6.1	Applicable Standard	
	6.2	Antenna List and Details	24
7	FC	C §15.407(b)(9) &§15.207(a) – AC Line Conducted Emissions	25
	7.1	Applicable Standard	25
	7.2	EUT Setup	
	7.3	EMI Test Receiver Setup	26
	7.4	Test Procedure	
	7.5	Corrected Factor & Margin Calculation	
	7.6	Test Results	27
7	FC	C §15.209, §15.205 , §15.407(b) – Spurious Emissions	41
	8.1	Applicable Standard	41
	8.2	EUT Setup	
	8.3	EMI Test Receiver & Spectrum Analyzer Setup	43
	8.4	Test Procedure	
	8.5	Corrected Factor & Margin Calculation	
	8.6	Test Results	44
9	FC	C §15.407(a) – Emission Bandwidth And Occupied Bandwidth	63
	9.1	Applicable Standard	63
	9.2	Test Procedure	
		y not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. i Laboratory) Page 3 of	152

Bay Area	Compliance Laboratories Corp. (New Taipei Laboratory)	No.: RXZ220803003RF02
9.3	Test Results	
10 FC	C §15.407(a) – Maximum Output Power	
10.1	Applicable Standard	
10.2	Test Procedure	
10.3	Test Results	
11 FC	C §15.407(a) – Power Spectral Density	
11.1	Applicable Standard	
11.2	Test Procedure	
11.3	Test Results	

1 General Information

1				
Amplicant	ANSER-NET CO.,LTD			
Applicant	3F., No.108, Shanghai Rd., Taoyuan Dist., Taoyuan City 330, Taiwan (R.O.C.)			
Manufacturer	ANSER-NET CO.,LTD			
Manufacturer	3F., No.108, Shanghai Rd., Taoyuan Dist., Taoyuan City 330, Taiwan (R.O.C.)			
Brand(Trade) Name	RF-iLink			
Product (Equipment)	Wireless Solution			
Main Model Name	AS-AP515915ACN-S			
	AS-AP515919ACN-S, AS-AP515919ACNO-S, AS-AP24590819ACN-S,			
	AS-AP515920ACN-S, AS-AP515920ACNO-S, AS-AP24590820ACN-S,			
Series Model Name	AS-AP515923ACN-S, AS-AP515923ACNO-S, AS-AP24590823ACN-S,			
	AS-AP5159X51ACN-S, AS-AP2459X51ACN-S, AS-AP5159X52ACN-S,			
	AS-AP2459X52ACN-S, AS-AP515904ACNO-S.			
Model Discrepancy	Please refer to the difference declaration letter provided by the manufacturer.			
Frequency Range	5150 MHz ~ 5250 MHz			
	IEEE 802.11a Mode: OFDM			
Madulation Technique	IEEE 802.11n HT20/ ac VHT20 Mode: OFDM			
Modulation Technique	IEEE 802.11n HT40/ ac VHT40 Mode: OFDM			
	IEEE 802.11ac VHT80 Mode: OFDM			
Power Operation	24Vdc from POE			
Received Date	2022/8/22			
Date of Test	2022/9/22 ~ 2022/10/26			

1.1 Product Description for Equipment under Test (EUT)

*All measurement and test data in this report was gathered from production sample serial number:

RXZ220803003-03/-07/-08/-09/-10/-11 (Assigned by BACL, New Taipei Laboratory).

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

1.2 Objective

This report is prepared on behalf of ANSER-NET CO.,LTD in accordance with Part 2, Subpart J, Part 15, Subparts A, C and E of the Federal Communication Commission's rules.

1.3 Related Submittal(s)/Grant(s)

N/A

1.4 Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

1.5 Statement

Decision Rule: No, (The test results do not include MU judgment)

It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory).

Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

The determination of the test results does not require consideration of the uncertainty of the measurement, unless the assessment is required by customer agreement, regulation or standard document specification. Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) is not responsible for the authenticity of the information provided by the applicant that affects the test results.

No.: RXZ220803003RF02

1.6 Measurement Uncertainty

1.0 Measurement Oncerta	Wiedsul ement oneer tainty			
Param	eter	Uncertainty		
AC Ma	ains	+/- 2.36 dB		
RF output powe	er, conducted	+/- 0.93 dB		
Power Spectral Der	nsity, conducted	+/- 0.93 dBm		
Occupied Bandwidth		+/- 0.35 MHz		
Unwanted Emissi	ons, conducted	+/- 1.69 dBm		
	30 MHz~1GHz	+/- 5.22 dB		
Emissions, radiated	1 GHz~18 GHz	+/- 6.12 dB		
	18 GHz~40 GHz	+/- 4.99 dB		
Temperature		+/- 1.27 °C		
Humidity		+/- 3 %		

1.7 Environmental Conditions

Test Site	Test Date	Temperature (°C)	Relative Humidity (%)	ATM Pressure (hPa)	Test Engineer
AC Line Conducted Emissions	2022/10/20~2022/10/26	24	65	1010	Jim
Radiation Spurious Emissions	2022/9/22~2022/10/21	21.6~24.1	60~71	1010	Aaron Pan
Emission Bandwidth And Occupied Bandwidth	2022/10/7~2022/10/19	24.3~25.5	51~52	1010	Andy Cheng
Maximum Output Power	2022/10/7~2022/10/19	24.3~25.5	51~52	1010	Andy Cheng
Power Spectral Density	2022/10/7~2022/10/19	24.3~25.5	51~52	1010	Andy Cheng

1.8 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) to collect test data is located on

70, Lane 169, Sec. 2, Datong Road, Xizhi Dist., New Taipei City 22183, Taiwan, R.O.C.

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 3732) and the FCC designation No.TW3732 under the Mutual Recognition Agreement (MRA) in FCC Test.

2 System Test Configuration

2.1 Description of Test Configuration

The system was configured for testing in an engineering mode, which is provided by manufacturer.

The system support 802.11a/n ht20/n ht40/ac vht20/ac vht40/ac vht80, the 820.11n ht20/n ht40 were reduced since the identical parameters with 802.11ac vht20 and vht40.

SISO mode and MIMO mode have the same power level setting and base on output power testing, MIMO mode power than SISO mode large, MIMO mode was selected for full testing.

The device supports MIMO (CDD) at all modes.

For 5150 ~ 5250MHz

4 channels are provided for 802.11a, 802.11n HT20, 802.11ac VHT20:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	44	5220
40	5200	48	5240

2 channels are provided for 802.11n HT40, 802.11ac VHT40:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
38	5190	46	5230

1 channel is provided for 802.11ac VHT80:

Channel	Frequency (MHz)	
42	5210	

802.11a/n HT20 mode Channel 36, 40, 48 were tested.

802.11n HT40 mode Channel 38, 46 were tested.

802.11ac VHT80 mode Channel 42 were tested.

2.2 Equipment Modifications

No modification was made to the EUT.

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

2.3 EUT Exercise Software

The EUT was programmed to be in continuously transmitting mode.

The software was used "Atheors Radio Test 2 (ART2-GUI) v2.3".

MIMO(CDD)

Model: AS-AP515915ACN-S, AS-AP515919ACN-S, AS-AP515919ACNO-S, AS-AP24590819ACN-S, AS-AP515920ACN-S, AS-AP515920ACNO-S, AS-AP24590820ACN-S, AS-AP515923ACN-S, AS-AP515923ACNO-S, AS-AP24590823ACN-S :

		Channel Frequency		Power setting		
UNII Band	Mode	Channel	(MHz)	Chain 0	Chain 1	
		36	5180	14	14	
	802.11a	40	5200	14	14	
		48	5240	14	14	
		36	5180	13.5	13.5	
	802.11n HT20	40	5200	13.5	13.5	
		48	5240	13.5	13.5	
UNII-1	90 2 11., UT40	38	5190	7.5	7.5	
UNII-1	802.11n HT40	46	5230	Chain 0 14 14 14 14 13.5 13.5 13.5	7.5	
		36	5180	13.5	13.5	
	802.11ac VHT20	40	5200	13.5	13.5	
		48	5240	13.5	13.5	
	902 11 VIIT40	38	5190	7.5	7.5	
	802.11ac VHT40	46	5230	7.5	7.5	
	802.11ac VHT80	42	5210	3	3	

Model: AS-AP5159X51ACN-S, AS-AP2459X51ACN-S, AS-AP5159X52ACN-S, AS-AP2459X52ACN-S :

			Frequency	Power	Power setting	
UNII Band	Mode	Channel	(MHz)	Chain 0	Chain 1	
		36	5180	22	22	
	802.11a	40	5200	22	22	
		48	5240	20	20	
		36	5180	21.5	21.5	
	802.11n HT20	40	5200	21.5	21.5	
		48	5240	19.5	19.5	
UNII-1	802.11n HT40	38	5190	17.5	17.5	
UNII-1		46	5230	24.5	24.5	
	802.11ac VHT20 802.11ac VHT40	36	5180	21.5	21.5	
		40	5200	21.5	21.5	
		48	5240	19.5	19.5	
		38	5190	17.5	17.5	
		46	5230	24.5	24.5	
	802.11ac VHT80	42	5210	16	16	

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

No.: RXZ220803003RF02

Model: AS-AP515904ACNO-S :

	Mala		Frequency	Power	setting
UNII Band	Mode	Channel	(MHz)	Chain 0	Chain 1
		36	5180	23	23
	802.11a	40	5200	25	25
		48	5240	25	25
		36	5180	24	24
	802.11n HT20	40	5200	25	25
		48	5240	25	25
UNII-1	000 11 11740	38	5190	20.5	20.5
UNII-I	802.11n HT40	46	5230	25 25	
		36	5180	24	24
	802.11ac VHT20	40	5200	25	25
		48	5240	25	25
	802.11ac VHT40	38	5190	20.5	20.5
		46	5230	26	26
	802.11ac VHT80	42	5210	16	16

SISO mode and MIMO mode have the same power level setting and base on output power testing, MIMO mode power than SISO mode large, MIMO mode was selected for full testing.

The device supports MIMO (CDD) at all modes.

The EUT was configured for testing in an engineering mode which was provided by the manufacturer.

The worst-case data rates are determined to be as follows for each mode based upon investigations by measuring the average power and PSD across all data rates bandwidths, and modulations.

802.11a: MIMO(CDD) Mode :6Mbps
802.11ac VHT20 MIMO(CDD) Mode: MCS0
802.11ac VHT40 MIMO(CDD) Mode: MCS0
802.11ac VHT80 MIMO(CDD) Mode: MCS0

2.4 Test Mode

Pre-scan

AC Line Conducted Emissions and Radiated Spurious Emissions

Mode 1: AS-AP515915ACN-S, Panel Antenna, Antenna Gain: 15dBi (Sample serial number: RXZ220803003-03).
Mode 2: AS-AP515919ACN-S, Panel Antenna, Antenna Gain: 15dBi (Sample serial number: RXZ220803003-08).
Mode 3: AS-AP515920ACN-S, Panel Antenna, Antenna Gain: 15dBi (Sample serial number: RXZ220803003-07).
Mode 4: AS-AP515923ACN-S, Panel Antenna, Antenna Gain: 15dBi (Sample serial number: RXZ220803003-10).
Mode 5: AS-AP5159X51ACN-S, Rubber Antenna, Antenna Gain: 8.16dBi (Sample serial number: RXZ220803003-07).
Mode 6: AS-AP5159X52ACN-S, Rubber Antenna, Antenna Gain: 8.16dBi (Sample serial number: RXZ220803003-07).
Mode 7: AS-AP515904ACNO-S, Rubber Antenna, Antenna Gain: 2dBi (Sample serial number: RXZ220803003-01).
Worst case is the Mode 1, Mode 5, Mode 7

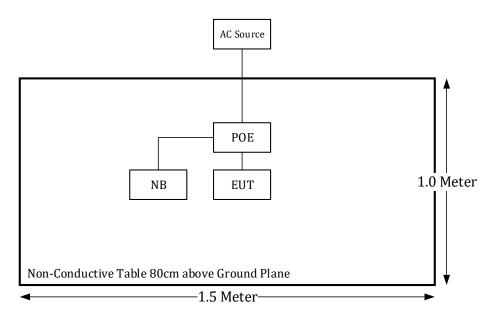
Model 1, Mode 5, Mode 7 for all test item.

Other series model test Radiated Spurious Emissions below 1GHz and AC Line Conducted Emissions.

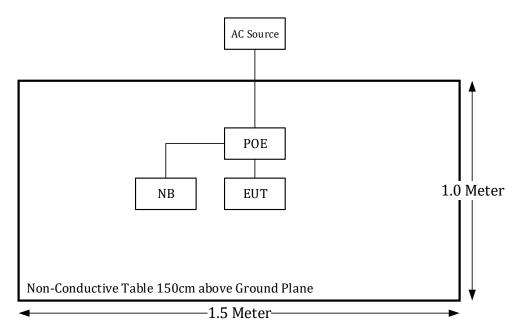
2.5 Support Equipment List and Details

Description	Manufacturer	Model Number	S/N
NB	DELL	E6410	8N7PXN1
POE POWER SUPPLY	ANSER-NET	GRT-POE20-240100A	2005290154

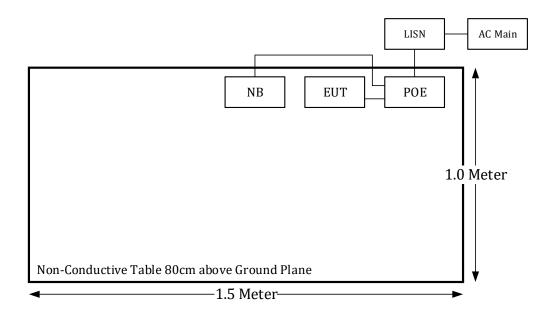
2.6 External Cable List and Details

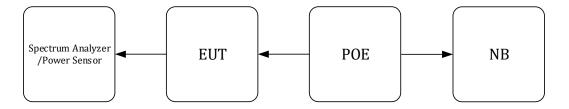

Cable Description	Length (m)	From	То
RJ-45 Cable	1	EUT	POE
RJ-45 Cable	1	NB	POE

2.7 Block Diagram of Test Setup


See test photographs attached in setup photos for the actual connections between EUT and support equipment.

Radiation:


Below 1GHz:


Above 1GHz:

Conduction:

Conducted:

2.8 Duty Cycle

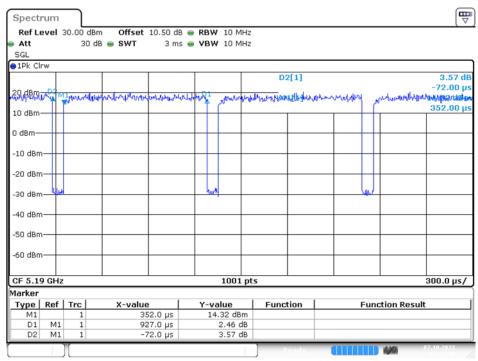
The duty cycle as below:

Radio Mode	Ton (ms)	Ton+Toff (ms)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)
802.11a	2.01	2.262	89	0.51
802.11n20	1.87	2.01	93	0.32
802.11n40	0.927	0.999	93	0.32
802.11ac20	1.902	1.98	96	0.18
802.11ac40	0.936	1.008	93	0.32
802.11ac80	0.456	0.534	85	0.71

Note: Duty Cycle Correction Factor = $10*\log(1/duty cycle)$

Please refer to the following plots.

Specti Ref Le		30.00 dB	m Offset	10.50 dB 🧉	RBW 10 M	1Hz					
SGL		30 0	B 👄 SWT	6 ms 🦷	VBW 10 M	1Hz					
1Pk Cl	rw										
20 dBm·							_	1[1] 1[1]			5.81 dBr 27000 m 0.17 d
10 dBm-		02	M1			01				1	01000 m
0 dBm-	un in the	anterest	phyleliphonium	anuna	have been a second and the second	hunderity	pro fra	alan shi hata a shi ka shi k	and the second	usermentation	mile
-10 dBm	-				2		-				
-20 dBm	-				-						
-30 dBm	-	Life Internet	n i v		-	. li	gH_				happed
-40 dBm	+				-		_				
-50 dBm							_				
-60 dBm	+										
CF 5.18	3 GHz	<u> </u>			100:	l pts				6	00.0 µs/
Marker											
Type	Ref	Trc	X-value		Y-value		unc	tion	Fun	ction Result	
M1 D1	M1	1		.27 ms	5.81 dE 0.17						
D1 D2	M1 M1	1		52.0 µs	0.17						
)(-	1		4,43	10.2022


802.11a Mode

Date: 7.OCT.2022 17:03:12

Ref Level 30.00 dBm Offset 10.50 dB RBW 10 MHz SGL SGL SGL M1[1] 19.17 dL 19.17 dL 19.17 dL 1.89 dL 1.89 dL 1.89 dL 1.87 mL 1.87 mL 1.87 mL 1.87 mL 1.87 mL 1.98 mL 1.87 mL 1.98 mL 1.87 mL 1.89 dL 1.87 mL 1.88 mL 1.87 mL 1.88 mL 1.97 mL 1.88 mL 1.97 mL 1.87 mL 1.88 mL 1.97 mL 1.87 mL 1.88 mL 1.88 mL 1.88 mL 1.98 mL 1.87 mL 1.88 mL 1.88 mL 1.88 mL 1.87 mL 1.88 mL 1.88 mL 1.87 mL 1.88 mL 1.87 mL 1.88 mL	Spect	rum													
SGL 0 1Pk Clrw 0 1 1 1 1 1.98 ms 0 1 1.97 dt 0 1 1.97 dt 0 1 1.97 dt 0 1 1.97 dt 0 1 1.98 ms 0 1.97 dt 0 1.99 dt 0 1	Ref Le	evel :	30.00	dBm O	ffset 1	LO.50 dB (RBW	10 MH	z						
IPk Clrw IPk Clrw <td< th=""><th>🕨 Att</th><th></th><th>30</th><th>dB 😑 S</th><th>WT</th><th>10 ms (</th><th>VBW</th><th>10 MH</th><th>z</th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	🕨 Att		30	dB 😑 S	WT	10 ms (VBW	10 MH	z						
M1[1] 19:17 dl 20 dBm 1 10 dBm 1 -10 dBm 1 -20 dBm 1 -30 dBm 1 -60 dBm 1 -10 dBm 1 -20 dBm 1 -20 dBm 1 -20 dBm 1 -20 dBm 1 -30 dBm 1 -40 dBm 1 -10 dBm 1 -10 dBm 1 -20 dBm 1 -20 dBm 1 -30 dBm 1 -40 dBm 1 -50 dBm 1 -60 dBm 1 -10 dBm 1 -20 dBm 1 -20 dBm 1 -10 dBm 1															
20 dBm 1.4 d. 4 d	●1Pk Cl	rw													
10 dBm 1.89 0 dBm 1.87000 0 dBm 1.87000 -10 dBm 1.89 -20 dBm 1.89 -30 dBm 1.89 -30 dBm 1.89 -40 dBm 1.89 -50 dBm 1.89 -60 dBm 1.89 -60 dBm 1.89 ms 10 dBm 1 10 dBm 1.89 dB				0.94					M	11[1]				19	.17 dBn
10 dBm 1.87000 0 dBm 1.87000 0 dBm 1.87000 -10 dBm 1.87000 -20 dBm 1.87000 -30 dBm 1.87000 -30 dBm 1.87000 -30 dBm 1.87000 -20 dBm 1.87000	20 dBm	No. of Lab	بلا ريا تهريا في	La Maryo	wanyskaan	www.www.www	former	manner	40044160000	putrum.	all would	halpent the all the start	persona	monday	8090 m
10 dBm							1		P	1[1]			lí –	1.0	
-10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -10	10 dBm·	+								-			H	1.8	7000 m
-10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -10 1 1 1.98 ms 19.17 dBm 1.89 dB -10 1.87 ms 1.89 dB -10 1.87 ms 1.89 dB -10 1.87 ms 1.89 dB -10 1.89 dB															
-20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -60 dBm -10 m -60 dBm -10 m -60 dBm -10 m -10 m -1	0 dBm—	+								-					
-20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -60 dBm -10 m -60 dBm -10 m -60 dBm -10 m -10 m -1															
-30 dBm	-10 dBm	די													
-30 dBm	00 d0 m														
-40 dBm	-20 UBI	'—													
-40 dBm	-30 dBm			W									V		ل ا
-50 dBm	00 000	·													
-60 dBm	-40 dBm	∖								<u> </u>			_		
-60 dBm Image: CF 5.18 GHz 1001 pts 1.0 m Of BHZ Type Ref Trc X-value Y-value Function Function Result M1 1 1.98 ms 19.17 dBm Image: DB dB															
CF 5.18 GHz 1001 pts 1.0 m Marker Type Ref Trc X-value Y-value Function Function Result M1 1 1.98 ms 19.17 dBm 1001 pts 1001 pts D1 M1 1 1.87 ms 1.89 dB 1001 pts 1001 pts	-50 dBm	∩+-					+	-+		+			+		
CF 5.18 GHz 1001 pts 1.0 m Marker Type Ref Trc X-value Function Result M1 1 1.98 ms 19.17 dBm Function Result D1 M1 1 1.87 ms 1.89 dB Function Result															
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 1.98 ms 19.17 dBm 19.17 dBm 1.89 dB 19.189 dB 100 ms 1.89 dB 100 ms 1.80 m	-60 dBm	\					+	-+		-		<u> </u>	+		
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 1.98 ms 19.17 dBm 19.17 dBm 1.89 dB 19.189 dB 100 ms 1.89 dB 100 ms 1.80 m															
Type Ref Trc X-value Y-value Function Function Result M1 1 1.98 ms 19.17 dBm	CF 5.18	B GHz						1001 g	ots					1	1.0 ms/
M1 1 1.98 ms 19.17 dBm D1 M1 1 1.87 ms 1.89 dB	Marker														
M1 1 1.98 ms 19.17 dBm D1 M1 1 1.87 ms 1.89 dB	Type	Ref	Trc	x	value	1	Y-va	lue	Fund	tion	1	Fu	nction I	Result	
					1.9	98 ms	19.	17 dBm	1						
D2 M1 1 -140.0 µs 1.78 dB															
	D2	M1	1		-140).0 µs		1.78 dB							
Beady 07.10.2022										Reads			4364	07.1	0.2022

802.11n HT20 Mode

Date: 7.OCT.2022 15:28:19


802.11n HT40 Mode

Date: 7.OCT.2022 15:29:38

Spectrum Ref Level 30.00 dBm Offset 10.50 dB 👄 RBW 10 MHz 30 dB 🕳 SWT 6 ms 👄 VBW 10 MHz Att SGL ●1Pk Clrw D2[1] 2.92 dB -78.00 µ 20 dBm M1[1] 2.74 dBn .69000 m 10 dBm will fill burrelister was underving particulation Alterativella where where Aller Maria mede manut 0 dBm -10 dBm -20 dBm -30 dBm 40 dBm -50 dBm -60 dBm CF 5.18 GHz 1001 pts 600.0 µs/ Marker Type | Ref | Trc | Function X-value Y-value **Function Result** 1.69 ms 2.74 dBm 2.31 dB 2.92 dB M1 D1 M1 1.902 ms D2 M1 -78.0 µs

802.11ac VHT20 Mode

Date: 7.OCT.2022 17:04:25

802.11ac VHT40 Mode

Date: 7.OCT.2022 17:06:24

Spectrum Ref Level 30.00 dBm Offset 10.50 dB 👄 RBW 10 MHz 30 dB 👄 SWT 2 ms 👄 VBW 10 MHz Att SGL ●1Pk Clrw M1[1] -2.81 dBm 402.00 µs 20 dBm· 1.75 dB 456.00 μs D1[1] 10 dBm **Waldun MAR** ryhnw 5 -10 dBm -20 dBm· -30 dBm -40 dBm -50 dBm· -60 dBm CF 5.21 GHz 1001 pts 200.0 µs/ Marker Type Ref Trc X-value Y-value Function Function Result 402.0 μs 456.0 μs -78.0 μs -2.81 dBm 1.75 dB 1.14 dB Μ1 D1 Μ1 1 D2 M1 1

802.11ac VHT80 Mode

Date: 7.OCT.2022 17:07:49

3 Summary of Test Results

FCC Rules	Description of Test	Results
§15.407(f), §1.1307(b)(3)(i)	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.407(b)(9) & §15.207(a)	AC Line Conducted Emissions	Compliance
§15.205 & §15.209 & §15.407(b)	Unwanted Emission	Compliance
§15.407(a)	Emission Bandwidth	Compliance
§15.407(a)(1)	Conducted Transmitter Output Power	Compliance
§15.407(a)(1)	Power Spectral Density	Compliance

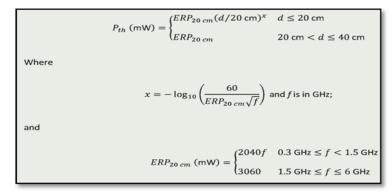
4 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due Date
	1	AC Line Conduction Ro	oom (CON-A)		
LISN	Rohde & Schwarz	ENV216	101612	2022/1/14	2023/1/13
LISN	Rohde & Schwarz	ENV216	101248	2022/6/22	2023/6/21
EMI Test Receiver	Rohde & Schwarz	ESW8	100947	2022/7/27	2023/7/26
Pulse Limiter	Rohde & Schwarz	ESH3Z2	TXZEM104	2022/7/19	2023/7/18
RF Cable	EMEC	EM-CB5D	1	2022/6/7	2023/6/6
Software	AUDIX	E3	V9.150826k	N.C.R	N.C.R
	I	Radiated Room (S	966-A)	I	
Bilog Antenna with 6 dB Attenuator	SUNOL SCIENCES & MINI-CIRCUITS	JB6/UNAT-6+	A050115/15542_ 01	2022/2/14	2023/2/13
Horn Antenna	EMCO	SAS-571	1020	2022/5/25	2023/5/24
Horn Antenna	ETS-Lindgren	3116	62638	2022/8/18	2023/8/17
Preamplifier	Sonoma	310N	130602	2022/6/16	2023/6/15
Preamplifier	A.H. system Inc.	PAM-0118P	466	2021/11/4	2022/11/3
Microware Preamplifier	EM Electronics Corporation	EM18G40G	60656	2021/12/27	2022/12/26
Spectrum Analyzer	Rohde & Schwarz	FSV40	101435	2022/1/13	2023/1/12
EMI Test Receiver	Rohde & Schwarz	ESR7	101419	2021/11/9	2022/11/8
Micro flex Cable	UTIFLEX	UFB197C-1-2362- 70U-70U	225757-001	2022/1/24	2023/1/23
Coaxial Cable	COMMATE	PEWC	8Dr	2021/12/24	2022/12/23
Coaxial Cable	UTIFLEX	UFB311A-Q-1440- 300300	220490-006	2022/1/24	2023/1/23
Coaxial Cable	JUNFLON	J12J102248-00-B-5	AUG-07-15-044	2021/12/24	2022/12/23
Cable	EMC	EMC105-SM-SM- 10000	201003	2022/1/24	2023/1/23
Coaxial Cable	ROSNOL	K1K50-UP0264- K1K50-450CM	160309-1	2022/1/24	2023/1/23

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 19 of 152

Bay Area Complian	Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) No.: RXZ220803003RF02									
Coaxial Cable	ROSNOL	K1K50-UP0264- K1K50-50CM	15120-1	2022/1/18	2023/1/17					
Software	AUDIX	E3	18621a	N.C.R	N.C.R					
	Conducted Room									
Spectrum Analyzer	Rohde & Schwarz	FSV40	101140	2022/2/18	2023/2/17					
Cable	UTIFLEX	UFA210A	9435	2022/10/3	2023/10/2					
Power Sensor	KEYSIGHT	U2021XA	MY54080018	2022/1/24	2023/1/23					
Attenuator	MINI-CIRCUITS	BW-S10W5+	1419	2022/2/11	2023/2/10					

*Statement of Traceability: BACL Corp. attests that all of the calibrations on the equipment items listed above were traceable to the SI System of Units via the R.O.C. Center for Measurement Standards of the Electronics Testing Center, Taiwan (ETC) or to another internationally recognized National Metrology Institute (NMI), and were compliant with the current Taiwan Accreditation Foundation (TAF) requirements


5 FCC §15.407(f), §1.1307(b)(3)(i) - RF Exposure

5.1 Applicable Standard

According to subpart 15.407(f) and subpart §1.1307(b)(3)(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

For single RF sources (*i.e.*, any single fixed RF source, mobile device, or portable device, as defined in paragraph (b)(2) of this section): A single RF source is exempt if:

(A) The available maximum time-averaged power is no more than 1 mW, regardless of separation distance. This exemption may not be used in conjunction with other exemption criteria other than those in paragraph (b)(3)(ii)(A) of this section. Medical implant devices may only use this exemption and that in paragraph (b)(3)(ii)(A);
(B) Or the available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold *Pth* (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive). *Pth* is given by:

(C) Or using Table 1 and the minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates, the ERP (watts) is no more than the calculated value prescribed for that frequency. For the exemption in Table 1 to apply, R must be at least $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. If the ERP of a single RF source is not easily obtained, then the available maximum time-averaged power may be used in lieu of ERP if the physical dimensions of the radiating structure(s) do not exceed the electrical length of $\lambda/4$ or if the antenna gain is less than that of a half-wave dipole (1.64 linear value).

Table 1 to § 1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine Environmental Evaluation							
RF Source frequency (MHz)	Threshold ERP (watts)						
0.3-1.34	1,920 R ² .						
1.34-30	3,450 R ² /f ² .						
30-300	3.83 R ² .						
300-1,500	0.0128 R ² f.						
1,500-100,000	19.2R ² .						

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

No.: RXZ220803003RF02

The sequence to apply for single portable RF sources includes the following steps:

1) determination of 1 mW blanket exemption under § 1.1307(b)(3)(i)(A)

2) determination of exemption under the MPE-based § 1.1307(b)(3)(i)(C) if 1) is not met

3) determination of exemption under the SAR-based § 1.1307(b)(3)(i)(B) if both 1) and 2) are not met

5.2 **RF Exposure Evaluation Result**

Worst case:

Mode 1:

Pand	Freq	Tune-up	Ant Gain	Distances	Tune-up	ERP	ERP
Band	(MHz)	(dBm)	(dBi)	(mm)	(mW)	(dBm)	(mW)
WIFI 5G	5180	12.5	15	200	17.78	25.35	342.77

§ 1.1307(b)(3)(i)(A) methid os not applicable.

§ 1.1307(b)(3)(i)(C)

Band	Freq	λ/2π	Distances	ERP Limit	Result
	(MHz)	(mm)	applies	(mW)	Option C
WIFI 5G	5180	9.22	apply	768.00	exempt

The minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at

which the source operates

ERP (watts) is no more than the calculated value prescribed for that frequency

R must be at least $\lambda/2\pi$

 λ is the free-space operating wavelength in meters

Mode 5:

RF cable loss: 0.5dB

Output Power: 22.88+0.5=23.38dBm

Tune-up power: 23.5dBm

Band	Freq	Tune-up	Ant Gain	Distances	Tune-up	ERP	ERP
Ballu	(MHz)	(dBm)	(dBi)	(mm)	(mW)	(dBm)	(mW)
WIFI 5G	5180	23.5	8.16	200	223.87	29.51	893.31

 $1.1307(b)(3)(i)(A) \ and \ (C) \ methid \ os \ not applicable.$

§	1.1307(l	b)(3)(i)(B)

WIFI 5G	5180	3060.00	2.065	3060	exempt
Band	Freq (MHz)	Pth (mW)	x	ERP 20cm (mW)	Result Option B

The available maximum time-averaged power or effective radiated power (ERP), whichever is greater.

This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive).

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

No.: RXZ220803003RF02

Mode 7:

RF cable loss: 0.5dB

Output Power: 24.13+0.5=24.63dBm

Tune-up power: 25dBm

Band	Freq	Tune-up	Ant Gain	Distances	Tune-up	ERP	ERP
Dallu	(MHz)	(dBm)	(dBi)	(mm)	(mW)	(dBm)	(mW)
WIFI 5G	5180	25	2	200	316.23	24.85	305.49

§ 1.1307(b)(3)(i)(A) methid os not applicable.

§ 1.1307(b)(3)(i)(C)

Band	Freq	λ/2π	Distances	ERP Limit	Result
	(MHz)	(mm)	applies	(mW)	Option C
WIFI 5G	5180	9.22	apply	768.00	exempt

The minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates

ERP (watts) is no more than the calculated value prescribed for that frequency

R must be at least $\lambda/2\pi$

 $\lambda~$ is the free-space operating wavelength in meters

Result: The EUT meets exemption requirement- RF exposure evaluation greater than 20cm distance.

6 FCC §15.203 – Antenna Requirements

6.1 Applicable Standard

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna does not exceed 6dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

6.2 Antenna List and Details

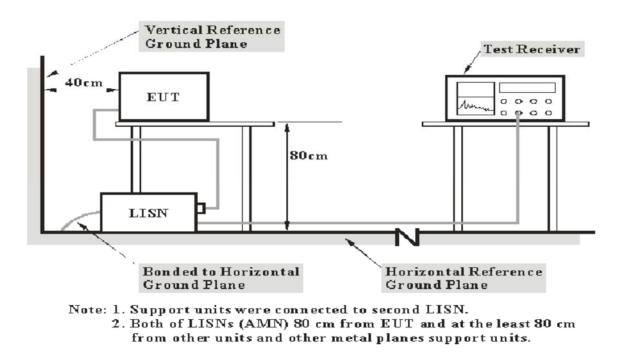
Manufacturer	Model	Antenna Type	Antenna ports type	RF cable loss	Antenna Gain
ANSER-NET	AS-PA515915DU-S	Panel Antenna	N/A	N/A	15 dBi
ANSER-NET	AS-FG245908NM-M	Dipole antenna	N Type	0.5dB	8.16 dBi
ANSER-NET	AS-SW245802SM-G	Dipole antenna	SMA Type	0.5dB	2 dBi

Result: Compliance

7 FCC §15.407(b)(9) & § 15.207(a) – AC Line Conducted Emissions

7.1 Applicable Standard

As per FCC §15.407(b) (9)


Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in \$15.207

Frequency of Emission	Conducted Limit (dBuV)				
(MHz)	Quasi-Peak	Average			
0.15-0.5	66 to 56 Note 1	56 to 46 Note 1			
0.5-5	56	46			
5-30	60	50			

The lower limit applies at the boundary between the frequencies ranges.

Note 1: Decreases with the logarithm of the frequency.

7.2 EUT Setup

The setup of EUT is according with per ANSI C63.10-2020 measurement procedure. The specification used was with the FCC Part 15.207 limits.

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

7.3 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150kHz to 30MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations

Frequency Range	IF B/W
150kHz-30MHz	9kHz

7.4 Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN. Maximizing procedure was performed on the six (6) highest emissions of the EUT. All data was recorded in the Quasi-peak and average detection mode.

7.5 Corrected Factor & Margin Calculation

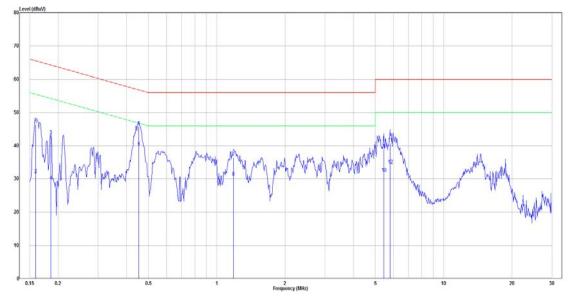
The factor is calculated by adding LISN/ISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "Over Limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an over limit of -7 dB means the emission is 7 dB below the limit. The equation for Over Limit calculation is as follows:

Over Limit = Level – Limit Line

No.: RXZ220803003RF02

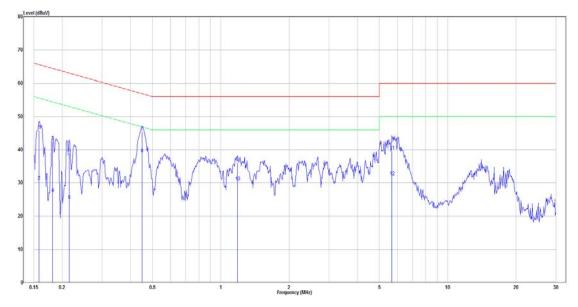

7.6 Test Results

Test Mode: Transmitting

802.11a mode, 5240MHz of 5150~5250MHz (worst case)

Mode 1:

Main: AC120 V, 60 Hz, Line


No.	Frequency	Reading	Correct	Result	Limit	Over limit	Remark
	(MHz)	(dBµV)	Factor(dB)	(dBµV)	(dBµV)	(dB)	
1	0.159	26.96	19.50	46.46	65.52	-19.06	QP
2	0.159	11.74	19.50	31.24	55.52	-24.28	Average
3	0.185	23.57	19.50	43.07	64.24	-21.17	QP
4	0.185	9.84	19.50	29.34	54.24	-24.90	Average
5	0.454	26.26	19.52	45.78	56.80	-11.02	QP
6	0.454	20.10	19.52	39.62	46.80	-7.18	Average
7	1.184	16.76	19.55	36.31	56.00	-19.69	QP
8	1.184	11.02	19.55	30.57	46.00	-15.43	Average
9	5.447	19.23	19.67	38.90	60.00	-21.10	QP
10	5.447	12.06	19.67	31.73	50.00	-18.27	Average
11	5.805	21.10	19.67	40.77	60.00	-19.23	QP
12	5.805	14.48	19.67	34.15	50.00	-15.85	Average

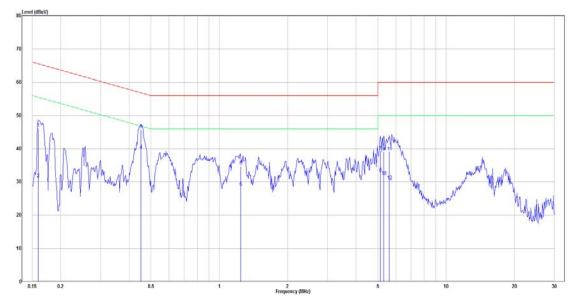
Note:

Result = Read Level + Factor

Over Limit = Result – Limit Line

Main: AC120 V, 60 Hz, Neutral

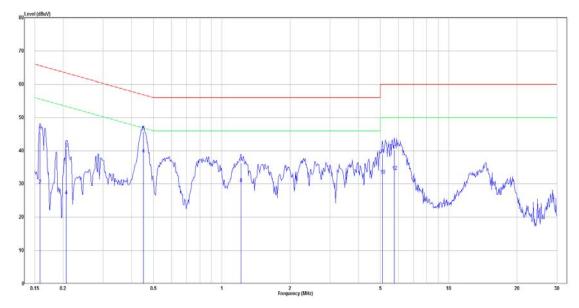

No.	Frequency	Reading	Correct	Result	Limit	Over limit	Remark
	(MHz)	(dBµV)	Factor(dB)	(dBµV)	(dBµV)	(dB)	
1	0.158	26.41	19.50	45.91	65.56	-19.65	QP
2	0.158	10.82	19.50	30.32	55.56	-25.24	Average
3	0.182	23.05	19.50	42.55	64.42	-21.87	QP
4	0.182	7.35	19.50	26.85	54.42	-27.57	Average
5	0.215	19.49	19.49	38.98	63.01	-24.03	QP
6	0.215	5.21	19.49	24.70	53.01	-28.31	Average
7	0.449	26.05	19.52	45.57	56.89	-11.32	QP
8	0.449	19.20	19.52	38.72	46.89	-8.17	Average
9	1.184	16.54	19.54	36.08	56.00	-19.92	QP
10	1.184	10.69	19.54	30.23	46.00	-15.77	Average
11	5.683	19.94	19.68	39.62	60.00	-20.38	QP
12	5.683	12.12	19.68	31.80	50.00	-18.20	Average


Note:

Result = Read Level + Factor

Over Limit = Result – Limit Line

Mode 2:

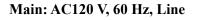

No.	Frequency	Reading	Correct	Result	Limit	Over limit	Remark
	(MHz)	(dBµV)	Factor(dB)	(dBµV)	(dBµV)	(dB)	
1	0.159	26.67	19.50	46.17	65.52	-19.35	QP
2	0.159	11.36	19.50	30.86	55.52	-24.66	Average
3	0.452	26.30	19.52	45.82	56.85	-11.03	QP
4	0.452	20.05	19.52	39.57	46.85	-7.28	Average
5	1.242	15.11	19.55	34.66	56.00	-21.34	QP
6	1.242	8.79	19.55	28.34	46.00	-17.66	Average
7	5.139	19.51	19.66	39.17	60.00	-20.83	QP
8	5.139	12.89	19.66	32.55	50.00	-17.45	Average
9	5.305	19.27	19.66	38.93	60.00	-21.07	QP
10	5.305	11.91	19.66	31.57	50.00	-18.43	Average
11	5.623	19.41	19.67	39.08	60.00	-20.92	QP
12	5.623	10.62	19.67	30.29	50.00	-19.71	Average

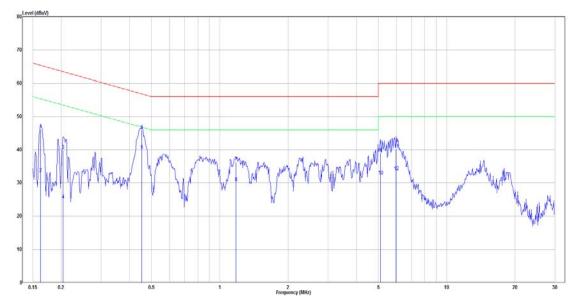
Note:

Result = Read Level + Factor

Over Limit = Result – Limit Line

Main: AC120 V, 60 Hz, Neutral

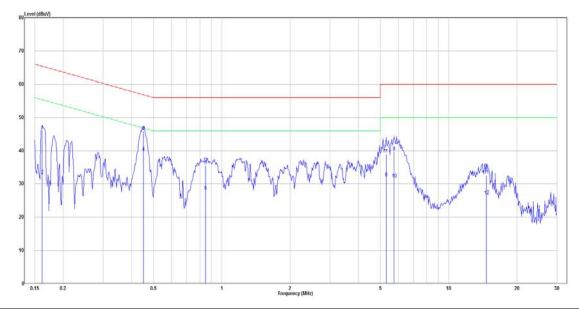

No.	Frequency	Reading	Correct	Result	Limit	Over limit	Remark
	(MHz)	(dBµV)	Factor(dB)	(dBµV)	(dBµV)	(dB)	
1	0.158	26.21	19.50	45.71	65.56	-19.85	QP
2	0.158	10.15	19.50	29.65	55.56	-25.91	Average
3	0.206	21.15	19.49	40.64	63.36	-22.72	QP
4	0.206	6.90	19.49	26.39	53.36	-26.97	Average
5	0.452	26.23	19.52	45.75	56.85	-11.10	QP
6	0.452	19.33	19.52	38.85	46.85	-8.00	Average
7	1.216	16.73	19.54	36.27	56.00	-19.73	QP
8	1.216	10.48	19.54	30.02	46.00	-15.98	Average
9	5.112	19.23	19.66	38.89	60.00	-21.11	QP
10	5.112	12.94	19.66	32.60	50.00	-17.40	Average
11	5.774	20.52	19.68	40.20	60.00	-19.80	QP
12	5.774	14.04	19.68	33.72	50.00	-16.28	Average


Note:

Result = Read Level + Factor

Over Limit = Result – Limit Line

Mode 3:

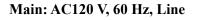

No.	Frequency	Reading	Correct	Result	Limit	Over limit	Remark
	(MHz)	(dBµV)	Factor(dB)	(dBµV)	(dBµV)	(dB)	
1	0.162	26.64	19.50	46.14	65.34	-19.20	QP
2	0.162	13.22	19.50	32.72	55.34	-22.62	Average
3	0.204	20.33	19.50	39.83	63.45	-23.62	QP
4	0.204	5.34	19.50	24.84	53.45	-28.61	Average
5	0.454	26.36	19.52	45.88	56.80	-10.92	QP
6	0.454	20.29	19.52	39.81	46.80	-6.99	Average
7	1.178	16.56	19.55	36.11	56.00	-19.89	QP
8	1.178	10.51	19.55	30.06	46.00	-15.94	Average
9	5.112	19.36	19.66	39.02	60.00	-20.98	QP
10	5.112	12.45	19.66	32.11	50.00	-17.89	Average
11	5.993	20.45	19.68	40.13	60.00	-19.87	QP
12	5.993	13.71	19.68	33.39	50.00	-16.61	Average

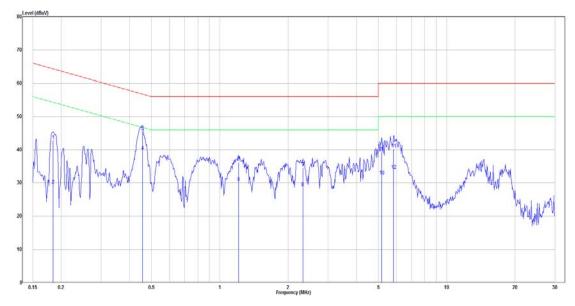
Note:

Result = Read Level + Factor

Over Limit = Result – Limit Line

Main: AC120 V, 60 Hz, Neutral

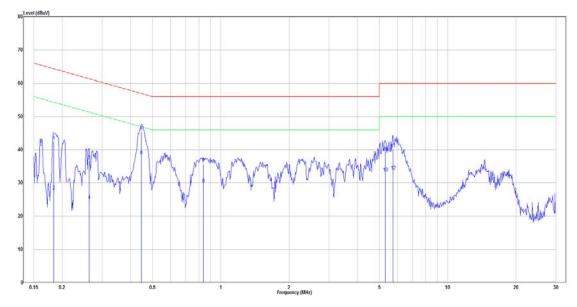

No.	Frequency	Reading	Correct	Result	Limit	Over limit	Remark
	(MHz)	(dBµV)	Factor(dB)	(dBµV)	(dBµV)	(dB)	
1	0.162	26.69	19.50	46.19	65.38	-19.19	QP
2	0.162	13.05	19.50	32.55	55.38	-22.83	Average
3	0.452	26.33	19.52	45.85	56.85	-11.00	QP
4	0.452	20.12	19.52	39.64	46.85	-7.21	Average
5	0.848	15.82	19.53	35.35	56.00	-20.65	QP
6	0.848	8.28	19.53	27.81	46.00	-18.19	Average
7	5.305	19.18	19.67	38.85	60.00	-21.15	QP
8	5.305	12.12	19.67	31.79	50.00	-18.21	Average
9	5.744	20.08	19.68	39.76	60.00	-20.24	QP
10	5.744	11.79	19.68	31.47	50.00	-18.53	Average
11	14.672	12.70	19.83	32.53	60.00	-27.47	QP
12	14.672	6.52	19.83	26.35	50.00	-23.65	Average


Note:

Result = Read Level + Factor

Over Limit = Result – Limit Line

Mode 4:

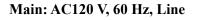

No.	Frequency	Reading	Correct	Result	Limit	Over limit	Remark
	(MHz)	(dBµV)	Factor(dB)	(dBµV)	(dBµV)	(dB)	
1	0.184	23.26	19.50	42.76	64.28	-21.52	QP
2	0.184	9.67	19.50	29.17	54.28	-25.11	Average
3	0.456	25.95	19.52	45.47	56.76	-11.29	QP
4	0.456	20.13	19.52	39.65	46.76	-7.11	Average
5	1.210	16.64	19.55	36.19	56.00	-19.81	QP
6	1.210	10.57	19.55	30.12	46.00	-15.88	Average
7	2.321	14.85	19.59	34.44	56.00	-21.56	QP
8	2.321	8.98	19.59	28.57	46.00	-17.43	Average
9	5.166	19.60	19.66	39.26	60.00	-20.74	QP
10	5.166	12.39	19.66	32.05	50.00	-17.95	Average
11	5.836	20.55	19.67	40.22	60.00	-19.78	QP
12	5.836	14.03	19.67	33.70	50.00	-16.30	Average

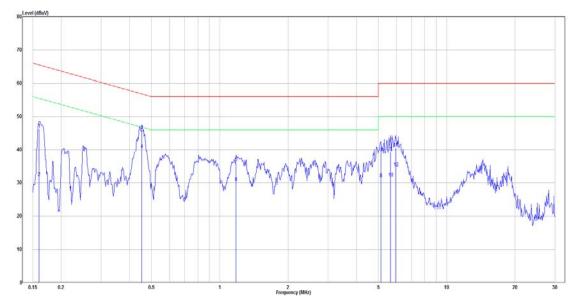
Note:

Result = Read Level + Factor

Over Limit = Result – Limit Line

Main: AC120 V, 60 Hz, Neutral

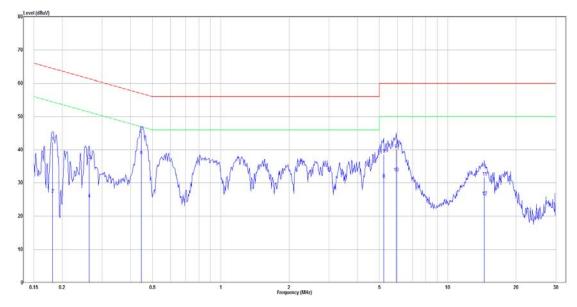

No.	Frequency	Reading	Correct	Result	Limit	Over limit	Remark
	(MHz)	(dBµV)	Factor(dB)	(dBµV)	(dBµV)	(dB)	
1	0.183	23.03	19.49	42.52	64.33	-21.81	QP
2	0.183	8.10	19.49	27.59	54.33	-26.74	Average
3	0.263	17.03	19.50	36.53	61.34	-24.81	QP
4	0.263	5.30	19.50	24.80	51.34	-26.54	Average
5	0.447	25.91	19.52	45.43	56.93	-11.50	QP
6	0.447	18.58	19.52	38.10	46.93	-8.83	Average
7	0.839	16.15	19.53	35.68	56.00	-20.32	QP
8	0.839	10.06	19.53	29.59	46.00	-16.41	Average
9	5.305	19.72	19.67	39.39	60.00	-20.61	QP
10	5.305	13.29	19.67	32.96	50.00	-17.04	Average
11	5.744	20.54	19.68	40.22	60.00	-19.78	QP
12	5.744	13.80	19.68	33.48	50.00	-16.52	Average


Note:

Result = Read Level + Factor

Over Limit = Result – Limit Line

Mode 5:

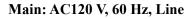

No.	Frequency	Reading	Correct	Result	Limit	Over limit	Remark
	(MHz)	(dBµV)	Factor(dB)	(dBµV)	(dBµV)	(dB)	
1	0.160	26.81	19.50	46.31	65.47	-19.16	QP
2	0.160	11.98	19.50	31.48	55.47	-23.99	Average
3	0.454	26.44	19.52	45.96	56.80	-10.84	QP
4	0.454	20.61	19.52	40.13	46.80	-6.67	Average
5	1.178	16.42	19.55	35.97	56.00	-20.03	QP
6	1.178	10.49	19.55	30.04	46.00	-15.96	Average
7	5.139	19.29	19.66	38.95	60.00	-21.05	QP
8	5.139	11.51	19.66	31.17	50.00	-18.83	Average
9	5.653	19.51	19.67	39.18	60.00	-20.82	QP
10	5.653	11.70	19.67	31.37	50.00	-18.63	Average
11	5.961	20.83	19.68	40.51	60.00	-19.49	QP
12	5.961	14.79	19.68	34.47	50.00	-15.53	Average

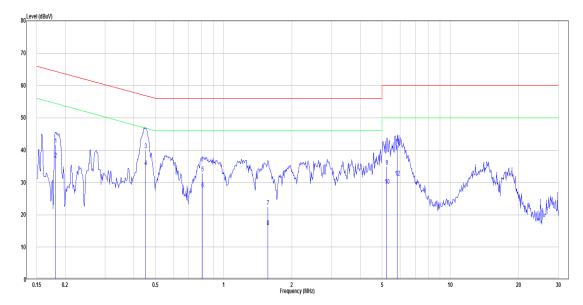
Note:

Result = Read Level + Factor

Over Limit = Result – Limit Line

Main: AC120 V, 60 Hz, Neutral

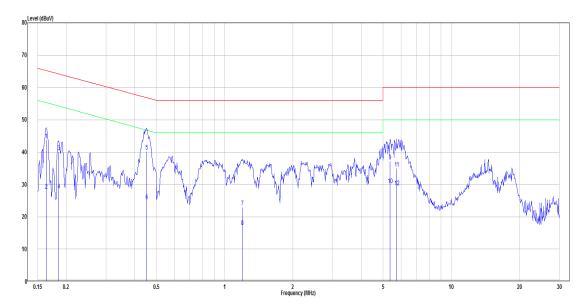

No.	Frequency	Reading	Correct	Result	Limit	Over limit	Remark
	(MHz)	(dBµV)	Factor(dB)	(dBµV)	(dBµV)	(dB)	
1	0.182	22.81	19.50	42.31	64.42	-22.11	QP
2	0.182	7.07	19.50	26.57	54.42	-27.85	Average
3	0.263	17.30	19.50	36.80	61.34	-24.54	QP
4	0.263	5.68	19.50	25.18	51.34	-26.16	Average
5	0.447	25.96	19.52	45.48	56.93	-11.45	QP
6	0.447	18.54	19.52	38.06	46.93	-8.87	Average
7	5.221	18.73	19.67	38.40	60.00	-21.60	QP
8	5.221	11.36	19.67	31.03	50.00	-18.97	Average
9	5.929	20.43	19.68	40.11	60.00	-19.89	QP
10	5.929	13.29	19.68	32.97	50.00	-17.03	Average
11	14.517	11.77	19.83	31.60	60.00	-28.40	QP
12	14.517	5.94	19.83	25.77	50.00	-24.23	Average


Note:

Result = Read Level + Factor

Over Limit = Result – Limit Line

Mode 6:

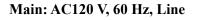

No.	Frequency	Reading	Correct	Result	Limit	Over limit	Remark
	(MHz)	(dBµV)	Factor(dB)	(dBµV)	(dBµV)	(dB)	
1	0.182	22.18	19.50	41.68	64.42	-22.74	QP
2	0.182	17.72	19.50	37.22	54.42	-17.20	Average
3	0.454	20.50	19.52	40.02	56.80	-16.78	QP
4	0.454	15.33	19.52	34.85	46.80	-11.95	Average
5	0.809	13.41	19.53	32.94	56.00	-23.06	QP
6	0.809	8.41	19.53	27.94	46.00	-18.06	Average
7	1.568	2.97	19.56	22.53	56.00	-33.47	QP
8	1.568	-3.26	19.56	16.30	46.00	-29.70	Average
9	5.249	15.26	19.66	34.92	60.00	-25.08	QP
10	5.249	9.33	19.66	28.99	50.00	-21.01	Average
11	5.836	21.77	19.67	41.44	60.00	-18.56	QP
12	5.836	11.88	19.67	31.55	50.00	-18.45	Average

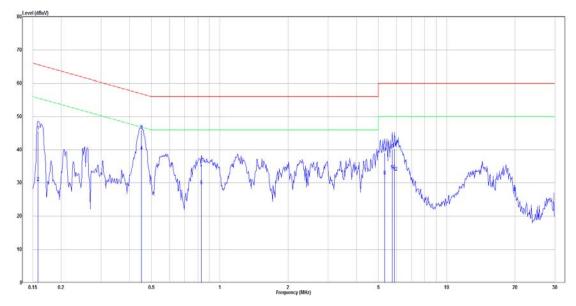
Note:

Result = Read Level + Factor

Over Limit = Result – Limit Line

Main: AC120 V, 60 Hz, Neutral

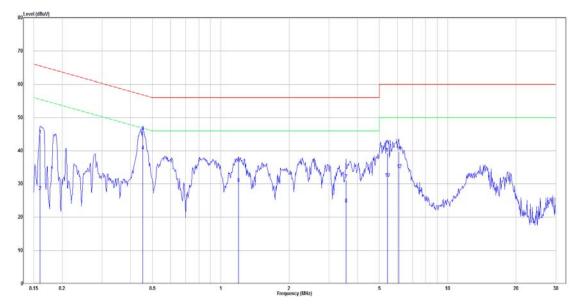

No.	Frequency	Reading	Correct	Result	Limit	Over limit	Remark
	(MHz)	(dBµV)	Factor(dB)	(dBµV)	(dBµV)	(dB)	
1	0.163	24.29	19.50	43.79	65.30	-21.51	QP
2	0.163	8.68	19.50	28.18	55.30	-27.12	Average
3	0.185	20.61	19.49	40.10	64.24	-24.14	QP
4	0.185	8.81	19.49	28.30	54.24	-25.94	Average
5	0.454	20.70	19.52	40.22	56.80	-16.58	QP
6	0.454	5.39	19.52	24.91	46.80	-21.89	Average
7	1.197	3.39	19.54	22.93	56.00	-33.07	QP
8	1.197	-2.65	19.54	16.89	46.00	-29.11	Average
9	5.362	17.55	19.67	37.22	60.00	-22.78	QP
10	5.362	10.22	19.67	29.89	50.00	-20.11	Average
11	5.744	15.28	19.68	34.96	60.00	-25.04	QP
12	5.744	9.54	19.68	29.22	50.00	-20.78	Average


Note:

Result = Read Level + Factor

Over Limit = Result – Limit Line

Mode 7:


No.	Frequency	Reading	Correct	Result	Limit	Over limit	Remark
	(MHz)	(dBµV)	Factor(dB)	(dBµV)	(dBµV)	(dB)	
1	0.158	26.08	19.50	45.58	65.56	-19.98	QP
2	0.158	10.61	19.50	30.11	55.56	-25.45	Average
3	0.452	26.34	19.52	45.86	56.85	-10.99	QP
4	0.452	20.13	19.52	39.65	46.85	-7.20	Average
5	0.830	16.11	19.53	35.64	56.00	-20.36	QP
6	0.830	9.57	19.53	29.10	46.00	-16.90	Average
7	5.333	19.34	19.66	39.00	60.00	-21.00	QP
8	5.333	12.33	19.66	31.99	50.00	-18.01	Average
9	5.774	20.39	19.67	40.06	60.00	-19.94	QP
10	5.774	14.09	19.67	33.76	50.00	-16.24	Average
11	5.898	20.75	19.67	40.42	60.00	-19.58	QP
12	5.898	13.48	19.67	33.15	50.00	-16.85	Average

Note:

Result = Read Level + Factor

Over Limit = Result – Limit Line

Main: AC120 V, 60 Hz, Neutral

No.	Frequency	Reading	Correct	Result	Limit	Over limit	Remark
	(MHz)	(dBµV)	Factor(dB)	(dBµV)	(dBµV)	(dB)	
1	0.160	25.30	19.50	44.80	65.47	-20.67	QP
2	0.160	8.13	19.50	27.63	55.47	-27.84	Average
3	0.454	26.34	19.52	45.86	56.80	-10.94	QP
4	0.454	20.53	19.52	40.05	46.80	-6.75	Average
5	1.197	16.71	19.54	36.25	56.00	-19.75	QP
6	1.197	10.61	19.54	30.15	46.00	-15.85	Average
7	3.565	11.59	19.62	31.21	56.00	-24.79	QP
8	3.565	4.31	19.62	23.93	46.00	-22.07	Average
9	5.419	19.50	19.67	39.17	60.00	-20.83	QP
10	5.419	11.99	19.67	31.66	50.00	-18.34	Average
11	6.089	20.03	19.68	39.71	60.00	-20.29	QP
12	6.089	14.58	19.68	34.26	50.00	-15.74	Average

Note:

Result = Read Level + Factor

Over Limit = Result – Limit Line

7 FCC §15.209, §15.205 , §15.407(b) – Spurious Emissions

8.1 Applicable Standard

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

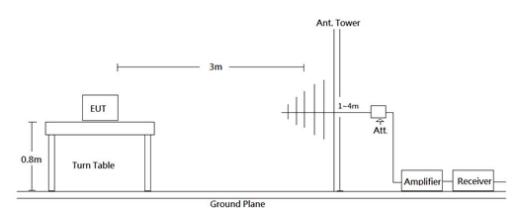
MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	608 - 614	4.5 - 5.15
0.495 - 0.505	16.69475 - 16.69525	960 - 1240	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	1300 - 1427	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1435 - 1626.5	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1645.5 - 1646.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1660 - 1710	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1718.8 - 1722.2	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	2200 - 2300	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2310 - 2390	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2483.5 - 2500	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2690 - 2900	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	3260 - 3267	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3.332 - 3.339	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3 3458 - 3 358	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3.600 - 4.400	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4		Above 38.6
13.36 - 13.41	399.9 - 410		

As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

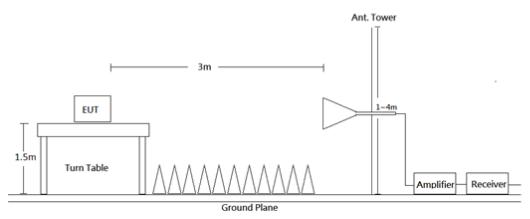
Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

Note 1: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

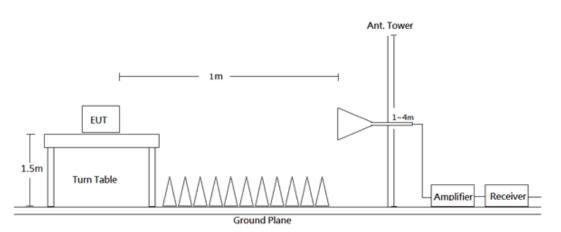
As per FCC Part 15.407 (b)


- For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 5 MHz above or below the band edge.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 41 of 152


- The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209.

8.2 EUT Setup


Below 1 GHz:

18GHz -40GHz:

Radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC Part 15.209 and FCC 15.407 Limits.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 42 of 152

8.3 EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 40 GHz. During the radiated emission test, the EMI test receiver was set with the following configurations measurement method 6.3 in ANSI C63.10.

Frequency Range	RBW	VBW	Duty cycle	Measurement method
30-1000 MHz	120 kHz	/	/	QP
	1 MHz	3 MHz	/	РК
Above 1 GHz	1 MHz	10 Hz	>98%	Ave
	1 MHz	1/T	<98%	Ave

Note: T is minimum transmission duration

8.4 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the Quasi-peak detector mode from 30 MHz to 1 GHz and PK and average detector modes for frequencies above 1 GHz.

According to C63.10, emission shall be computed as: $E [dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters.

All emissions under the average limit and under the noise floor have not recorded in the report

8.5 Corrected Factor & Margin Calculation

The Correct Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain

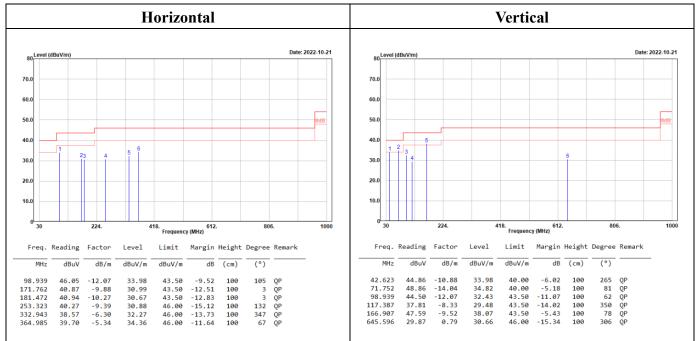
The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Result - Limit

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

No.: RXZ220803003RF02

8.6 Test Results

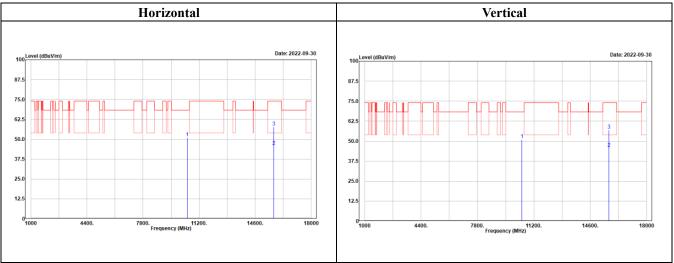

Test Mode: Transmitting (Pre-scan with three orthogonal axis, and worse case as Y axis.)

For UNII-1 Band I:

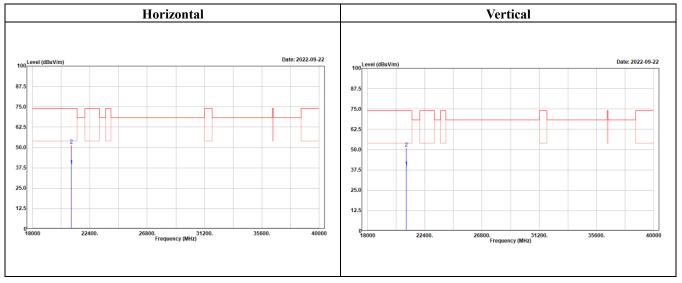
Mode 1:

(worst case is 802.11ac20 mode 5240MHz)

30MHz-1GHz:


Level (Result) = Reading + Factor.

Margin = Level – Limit.


Factor = Antenna Factor + Cable Loss – Amplifier Gain.

No.: RXZ220803003RF02

1GHz-18GHz:

18GHz-40GHz:

Above 1GHz:

802.11a Mode:

1389.000 191.34 4.59 196.53 196 270 Average 5189.000 12.36 4.59 117.52 271 Average 5189.000 12.36 4.59 117.52 271 Average 5189.000 12.36 4.59 115.57 175 271 Average 5189.000 11.56 115.57 17.52 271 Average 5189.000 11.56 115.57 11									5180	MHz								
Not: Othy/ Othy// Othy/// Othy//// Othy/// Othy//// Othy//// O				Hori	zonta	l							Ve	rtical				
Not: Othy/ Othy// Othy/// Othy//// Othy/// Othy//// Othy//// O	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
$ \frac{140}{900} \frac{95, 45}{1, 42} \frac{95, 45}{1, 42} \frac{95, 75}{1, 40} \frac{95, 40}{1, 42} \frac{95, 10}{15, 7} \frac{95, 10}{15, 67} \frac{95, 10}{15, 7} \frac{95, 10}{15, 9} \frac{95, 10}{16, 9} \frac{95, 10}{16} \frac{95, 10}{16, 9} \frac{95, 10}{16} \frac{95, 10}{16} \frac{95, 10}{16} 95, 10$																		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	54.40,000	45 45	1 00	50.37	54.00	2.62	100			FA 46 607								
180.000 112.03 4.99 117.92 196 270 Peak Freq. Reading Factor Level Lisit Margin Height Degree Resark Mtz dbu/v	5149.099								0									
Freq. Reading Factor Level Linit Margin Height Degree Remark Mtz dBuV dBuV dBuV/m <	5180.000																	Average
NHz OBUV OBUV/s	5180.000	112.95	4.99	117.92			196	276	Реак	5160.000	110.00	4.99	115.67			1/5	2/1	Peak
$\frac{1000}{540,000} \frac{40}{31,40} = \frac{10}{14,04} \frac{10}{54,40} \frac{50}{54,20} - \frac{17}{13} \frac{149}{14,20} \frac{328}{228} \frac{10}{228} \frac{10}{28} 10$	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
Side 0.000 31.40 12.44 45.44 54.00 -6.35 152 32.8 Average Side 0.000 41.23 14.04 55.27 74.00 -18.73 152 32.8 Average Side 0.000 41.23 14.04 55.27 74.00 -18.73 152 32.8 Peak Side 0.000 41.23 14.04 55.77 74.00 -18.73 149 22.8 Average Side 0.000 31.31 14.04 55.77 74.00 -18.73 149 22.8 Average Side 0.000 31.31 14.04 55.77 74.00 -18.73 149 22.8 Average Side 0.000 31.31 14.04 55.77 74.00 -18.73 149 22.8 Average Side 0.000 40.73 14.04 51.77 74.00 -18.33 149 22.8 Average Side 0.000 40.73 14.04 51.73 15.1 14.04 51.73 15.1 14.04 51.73 14.04 51.73 <td>MHz</td> <td>dBuV</td> <td>dB/m</td> <td>dBuV/m</td> <td>dBuV/m</td> <td>dB</td> <td>(cm)</td> <td>(°)</td> <td></td> <td>MHz</td> <td>dBuV</td> <td>dB/m</td> <td>dBuV/m</td> <td>dBuV/m</td> <td>dB</td> <td>(cm)</td> <td>(°)</td> <td></td>	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
Size (1.20) 11.20 12.20	0360.000	40.02	10.87	50.89	68.20	-17.31	149	328	Peak									
Horizontal Vertical Freq. Reading Factor Level Limit Margin Height Degree Remark Mit dBuV dBuV/m dBuV/m dB (cn) (°) 5200.000 113.15 5.03 1107.21 203 270 Average 200.000 113.15 5.03 118.18 203 270 Average 200<000	5540.000 5540.000																	
Horizontal Vertical Freq. Reading Factor Level Limit Margin Height Degree Remark Mit dBuV dBuV/m dBuV/m dB (cn) (°) 5200.000 113.15 5.03 1107.21 203 270 Average 200.000 113.15 5.03 118.18 203 270 Average 200<000									5200	MH7								
Freq. Reading Factor Level Limit Margin Height Degree Remark MHz dbuV dbuV/m dbuV/				Hori	zonta				5200				Ve	rtical				
Mtz dbu/ dbu/ dbu//m dbu//m dbu//m dbu//m dbu/m dbu/m <thd>dbu/m dbu/m <t< td=""><td>Freq</td><td>Reading</td><td>Factor</td><td></td><td></td><td></td><td>Height</td><td>Degree</td><td>Remark</td><td></td><td>- I.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></thd>	Freq	Reading	Factor				Height	Degree	Remark		- I.							
S200.000 102.18 5.03 107.21 203 270 Average 203 S200.000 101.71 5.03 106.74 108 273 Average 273 Peak Freq. Reading 6600.000 Factor Level Limit 															_			кепагк
S280.000 113.15 5.03 118.18 203 270 Peak Freq. Reading Factor Level Limit Margin Height Degree Remark Mtz dBuV dBv	E200,000	102 18	F 03	107 21			202	270	A									
$\frac{1}{M_{12}} \frac{1}{dB_{UV}} \frac$																		
$\frac{19400.000}{11.81} = \frac{10.01}{10.80} = \frac{10.01}{10.8} = \frac{10.01}{10.80} = \frac{10.01}{10.8} = \frac{10.01}{10.80} = \frac{10.01}$	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
$\frac{11601}{6600.000} \frac{11.61}{31.48} \frac{14.68}{45.59} \frac{54.00}{54.00} -\frac{8.44}{14.7} \frac{147}{201} \frac{1201}{4207} \frac{1201}{201} \frac{14.08}{201} \frac{15600.000}{43.65} \frac{11.51}{14.08} \frac{14.88}{57.73} \frac{45.59}{74.00} -\frac{8.41}{152} \frac{152}{0} \frac{0}{0} \frac{1272}{0} \frac{115}{14.08} \frac{15600.000}{43.65} \frac{114.08}{14.08} \frac{15.59}{57.73} \frac{54.00}{74.00} -\frac{16.27}{152} \frac{152}{0} \frac{0}{0} \frac{152}{0} \frac{0}{0} \frac{156}{0} \frac{156}{0} \frac{115}{0} \frac{115}{14.08} \frac{11.61}{57.73} \frac{14.00}{74.00} -\frac{16.27}{152} \frac{152}{0} \frac{0}{0} \frac{14.08}{0} \frac{156}{14.08} \frac{15.51}{14.08} \frac{14.08}{57.73} \frac{14.00}{74.00} -\frac{16.27}{152} \frac{152}{0} \frac{0}{0} \frac{14.08}{0} \frac{156}{0} \frac{115}{14.08} \frac{15}{57.73} \frac{14.00}{74.00} -\frac{16.27}{152} \frac{152}{0} \frac{0}{0} \frac{14.08}{0} \frac{15}{152} \frac{115}{14.08} \frac{14.08}{57.73} \frac{15}{74.00} -\frac{16.27}{152} \frac{152}{0} \frac{0}{0} \frac{14.08}{0} \frac{15}{152} \frac{11}{152} \frac{14.08}{0} \frac{15}{152} \frac{11}{152} \frac{14.08}{0} \frac{15}{57.73} \frac{14.00}{74.00} -\frac{16.27}{152} \frac{152}{0} \frac{0}{0} \frac{14.08}{0} \frac{15}{152} \frac{11}{152} \frac{14.08}{0} \frac{15}{152} \frac{11}{152} \frac{14.08}{0} \frac{15}{165} \frac{11}{152} \frac{16}{152} \frac{12}{152} \frac{16}{0} \frac{16}{162} \frac{17}{152} \frac{16}{0} \frac{15}{165} \frac{12}{152} \frac{16}{0} \frac{11}{152} \frac{11}{152} \frac{11}{152} \frac{16}{0} \frac{11}{152} \frac{11}{152} \frac{11}{152} \frac{16}{152} \frac{11}{152} \frac{11}{$	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
$\frac{5240\ 000}{42.79\ 14.08\ 56.87\ 74.00\ -17.13\ 147\ 201\ Peak} = 15600.000\ 43.65\ 14.08\ 57.73\ 74.00\ -16.27\ 152\ 0\ Peak} = 15600.000\ 43.65\ 14.08\ 14.13\ 45.61\ 450\ 40\ 40\ 40\ 40\ 40\ 40\ 40\ 40\ 40\ 4$	10400.000	39.66	11.01	50.67	68.20	-17.53	151	174	Peak									
HorizontalFreq.Reading dBuVFactor dBuVLevel dBuV/mLimit dBuV/mMargin Height Degree dBRemark (°)Freq.Reading dBuVFactor dBuVLevel dBuV/mLimit dBMargin Height Degree (°)Remark (°)2240.000102.314.75107.06201272 201Average 201201272 272 PeakS240.000102.494.75107.24165 165273 165Average 1652404.000113.574.75118.32 165201272 272 PeakPeakS240.000102.494.75 4.75107.24165 165273 273 Peak403.36360.074.7364.8074.00-9.20201272 272 PeakPeakFreq.Reading dBuVFactorLevelLimit dBuV/mMargin Height Degree dBRemarkFreq.Reading dBuVFactorLevelLimit dBuV/mMargin Height Degree dBRemarkMHzdBuVdBuV/mdBuV/mdB(cm)(°)0480.00039.9810.9650.9468.20 68.20-17.26154111 10Peak 96 Average5720.00031.46514.13 45.7845.7854.00 50.00-8.22165 162111 96 96 Average10480.000 162.4810.96 10.9650.82 50.8268.20 68.20-17.38 147147 227 227227 Peak6488.00039.98<	15600.000 15600.000																	
HorizontalFreq.Reading dBuVFactor dBuVLevel dBuV/mLimit 									5240	MHz								
MHz dBuV dBuV/m				Hori	zonta	l							Ve	rtical				
MHz dBuV dBuV/m	Ener	Reading	Factor	Level	limit	Margin	Height	Degree	Remark									
$\frac{1}{2240.000} \frac{102.31}{13.57} \frac{4.75}{4.75} \frac{107.06}{118.32} \frac{201}{272} \frac{272}{272} \frac{1}{272} \frac{1}{2$																	-	Remark
$\frac{13.57}{403.363} + \frac{4.75}{47.85} + \frac{118.32}{4.73} + \frac{201}{52.58} + \frac{201}{52.58} + \frac{272}{54.00} + \frac{201}{1.42} + \frac{272}{201} + \frac{272}{272} + \frac{272}{2$					-				Avens					abuv/ ii	40			
4403.363 47.85 4.73 52.58 54.00 -1.42 201 272 Average 4403.363 47.85 4.73 52.58 54.00 -1.42 201 272 Average 4403.363 60.07 4.73 64.80 74.00 -9.20 201 272 Peak 5400.901 48.04 4.74 52.78 54.00 -1.22 165 273 Average Freq. Reading Factor Level Limit Margin Height Degree Remark -6.78 165 273 Average MHz dBuV dBuV dBuV/m dBuV/m dB (cm) (°) -6.78 165 273 Average 0480.000 39.98 10.96 50.94 68.20 -17.26 154 111 Peak 10480.000 39.86 10.96 50.82 68.20 -17.38 147 227 Peak 5720.000 31.45 14.13 45.78 54.00 -8.22 149 96 Average 15720.000 31.48 14.13 45.61 54.0	5240.000 5240.000																	
Freq. Reading Factor Level Limit Margin Height Degree Remark MHz dBuV dB/m dBuV/m dBuV/m dB (cm) (°) mHz MHz dBuV/m dBuV/m dB (cm) (°) mHz dBuV dB/m dBuV/m dB (cm) (°) <td>5403.363</td> <td>47.85</td> <td>4.73</td> <td>52.58</td> <td></td> <td></td> <td></td> <td>272</td> <td>Average</td> <td>5400.901</td> <td>48.04</td> <td>4.74</td> <td>52.78</td> <td></td> <td></td> <td>165</td> <td>273</td> <td>Average</td>	5403.363	47.85	4.73	52.58				272	Average	5400.901	48.04	4.74	52.78			165	273	Average
MHz dBuV dBuV/m dBuV/m dBuV/m dBuV/m dB (cm) (°) 0488.000 39.98 10.96 50.94 68.20 -17.26 154 111 Peak 10488.000 39.86 10.96 50.82 68.20 -17.38 147 227 Peak 5720.000 31.65 14.13 45.78 54.00 -8.22 149 96 Average 15720.000 31.48 14.13 45.61 54.00 -8.39 152 131 Average	5403.363	60.07	4./3	64.80	74.00	-9.20	201	2/2	меак	5400.901	62.48	4./4	67.22	74.00	-0./8	102	2/3	reak
0480.000 39.98 10.96 50.94 68.20 -17.26 154 111 Peak 5720.000 31.65 14.13 45.78 54.00 -8.22 149 96 Average 15720.000 31.48 14.13 45.61 54.00 -8.39 152 131 Average	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	, Factor	Level	Limit	Margir	n Heigh	t Degre	e Remark
5720.000 31.65 14.13 45.78 54.00 -8.22 149 96 Average 15720.000 31.48 14.13 45.61 54.00 -8.39 152 131 Average	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dE	3 (cm)	(°)	
5/20.000 31.65 14.13 45.78 54.00 -8.22 149 96 Average 15720.000 31.48 14.13 45.61 54.00 -8.39 152 131 Average	10480.000									10480.000	39.86	10.96	50.82	68.29	-17.38	3 147	227	Peak
15720.000 42.80 14.13 56.93 74.00 -17.07 152 131 Peak	15720.000									15720.000	31.48	14.13	45.61	54.00	-8.39	9 152	131	Average
	10,20.000	-5.02	14.13	51.15	/+.00	10.23	149	50	. cur	15720.000	42.80	14.13	56.93	/4.00	-17.07	152	131	Peak

Level (Result) = Reading + Factor.

Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss – Amplifier Gain.

802.11ac VHT20 Mode:

								<u>518</u>) MHz								
			Hor	izonta	1							Ve	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
5147.498	45.08	4.93	50.01	54.00	-3.99	201	271	Average	5146.296	42.88	4.93	47.81	54.00	-6.19	166	272	Average
5147.498	63.56	4.93	68.49	74.00	-5.51	201	271	Peak	5146.296	58.73	4.93	63.66		-10.34	166	272	Peak
5180.000 5180.000	100.89 111.40	4.99 4.99	105.88 116.39			201 201	271 271	Average Peak	5180.000 5180.000	99.50 109.60	4.99 4.99	104.49 114.59			166 166		Average Peak
Frea.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Enor	Reading	Factor	Level	Limit	Mongin	Hojaht	Dognoo	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		- <u></u> (°)	
10360.000	40.18	10.87	51.05	68.20	-17.15	149	2	Peak									
15540.000 15540.000	31.12	14.04 14.04	45.16 56.21	54.00 74.00	-8.84 -17.79	153 153	158 158	Average Peak	10360.000 15540.000 15540.000	39.38 31.11 42.37		50.25 45.15 56.41	68.20 54.00 74.00	-8.85	147	168 7 7	Peak Averag Peak
								5200) MHz								
			Hor	izonta	1			0200				Ve	rtical				
Freq	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq. F	leading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		(°)	
5200.000	101.36	5.03	106.39			200	270	Average	5200.000	100.59	5.03	105.62			175	273	Average
5200.000		5.03	116.68			200		Peak	5200.000	110.43	5.03	115.46			175	273	Peak
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
10400.000	39.87	11.01	50.88	68.20	-17.32	147	173	Peak	10400.000	39.79		50.80	68.20	-17.40	153	138	Peak
15600.000					-8.35	154	105	Average	15600.000	31.72	14.08	45.80	54.00	-8.20	148	266	Average Peak
15600.000	31.57 43.65	14.08 14.08	45.65 57.73	54.00 74.00	-16.27	154	105	Peak	15600.000	44.00	14.08	58.08	74.00	-15.92	148	266	
		14.08				154	105		15600.000		14.08	58.08	74.00	-15.92		266	
		14.08	57.73		-16.27	154	105				14.08		rtical	-15.92		266	
15600.000		14.08 14.08	57.73	74.00	-16.27			5240	15600.000) MHz						148		Remark
15600.000	43.65	14.08 14.08	57.73 Hor	74.00	-16.27			5240	15600.000) MHz	44.00		Ve	rtical		148 Height		Remark
Freq. MHz 5240.000	43.65	14.08 14.08 Factor dB/m 4.75	57.73 Hor Level dBuV/m 106.31	74.00 izonta	-16.27	Height (cm) 194	Degree (°) 270	524(15600.000) MHz 	44.00 Reading dBuV 101.76	Factor dB/m 4.75	Ve Level dBuV/m 106.51	rtical	Margin	148 Height (cm) 174	Degree (°) 275	Average
Freq. NHz 5240.000 5433.434	43.65 Reading dBuV 101.56 111.68 47.54	14.08 14.08 Factor dB/m	57.73 Hor Level dBuV/m	74.00 izonta	-16.27	Height (cm)	Degree (°)	524(Remark Average Peak Average	15600.000 MHz Freq. 5240.000 5240.000	44.00 Reading dBuV 101.76 111.64	Factor dB/m 4.75 4.75	Ve Level dBuV/m 196.51 116.39	rtical Limit dBuV/m	Margin dB	148 Height (cm)	Degree (°) 275 275	Averag Peak
Freq. MHz 5240.000	43.65 Reading dBuV 101.56 111.68 47.54	14.08 14.08 Factor dB/m 4.75 4.75	57.73 Hor Level dBuV/m 106.31 116.43	74.00 izonta Limit dBuV/m	-16.27	Height (cm) 194 194	Degree (°) 270 270	524(Remark Average Peak	15600.000) MHz 	44.00 Reading dBuV 101.76	Factor dB/m 4.75	Ve Level dBuV/m 106.51	rtical	Margin	148 Height (cm) 174 174	Degree (°) 275	Average Peak
Freq. NHz 5240.000 5453.434 5453.434	43.65 Reading dBuV 101.56 111.68 47.54	14.08 14.08 Factor dB/m 4.75 4.75 4.52 4.52	57.73 Hor Level dBuV/m 106.31 116.43 52.06	74.00 izonta Limit dBuV/m 54.00 74.00	-16.27 Margin dB -1.94 -8.66	Height (cm) 194 194 194 194	Degree (°) 270 270 270 270	524(Remark Average Peak Average	15600.000 MHz Freq. MHz 5240.000 5240.000 5240.000 5421.011 5421.011	44.00 Reading dBuV 101.76 111.64 48.30 61.65	Factor dB/m 4.75 4.75 4.64	Ve Level dBuV/m 106.51 116.39 52.94 66.29	rtical Limit dBuV/m 54.00 74.00	Margin dB -1.06	Height (cm) 174 174 174 174	Degree (°) 275 275 275 275	Averag Peak Averag Peak
Freq. Freq. NHz 5240.000 5453.434 5453.434	43.65 Reading dBuV 101.56 111.68 47.54 60.82	14.08 14.08 Factor dB/m 4.75 4.75 4.52 4.52	57.73 Hor Level dBuV/m 106.31 116.43 52.06 65.34	74.00 izonta Limit dBuV/m 54.00 74.00 Limit	-16.27 Margin dB -1.94 -8.66	Height (cm) 194 194 194 194	Degree (°) 270 270 270 270	S24(Remark Average Peak Average Peak Remark	15600.000 MHz Freq. MHz 5240.000 5240.000 5240.000 5421.011 5421.011	44.00 Reading dBuV 101.76 111.64 48.30 61.65 Reading	Factor dB/m 4.75 4.64 4.64 Factor	Ve Level dBuV/m 106.51 116.39 52.94 66.29	rtical Limit dBuV/m 54.00 74.00	Margin dB -1.06 -7.71 Margin	148 Height (cm) 174 174 174 174 174	Degree (°) 275 275 275 275	Average Peak Average Peak Remark
Freq. 942 5240.000 5453.434 5453.434 Freq.	43.65 Reading dBuV 101.56 111.68 47.54 60.82 Reading	14.08 14.08 Factor dB/m 4.75 4.75 4.52 4.52 Factor	57.73 Hor Level dBuV/m 106.31 116.43 52.06 65.34 Level	74.00 izonta Limit dBuV/m 54.00 74.00 Limit dBuV/m	-16.27 Margin dB -1.94 -8.66 Margin	Height (cm) 194 194 194 Height (cm)	Degree (°) 270 270 270 270 270	S24(Remark Average Peak Average Peak Remark	15600.000 MHz Freq. 5240.000 5240.000 52421.011 5421.011 Freq. Freq.	44.00 Reading dBuV 101.76 111.64 48.30 61.65 Reading dBuV 40.06	Factor dB/m 4.75 4.75 4.64 4.64 Factor dB/m 10.96	Ve Level dBuV/m 106.51 116.39 52.94 66.29 Level	rtical Limit dBuV/m 54.00 74.00 Limit dBuV/m	Margin dB -1.06 -7.71 Margin dB -17.18	148 Height (cm) 174 174 174 174 174 174 174 174 174	Degree (°) 275 275 275 275 275 275 275 275 275 275	Average Peak Average Peak Remark

Level (Result) = Reading + Factor.

Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss – Amplifier Gain.

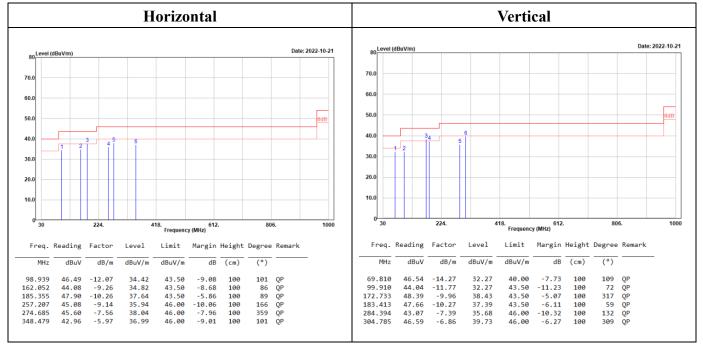
802.11ac VHT40 Mode:

								01/0	MHz								
			Hor	izonta	l							Ve	rtical				
Freq. R	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
49.299	44.01	4.92	48.93	54.00	-5.07	195	273	Average	5149.500	42.11	4.92	47.03	54.00	-6.97	174	273	Average
49.299	57.75	4.92	62.67	74.00	-11.33	195	273	Peak	5149.500	54.47	4.92	59.39	74.00	-14.61	174	273	Peak
90.000	92.25	5.01	97.26			195	273	Average	5190.000 5190.000	91.45 100.90	5.01 5.01	96.46 105.91			174 174		Average Peak
90.000	103.30	5.01	108.31			195	273	Peak	5190.000	100.90	5.01	105.91			174	2/3	Реак
Freq. f	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
80.000	39.78	10.94	50.72	68.20	-17.48	152	2	Peak	10380.000	39,96	10.94	50,90	68.20	-17.30	145	97	Peak
	20.00	14.05	46.27	54.00		147	236	Average	15570.000			45.75	54.00	-8.25	151	360	Average
70.000	32.22		55,66	74.00	-18.34	147	236	Peak	15570.000	42.47	14.05	56.52	74.00	-17.48	151	360	Peak
	41.61	14.05	55.00														
70.000		14.05						5230	MHz								
70.000		14.05		izonta	1			5230	MHz			Ve	rtical				
70.000					l l Margin	Height	Degree			Reading	Factor	Ve	rtical	Margin	Height	Degree	Remark
70.000	41.61		Hor	izonta		Height (cm)	Degree (°)			Reading 	Factor dB/m			Margin dB		Degree (°)	: Remark
70.000 70.000 Freq. R	41.61	Factor	Hor Level dBuV/m 97.29	izonta	Margin				Freq.			Level	Limit			(°)	
70.000 70.000 Freq. R MHz - 30.000 30.000	41.61 Reading dBuV 92.47 102.43	Factor dB/m 4.82 4.82	Hor Level dBuV/m 97.29 107.25	izonta Limit dBuV/m	Margin dB	(cm) 200 200	(°) 269 269	Remark Average Peak	Freq. 	dBuV 92.81 102.45	dB/m 4.75 4.75	Level dBuV/m 97.56 107.20	Limit dBuV/m	dB	(cm) 171 171	(°) 272 272	Average
70.000 70.000 Freq. R MHz - 30.000 98.849	41.61 Reading dBuV 92.47 102.43 45.38	Factor dB/m 4.82 4.82 4.75	Hor Level dBuV/m 97.25 50.13	izonta Limit dBuV/m 54.00	Margin dB -3.87	(cm) 200 200 200	(°) 269 269 269	Remark Average Peak Average	Freq. MHz 5230.000 5230.000 5420.190	dBuV 92.81 102.45 47.49	dB/m 4.75 4.75 4.65	Level dBuV/m 97.56 107.20 52.14	Limit dBuV/m 54.00	-1.86	(cm) 171 171 171	(°) 272 272 272	Average Peak Average
70.000 70.000 Freq. R MHz - 30.000 30.000	41.61 Reading dBuV 92.47 102.43	Factor dB/m 4.82 4.82	Hor Level dBuV/m 97.29 107.25	izonta Limit dBuV/m	Margin dB	(cm) 200 200	(°) 269 269	Remark Average Peak	Freq. 	dBuV 92.81 102.45	dB/m 4.75 4.75	Level dBuV/m 97.56 107.20	Limit dBuV/m	dB	(cm) 171 171	(°) 272 272 272	Average
70.000 70.000 MHz - 30.000 30.000 98.849 98.849	41.61 Reading dBuV 92.47 102.43 45.38	Factor dB/m 4.82 4.82 4.75	Hor Level dBuV/m 97.25 50.13	izonta Limit dBuV/m 54.00	Margin dB -3.87 -11.12	(cm) 200 200 200 200	(°) 269 269 269	Remark ———— Average Peak Average Peak	Freq. MHz 5230.000 5230.000 5420.190 5420.190	dBuV 92.81 102.45 47.49	dB/m 4.75 4.75 4.65 4.65	Level dBuV/m 97.56 107.20 52.14	Limit dBuV/m 54.00	-1.86	(cm) 171 171 171 171	(°) 272 272 272 272 272	Averag Peak Averag Peak
70.000 70.000 MHz - 30.000 30.000 98.849 98.849	41.61 Reading dBuV 92.47 102.43 45.38 58.13	Factor dB/m 4.82 4.82 4.75 4.75	Hor Level dBuV/m 97.29 107.25 50.13 62.88	Limit dBuV/m 54.00 74.00	Margin dB -3.87 -11.12	(cm) 200 200 200 200	(°) 269 269 269 269	Remark ———— Average Peak Average Peak	Freq. MHz 5230.000 5230.000 5420.190 5420.190	dBuV 92.81 102.45 47.49 59.24	dB/m 4.75 4.75 4.65 4.65	Level dBuV/m 97.56 107.20 52.14 63.89	Limit dBuV/m 54.00 74.00	-1.86 -10.11	(cm) 171 171 171 171	(°) 272 272 272 272 272	Averag Peak Averag Peak Peak
Freq. R MHz 30.000 30.000 38.849 98.849 Freq.	41.61 Reading dBuV 92.47 102.43 45.38 58.13 Reading	Factor dB/m 4.82 4.82 4.75 4.75 Factor	Hor Level dBuV/m 97.29 107.25 50.13 62.88 Level	izonta Limit dBuV/m 54.00 74.00 Limit	Margin dB -3.87 -11.12 Margin	(cm) 200 200 200 200 Height	(°) 269 269 269 269 269	Remark ———— Average Peak Average Peak	Freq. MHz 5230.000 5230.000 5420.190 5420.190 Freq.	dBuV 92.81 102.45 47.49 59.24 Reading	dB/m 4.75 4.75 4.65 4.65 Factor	Level dBuV/m 97.56 107.20 52.14 63.89 Level	Limit dBuV/m 54.00 74.00 Limit	-1.86 -10.11 Margin	(cm) 171 171 171 171 171 Height	(°) 272 272 272 272 Degree	Averag Peak Averag Peak Peak
Freq. R MHz 30.000 30.000 38.849 Freq. I MHz	41.61 Reading dBuV 92.47 102.43 45.38 58.13 Reading dBuV	Factor dB/m 4.82 4.75 4.75 4.75 Factor dB/m	Hor Level dBuV/m 97.29 107.25 50.13 62.88 Level dBuV/m	izonta Limit dBuV/m 54.00 74.00 Limit dBuV/m	Margin dB -3.87 -11.12 Margin dB -15.57 -8.11	(cm) 200 200 200 200 Height (cm)	(°) 269 269 269 269 269 269 269 269	Remark Average Peak Average Peak Remark	Freq. MHz 5230.000 5220.000 5420.190 5420.190 Freq. MHz	dBuV 92.81 102.45 47.49 59.24 Reading dBuV	dB/m 4.75 4.75 4.65 4.65 Factor dB/m	Level dBuV/m 97.56 107.20 52.14 63.89 Level dBuV/m	Limit dBuV/m 54.00 74.00 Limit dBuV/m	-1.86 -10.11 Margin dB	(cm) 171 171 171 171 171 Height (cm)	(°) 272 272 272 272 272 272 272 272 272	Average Peak Remark

802.11ac VHT80 Mode:

								5210	MHz								
			Hor	izonta	ıl							Ve	rtical				
Freq.	Reading	Factor	Level	Limit	Margin I	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
5148.298 5148.298 5210.000 5210.000	45.77 58.65 85.40 96.80	4.92 4.92 4.95 4.95	50.69 63.57 90.35 101.75	54.00 74.00	-3.31 -10.43	196 196 196 196	271 271 271 271	Average Peak Average Peak	5149.099 5149.099 5210.000 5210.000	44.02 56.26 85.97 95.31	4.92 4.92 4.95 4.95	48.94 61.18 90.92 100.26	54.00 74.00	-5.06 -12.82	173 173 173 173	273 273 273 273 273	Average Peak Average Peak
Freq.	. Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MH2	z dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	·
10420.000 15630.000 15630.000	32.91	14.10	51.30 47.01 55.74	68.20 54.00 74.00	-6.99	149 152 152	253 316 316	Peak Average Peak	10420.000 15630.000 15630.000	39.80 32.74 42.78	14.10	50.80 46.84 56.88	68.20 54.00 74.00	-17.40 -7.16 -17.12	147		Peak Average Peak

Level (Result) = Reading + Factor.

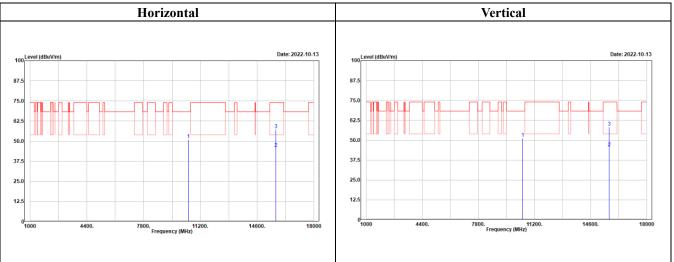

Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss – Amplifier Gain.

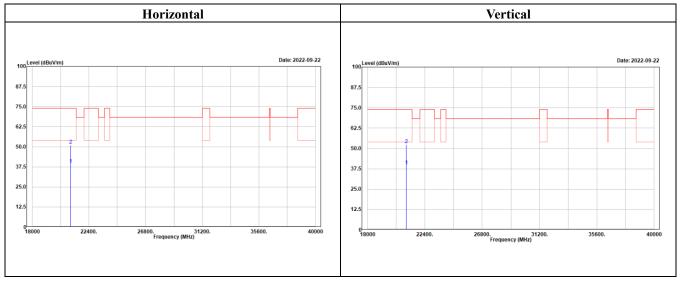
Mode 5:

(worst case is 802.11ac20 mode 5240MHz)

30MHz-1GHz:


Level (Result) = Reading + Factor.

Margin = Level - Limit.


Factor = Antenna Factor + Cable Loss – Amplifier Gain.

No.: RXZ220803003RF02

1GHz-18GHz:

18GHz-40GHz:

Above 1GHz:

802.11a Mode:

							WIIIZ	518								
			rtical	Ve							1	izonta	Hor			
Degree Remar	Height	Margin	Limit	Level	Factor	Reading	Freq.	Remark	Degree	Height	Margin	Limit	Level	Factor	Reading	Freq.
(°)	(cm)	dB	dBuV/m	dBuV/m	dB/m	dBuV	MHz	·	(°)	(cm)	dB	dBuV/m	dBuV/m	dB/m	dBuV	MHz
301 Avera	171	-2.39	54.00	51.61	4.93	46.68	5147.498	Average	37	156	-9.14	54.00	44.86	4.92	39.94	5148.699
301 Peak	171	-7.65	74.00	66.35	4.93	61.42	5147.498	Peak	37	156	-16.40	74.00	57.60	4.92	52.68	5148.699
301 Avera 301 Peak	171 171			110.30 120.52	4.99 4.99	105.31 115.53	5180.000 5180.000	Average Peak	37 37	156 156			96.80 106.81	4.99 4.99	91.81 101.82	5180.000 5180.000
								r cun	57	150			100101	4100	101102	1001000
Degree Reman	Height	Margin	Limit	Level	Factor	Reading	Freq.	Remark	Degree	Height	Margin	Limit	Level	Factor	Reading	Freq.
(°)	(cm)	dB	dBuV/m	dBuV/m	dB/m	dBuV	MHz		(°)	(cm)	dB	dBuV/m	dBuV/m	dB/m	dBuV	MHz
229 Peak	149	-17.33	68.20	50.87	10.87	40.00	10360.000	Peak	131	154	-17.88	68.20	50.32	10.87	39.45	10360.000
241 Avera 241 Peak	152 152	-8.33 -18.31	54.00 74.00	45.67 55.69	14.04 14.04		15540.000 15540.000	Average	150 150	148 148	-8.63	54.00 74.00	45.37 55.09	14.04 14.04	31.33	5540.000
								Peak	100		-18.91					5540.000
							MHz	520								
			rtical	Ve							1	izonta	Hor			
Degree Reman	Height	Margin	Limit	Level	Factor	Reading	Freq.	Remark	Degree	Height	Margin	Limit	Level	Factor	Reading	Freq.
(°)	(cm)	dB	dBuV/m	dBuV/m	dB/m	dBuV	MHz		(°)	(cm)	dB	dBuV/m	dBuV/m	dB/m	dBuV	MHz
300 Avera	157			111.09	5.03		5200.000	Average Peak	40 40	163 163			97.92 107.51	5.03 5.03	92.89 102.48	5200.000 5200.000
300 Peak	157			120.91	5.03	115.88	5200.000	Teak	40	105			107.51	5.05	102.40	5200.000
	Height	Margin	Limit	Level	Factor	D 11				Height	Margin	Limit	Level	Factor	Reading	Freq.
Degree Remar						Reading	Freq.	e Kemark	Degree	nergin	Hu BIN	camac	LCVCI			
Degree Remar (°)	(cm)	dB	dBuV/m	dBuV/m	dB/m	dBuV	Freq. MHz	e Kemark	Degree (°)		dB	dBuV/m	dBuV/m	dB/m	dBuV	MHz
(°) 236 Peak	(cm) 148	-17.62	68.20	50.58	dB/m 11.01	dBuV	MHz	Peak	(°) 66	(cm) 151	dB -17.43	dBuV/m 68.20	dBuV/m	dB/m	39.76	.0400.000
(°)	(cm)				dB/m	dBuV 39.57 31.68	MHz		(°)	(cm)	dB -17.43 -8.07	dBuV/m	dBuV/m	dB/m	39.76 31.85	MHz 10400.000 15600.000 15600.000
(°) 236 Peak 13 Avera	(cm) 148 156	-17.62 -8.24	68.20 54.00	50.58 45.76	dB/m 11.01 14.08	dBuV 39.57 31.68	MHz 10400.000 15600.000	Peak Average Peak	(°) 66 108	(cm) 151 146	dB -17.43 -8.07	dBuV/m 68.20 54.00	dBuV/m 50.77 45.93	dB/m 11.01 14.08	39.76 31.85	10400.000 15600.000
(°) 236 Peak 13 Avera	(cm) 148 156	-17.62 -8.24	68.20 54.00	50.58 45.76 57.48	dB/m 11.01 14.08	dBuV 39.57 31.68	MHz 10400.000 15600.000 15600.000	Peak Average Peak	(°) 66 108	(cm) 151 146	dB -17.43 -8.07 -17.17	dBuV/m 68.20 54.00	dBuV/m 50.77 45.93 56.83	dB/m 11.01 14.08	39.76 31.85	0400.000 5600.000
(°) 236 Peak 13 Avera	(cm) 148 156 156	-17.62 -8.24 -16.52	68.20 54.00 74.00	50.58 45.76 57.48	dB/m 11.01 14.08 14.08	dBuV 39.57 31.68	MHz 10400.000 15600.000 15600.000 MHz	Peak Average Peak	(°) 66 108 108	(cm) 151 146 146	dB -17.43 -8.07 -17.17	dBuV/m 68.20 54.00 74.00	dBuV/m 50.77 45.93 56.83	dB/m 11.01 14.08 14.08	39.76 31.85	0400.000 5600.000 5600.000
(°) 236 Peak 13 Avera 13 Peak	(cm) 148 156 156	-17.62 -8.24 -16.52	68.20 54.00 74.00	50.58 45.76 57.48 Ve	dB/m 11.01 14.08 14.08	dBuV 39.57 31.68 43.40	MHz 10400.000 15600.000 15600.000 MHz	Peak Average Peak	(°) 66 108 108	(cm) 151 146 146	dB -17.43 -8.07 -17.17] Margin H	dBuV/m 68.20 54.00 74.00	dBuV/m 50.77 45.93 56.83 Hor	dB/m 11.01 14.08 14.08	39.76 31.85 42.75	.0400.000 .5600.000 .5600.000
(°) 236 Peak 13 Avera 13 Peak	(cm) 148 156 156	-17.62 -8.24 -16.52 Margin	68.20 54.00 74.00	50.58 45.76 57.48	dB/m 11.01 14.08 14.08 Factor	dBuV 39.57 31.68 43.40 Reading	MHz 10400.000 15600.000 15600.000 MHz Freq.	Peak Average Peak 524 Remark		(cm) 151 146 146 146 (cm) 166	dB -17.43 -8.07 -17.17] Margin H	dBuV/m 68.20 54.00 74.00 izonta Limit	dBuV/m 50.77 45.93 56.83 HOr Level dBuV/m 95.97	dB/m 11.01 14.08 14.08 Factor dB/m 4.75	39.76 31.85 42.75 Reading dBuV 91.22	.0400.000 .5600.000 .5600.000 .5600.000 .5600.000
(°) 236 Peak 13 Avera 13 Peak 13 Peak	(cm) 148 156 156 Height (cm) 150 150	-17.62 -8.24 -16.52 Margin	68.20 54.00 74.00 Ttical	50.58 45.76 57.48 Ve Level dBuV/m 109.14 119.17	dB/m 11.01 14.08 14.08 14.08	Reading dBuV 43.40 Reading dBuV 104.39 114.42	MHz 10400.000 15500.000 15600.000 S240.000 5240.000 5240.000	Peak Average Peak 524 Remark Average Peak	Degree (°) 41	(cm) 151 146 146 146 (cm) 166 166	-17.43 -8.07 -17.17 Margin H dB	dBuV/m 68.20 54.00 74.00 izonta Limit	dBuV/m 50.77 45.93 56.83 56.83 Level dBuV/m 95.97 106.04	dB/m 11.01 14.08 14.08 Factor dB/m 4.75 4.75	39.76 31.85 42.75 Reading dBuV 91.22 101.29	0400.000 5600.000 5600.000 Freq. MHz 5240.000 5240.000
Cegree Remaind (°)	(cm) 148 156 156 Height (cm) 150	-17.62 -8.24 -16.52 Margin	68.20 54.00 74.00	50.58 45.76 57.48 Ver Level dBuV/m 109.14	dB/m 11.01 14.08 14.08 Factor dB/m 4.75		MHz 10400.000 15600.000 15600.000 MHZ Freq. 	Peak Average Peak 524 Remark	Degree (°) 41 41	(cm) 151 146 146 146 (cm) 166	dB -17.43 -8.07 -17.17] Margin H	dBuV/m 68.20 54.00 74.00 izonta Limit dBuV/m 54.00	dBuV/m 50.77 45.93 56.83 HOr Level dBuV/m 95.97	dB/m 11.01 14.08 14.08 Factor dB/m 4.75	39.76 31.85 42.75 Reading dBuV 91.22	0400.000 5600.000 5600.000 Freq. MHz 5240.000 5240.000
	(cm) 148 156 156 156 (cm) 150 150 150 150	-17.62 -8.24 -16.52 Margin dB -2.01 -9.47	68.20 54.00 74.00 rtical Limit dBuV/m 54.00 74.00	50.58 45.76 57.48 Ver Level dBuV/m 109.14 119.17 51.99	dB/m 11.01 14.08 14.08 14.08 14.08	dBuV 39.57 31.68 43.40 dBuV dBuV	MHz 10400.000 15600.000 15600.000 MHz Freq. MHz 5240.000 5359.039 5359.039	Peak Average Peak 524 Remark Average Peak Average Peak	0 0 66 108 108 108 0 0 0 0 41 41	(cm) 151 146 146 146 166 166 166 166	-17.43 -8.07 -17.17	dBuV/m 68.20 54.00 74.00 izonta Limit dBuV/m 54.00 74.00	dBuV/m 50.77 45.93 56.83 Hor Level dBuV/m 95.97 106.04 44.93	dB/m 11.01 14.08 14.08 14.08 4.08 4.75 4.75 4.75 4.71 4.71	39.76 31.85 42.75 42.75 dBuV 91.22 91.22 91.22 40.22	0400.000 5600.000 5600.000 Freq. MHz 5240.000 5378.328 5378.328
C°) 236 Peak 13 Avera 13 13 Peak 13 13 Peak 13 (°)	(cm) 148 156 156 156 (cm) 150 150 150 150	-17.62 -8.24 -16.52 Margin dB -2.01 -9.47 Margin	68.20 54.00 74.00 rtical Limit dBuV/m 54.00 74.00	50.58 45.76 57.48 Ve Level dBuV/m 109.14 119.17 51.99 64.53	dB/m 11.01 14.08 14.08 14.08 14.08	dBuV 39.57 31.68 43.40	MHz 10400.000 15600.000 15600.000 MHz Freq. MHz 5240.000 5359.039 5359.039	Peak Average Peak 524 Remark Average Peak Average Peak	0 0 66 108 108 108 0 0 0 0 41 41	(cm) 151 146 146 146 166 166 166 166	dB -17.43 -8.07 -17.17 Margin H dB -9.07 -16.41 Margin	dBuV/m 68.20 54.00 74.00 izonta Limit dBuV/m 54.00 74.00	dBuV/m 50.77 45.93 56.83 56.83 45.93 HOOT Level dBuV/m 95.97 106.04 44.93 57.59	dB/m 11.01 14.08 14.08 14.08 4.08 4.75 4.75 4.75 4.71 4.71	39.76 31.85 42.75 42.75 dBuV 91.22 101.29 40.22 52.88 Reading	.0400.000 .5600.000 .5600.000 .5600.000 .5600.000 .5600.000 .5600.000 .5600.000 .5240.000 .5240.000 .5240.000 .5378.328
Cegree Remain Cegree Remain Cegree Remain Cegree Remain Cegree Remain Degree Remain Degree Remain	(cm) 148 156 156 156 156 (cm) 150 150 150 Height	-17.62 -8.24 -16.52 Margin dB -2.01 -9.47 Margin	68.20 54.00 74.00 rtical Limit dBuV/m 54.00 74.00 Limit dBuV/m	50.58 45.76 57.48 Ve Level 109.14 119.17 51.99 64.53 Level	dB/m 11.01 14.08 14.08 14.08 Factor dB/m 4.75 4.66 4.66 Factor	Reading dBuV 31.68 43.40 dBuV 104.32 114.42 47.33 59.87 Reading dBuV 39.95	MHz 10400.000 15600.000 15600.000 MHz Freq. MHz 5240.000 5340.000 5359.039 5359.039 Freq.	Peak Average Peak 524 Remark Average Peak Average Peak	66 108 108 108 108 108 109 101 101 101 102 101 103 101 104 101 105 101 101 101 102 101 103 101	(cm) 151 146 146 146 146 166 166 166 16	dB -17.43 -8.07 -17.17 Margin H dB -9.07 -16.41 Margin	dBuV/m 68.20 54.00 74.00 izonta Limit dBuV/m 54.00 74.00 Limit dBuV/m	dBuV/m 50.77 45.93 56.83 56.83 HOr Level dBuV/m 95.97 106.04 44.93 57.59 Level	dB/m 11.01 14.08 14.08 14.08 14.08 4.05 4.75 4.71 4.71 Factor dB/m 10.96	39.76 31.85 42.75	.0400.000 .5600.000 .5600.000 .5600.000 .5600.000 .5600.000 .5240.000 .5378.328 .5378.328 .5378.328

Level (Result) = Reading + Factor.

Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss – Amplifier Gain.

802.11ac VHT20 Mode:

								5180	MHz								
			Hor	izonta	1							Ve	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)		
5149.700	40,04	4.92	44.96	54.00	-9.04	162	36	Average	5148.098	46.84	4.92	51.76	54.00	-2.24	159		Average
5149.700	52.80	4.92	57.72		-16.28	162	36	Peak	5148.098	64.41	4.92	69.33	74.00	-4.67	159		Peak
5180.000 5180.000		4.99 4.99	95.09 104.73			162 162	36 36	Average Peak	5180.000	105.09 114.91	4.99 4.99	110.08 119.90			159 159		Average
5100.000	55.74	4.55	104.75			101	50	- Cuk	5180.000	114.91	4.99	119.90			159	505	Peak
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
10360.000		10.87	51.15	68.20	-17.05	153	212	Peak	10360.000	39.61	10.87	50.48	68.20	-17.72	149	351	Peak
15540.000 15540.000	31.33 41.10	14.04 14.04	45.37 55.14	54.00 74.00	-8.63 -18.86	147 147	96 96	Average Peak	15540.000 15540.000	31.30 42.21	14.04 14.04	45.34 56.25	54.00 74.00	-8.66 -17.75		28 28	Averag Peak
								5200	MHz								
			Hor	izonta	1			5200				Ve	rtical				
Frea.	Reading	Factor	Level	Limit		Height	Degre	e Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		(°)	
5200.000	91.26	5.03	96.29			161	41	Average	5200.000	105.87	5.03	110.90			153	303	Average
5200.000		5.03	105.79			161	41		5200.000	115.03	5.03	120.06			153		Peak
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	e Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
10400.000	39.57	11.01	50.58	68.20	-17.62	147	70	Peak	10400.000	40.14	11.01	51.15	68.20	-17.05	152	153	Peak
MHz 10400.000 15600.000 15600.000	39.57 31.54				-17.62 -8.38	147 152		Peak Average Peak							152 145		Averag
10400.000 15600.000	39.57 31.54	11.01 14.08	50.58 45.62	68.20 54.00	-17.62 -8.38	147 152	70 0	Average Peak	10400.000 15600.000 15600.000	40.14 31.61	11.01 14.08	51.15 45.69	68.20 54.00	-17.05 -8.31	152 145	153 1	Averag
10400.000 15600.000	39.57 31.54	11.01 14.08	50.58 45.62 56.57	68.20 54.00	-17.62 -8.38 -17.43	147 152	70 0	Average Peak	10400.000 15600.000	40.14 31.61	11.01 14.08	51.15 45.69 57.07	68.20 54.00	-17.05 -8.31	152 145	153 1	Averag
10400.000 15600.000 15600.000	39.57 31.54 42.49	11.01 14.08 14.08	50.58 45.62 56.57 Hor	68.20 54.00 74.00	-17.62 -8.38 -17.43	147 152 152	70 0 0	Average Peak	10400.000 15600.000 15600.000 15600.000 MHz	40.14 31.61	11.01 14.08 14.08	51.15 45.69 57.07	68.20 54.00 74.00	-17.05 -8.31 -16.93	152 145 145	153 1 1	Averag Peak
10400.000 15600.000 15600.000	39.57 31.54	11.01 14.08 14.08	50.58 45.62 56.57	68.20 54.00 74.00	-17.62 -8.38 -17.43	147 152 152	70 0 0	Average Peak	10400.000 15600.000 15600.000 15600.000 MHz	40.14 31.61 42.99	11.01 14.08 14.08	51.15 45.69 57.07	68.20 54.00 74.00	-17.05 -8.31 -16.93 Margin	152 145 145	153 1 1	Averag Peak
10400.000 15600.000 15600.000 5600.000	839.57 31.54 42.49 Reading	11.01 14.08 14.08	50.58 45.62 56.57 Hor	68.20 54.00 74.00	-17.62 -8.38 -17.43	147 152 152	70 0 0	Average Peak 5240 Remark	10400.000 15600.000 15600.000 MHz 	40.14 31.61 42.99 Reading dBuV 103.56	11.01 14.08 14.08 14.08	51.15 45.69 57.07 Ve Level dBuV/m 108.31	68.20 54.00 74.00 rtical	-17.05 -8.31 -16.93 Margin	152 145 145 145 Height (cm) 151	153 1 1 	Averag Peak
18400.000 15600.000 15600.000 Freq. MHz 5240.000 5240.000	Reading 0.53 0.42.49 Reading 0.53 100.53	11.01 14.08 14.08 Factor dB/m 4.75 4.75	50.58 45.62 56.57 Horr Level dBuV/m 95.28 105.09	68.20 54.00 74.00 izonta Limit dBuV/m	-17.62 -8.38 -17.43	147 152 152 Height (cm) 170 170	70 θ θ	Average Peak 5240 Remark Average Peak	10400.000 15600.000 15600.000 9 MHz 	40.14 31.61 42.99 Reading dBuV 103.56 113.04	11.01 14.08 14.08 Factor dB/m 4.75 4.75	51.15 45.69 57.07 Ve Level dBuV/m 108.31 117.79	68.20 54.00 74.00 rtical Limit dBuV/m	-17.05 -8.31 -16.93 Margin dB	152 145 145 145 Height (cm) 151 151	153 1 1 0 0 0 0 0 0 304 304	Averag Peak
10400.000 15600.000 15600.000 Freq. MHz 5240.000 5395.565	8 39.57 31.54 42.49 Reading dBuV 90.53	11.01 14.08 14.08 Factor dB/m 4.75	50.58 45.62 56.57 Hor Level dBuV/m 95.28	68.20 54.00 74.00	-17.62 -8.38 -17.43	147 152 152 Height (cm) 170	70 θ θ Degree (°) 42	Average Peak 5240 Remark Average	10400.000 15600.000 15600.000 MHz 	40.14 31.61 42.99 Reading dBuV 103.56	11.01 14.08 14.08 14.08	51.15 45.69 57.07 Ve Level dBuV/m 108.31	68.20 54.00 74.00 rtical	-17.05 -8.31 -16.93 Margin	Height (cm) 151 145	153 1 1 	Averag Peak
10400.000 15600.000 15600.000 Freq. MHz 5240.000 5395.565 5395.565	Reading dBuv 90.53 100.54 dBuv 90.53 100.54 40.34	11.01 14.08 14.08 14.08 GB/m 4.75 4.75 4.74 4.74	50.58 45.62 56.57 Hor Level dBuV/m 95.28 105.09 45.08	68.20 54.00 74.00 izonta dBuV/m 54.00 74.00	-17.62 -8.38 -17.43 Margin dB -8.92 -16.08	Height (cm) 170 170 170	70 0 0 0 0 0 0 0 0 1 2 42 42 42 42 42	Average Peak 5240 Remark Average Peak Average	10400.000 15600.000 15600.000 MHz <u>Freq.</u> <u>MHz</u> 5240.000 5358.218 5358.218	40.14 31.61 42.99	11.01 14.08 14.08 Factor dB/m 4.75 4.66 4.66	51.15 45.69 57.07 Ve: Level dBuV/m 108.31 117.79 52.04	68.20 54.00 74.00 rtical Limit dBuV/m 54.00 74.00	-17.05 -8.31 -16.93 Margin dB -1.96	Height (cm) 151 151	153 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Averag Peak Averag Peak Averag Peak
10400.000 15600.000 15600.000 Freq. NHz 5240.000 5395.565 5395.565	Reading dBuV 90.53 100.34 40.34 53.18 Reading	11.01 14.08 14.08 14.08 GB/m 4.75 4.75 4.74 4.74	50.58 45.62 56.57 Hor Level dBuV/m 95.28 105.09 45.08 57.92	68.20 54.00 74.00 izonta dBuV/m 54.00 74.00	-17.62 -8.38 -17.43 Margin dB -8.92 -16.08 Margin	Height (cm) 170 170 170	70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Average Peak 5240 Remark Average Peak Average Peak e Remark	10400.000 15600.000 15600.000 MHz <u>Freq.</u> <u>MHz</u> 5240.000 5358.218 5358.218	40.14 31.61 42.99 dBuV 103.56 113.04 47.38 60.13 Reading	11.01 14.08 14.08 Factor dB/m 4.75 4.66 4.66	51.15 45.69 57.07 Ve Level 108.31 117.79 52.04 64.79	68.20 54.00 74.00 rtical Limit dBuV/m 54.00 74.00	-17.05 -8.31 -16.93 Margin dB -1.96 -9.21 Margin	Height (cm) 151 151	153 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Averag Peak Averag Peak Averag Peak
10400.000 15600.000 15600.000 5700.000 5240.000 5395.565 5395.565 Freq.	Reading 0.33.57 0.31.54 0.42.49 0.42.49 0.53 100.34 40.34 53.18 Reading 0.63 0.63 0.63 0.63 0.63 0.64 0.	11.01 14.08 14.08 14.08 Factor dB/m 4.75 4.74 4.74 Factor	50.58 45.62 56.57 Horr dBuV/m 95.28 105.09 45.08 57.92 Level	68.20 54.00 74.00 izonta dBuV/m 54.00 74.00 Limit dBuV/m	-17.62 -8.38 -17.43 Margin dB -8.92 -16.08 Margin	147 152 152 152 Height (cm) 170 170 170 170 150	70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Average Peak 5240 Remark Average Peak Average Peak Peak	10400.000 15600.000 15600.000 MHz <u>Freq.</u> <u>MHz</u> 5240.000 5358.218 5358.218 <u>Freq.</u>	40.14 31.61 42.99 dBuV 103.56 113.04 47.38 60.13 Reading dBuV 40.30	11.01 14.08 14.08 Factor dB/m 4.75 4.66 4.66 Factor	51.15 45.69 57.07 Ve Level dBuV/m 108.31 117.79 52.04 64.79 Level	68.20 54.00 74.00 rtical Limit dBuV/m 54.00 74.00 Limit dBuV/m	-17.05 -8.31 -16.93 Margin dB -1.96 -9.21 Margin	152 145 145 145 (cm) 151 151 151 151 151 151 151	Degreee (°) 304 304 304 204 (°) 121	Averag Peak Averag Peak Averag Peak

Level (Result) = Reading + Factor.

Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss – Amplifier Gain.

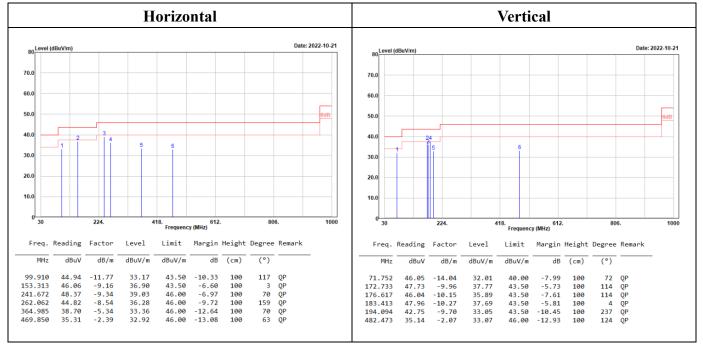
802.11ac VHT40 Mode:

								5170	MHz								
			Hor	izonta	l							Ve	rtical				
Freq. F	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
93.644	40.52	4.78	45.30	54.00	-8.70	166	42	Average	5148.899	46.79	4.92	51.71	54.00	-2.29	157	304	Average
93.644	52.37	4.78	57.15	74.00	-16.85	166	42	Peak	5148.899	59.73	4.92	64.65	74.00	-9.35	157	304	Peak
90.000	84.74	5.01	89.75			166	42	Average	5190.000	97.92	5.01	102.93			157	304	Average
90.000	94.55	5.01	99.56			166	42	Peak	5190.000	107.77	5.01	112.78			157	304	Peak
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	t Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
	39.82	10.94	50.76	68.20	-17.44	147	44	Peak	10380.000	39.83	10.94	50.77	68.20	-17.43	152	107	Peak
	JJ.02	14.05	45.30	54.00	-8.70	151	235	Average	15570.000	31.37	14.05	45.42	54.00	-8.58		331	Average
380.000 570.000	31.25				-18.80	151	235	Peak	15570.000	41.79	14.05	55.84	74.00	-18.16	147	331	Peak
570.000 570.000	31.25 41.15	14.05	55.20	74.00	-10.00			5230	MH7								
570.000								5230	MHz			Va					
570.000				74.00				5230	MHz			Ve	rtical				
570.000		14.05			ıl		Degree			Reading	Factor	Ve	rtical	Margin	Height	Degree	Remark
570.000	41.15	14.05	Hor	izonta	ıl		Degree (°)			Reading 	Factor dB/m			Margin dB		Degree (°)	Remark
Freq. f MHz -	41.15 Reading dBuV 93.60	14.05 Factor dB/m 4.82	Hor Level dBuV/m 98.42	izonta	Margin	Height (cm) 161	(°) 40	Remark 	Freq. 	dBuV	dB/m	Level dBuV/m 110.48	Limit		(cm) 155	(°) 303	Average
Freq. F MHz =	41.15 Reading dBuV 93.60 103.19	14.05 Factor dB/m 4.82 4.82	Hor Level dBuV/m 98.42 108.01	izonta Limit dBuV/m	Margin dB	Height (cm) 161 161	(°) 40 40	Remark Average Peak	Freq. MHz 5230.000 5230.000	dBuV 105.66 115.45	dB/m 4.82 4.82	Level dBuV/m 110.48 120.27	Limit dBuV/m	dB	(cm) 155 155	(°) 303 303	Average Peak
Freq. F MHz - 30.000 72.993	41.15 Reading dBuV 93.60 103.19 40.51	14.05 Factor dB/m 4.82 4.82 4.69	Hor Level dBuV/m 98.42 108.01 45.20	izonta Limit dBuV/m 54.00	Margin dB -8.80	Height (cm) 161 161	(°) 40 40 40	Remark 	Freq. MHz 5230.000 5230.000 5351.652	dBuV 105.66 115.45 46.16	dB/m 4.82 4.82 4.65	Level dBuV/m 110.48 120.27 50.81	Limit dBuV/m 54.00	-3.19	(cm) 155 155 155	(°) 303 303 303	Average Peak Average
Freq. F MHz =	41.15 Reading dBuV 93.60 103.19	14.05 Factor dB/m 4.82 4.82	Hor Level dBuV/m 98.42 108.01	izonta Limit dBuV/m	Margin dB	Height (cm) 161 161	(°) 40 40	Remark Average Peak	Freq. MHz 5230.000 5230.000	dBuV 105.66 115.45	dB/m 4.82 4.82	Level dBuV/m 110.48 120.27	Limit dBuV/m	dB	(cm) 155 155	(°) 303 303	Average Peak
Freq. F MHz 30.000 30.000 30.000 30.000 72.993	41.15 Reading dBuV 93.60 103.19 40.51	14.05 Factor dB/m 4.82 4.82 4.69	Hor Level dBuV/m 98.42 108.01 45.20	izonta Limit dBuV/m 54.00	Margin dB -8.80 -16.05	Height (cm) 161 161 161 161	(°) 40 40 40 40	Remark 	Freq. MHz 5230.000 5351.652 5351.652	dBuV 105.66 115.45 46.16	dB/m 4.82 4.82 4.65 4.65	Level dBuV/m 110.48 120.27 50.81	Limit dBuV/m 54.00	dB -3.19 -11.60	(cm) 155 155 155 155	(°) 303 303 303 303 303	Average Peak Average
Freq. F MHz 30.000 30.000 30.000 30.000 72.993	41.15 Reading dBuV 93.60 103.19 40.51 53.26	14.05 Factor dB/m 4.82 4.82 4.69 4.69	Hor Level dBuV/m 98.42 108.01 45.20 57.95	Limit dBuV/m 54.00 74.00	Margin dB -8.80 -16.05 Margin	Height (cm) 161 161 161 161	(°) 40 40 40 40	Remark Average Peak Average Peak	Freq. MHz 5230.000 5351.652 5351.652	dBuV 105.66 115.45 46.16 57.75 Reading	dB/m 4.82 4.82 4.65 4.65 Factor	Level dBuV/m 110.48 120.27 50.81 62.40	Limit dBuV/m 54.00 74.00	dB -3.19 -11.60	(cm) 155 155 155 155 Height	(°) 303 303 303 303 303	Average Peak Average Peak
Freq. F MHz 30.000 30.000 30.000 72.993 72.993 Freq.	41.15 Reading dBuV 93.60 103.19 40.51 53.26 Reading	14.05 Factor dB/m 4.82 4.69 4.69 Factor	Hor Level dBuV/m 98.42 108.01 45.20 57.95 Level	Limit dBuV/m 54.00 74.00 Limit	Margin dB -8.80 -16.05 Margin dB	Height (cm) 161 161 161 161 161 (cm)	(°) 40 40 40 40 20	Remark Average Peak Average Peak	Freq. MHz 5230.000 5351.652 5351.652 Freq.	dBuV 105.66 115.45 46.16 57.75 Reading dBuV	dB/m 4.82 4.82 4.65 4.65 Factor	Level dBuV/m 110.48 120.27 50.81 62.40 Level	Limit dBuV/m 54.00 74.00 Limit	-3.19 -11.60 Margin	(cm) 155 155 155 155 Height (cm)	(°) 303 303 303 303 303	Average Peak Average Peak
Freq. f MHz = 30.000 30.000 30.000 72.993 Freq. MHz	41.15 Reading dBuV 93.60 103.19 40.51 53.26 Reading dBuV	Factor dB/m 4.82 4.69 4.69 Factor dB/m	Hor Level dBuV/m 98.42 108.01 45.20 57.95 Level dBuV/m	Limit dBuV/m 54.00 74.00 Limit dBuV/m	Margin -8.80 -16.05 Margin -17.23	Height (cm) 161 161 161 161 Height (cm) 147	(°) 40 40 40 40 40 40 40 	Remark Average Peak Average Peak Remark	Freq. MHz 5230.000 5351.652 5351.652 Freq. MHz	dBuV 105.66 115.45 46.16 57.75 Reading dBuV 40.73	dB/m 4.82 4.82 4.65 4.65 Factor dB/m 10.97	Level dBuV/m 110.48 120.27 50.81 62.40 Level dBuV/m	Limit dBuV/m 54.00 74.00 Limit dBuV/m	dB -3.19 -11.60 Margin dB	(cm) 155 155 155 155 155 Height (cm) 153	(°) 303 303 303 303 303 303 303 Comparent (°)	Average Peak Average Peak Remark

802.11ac VHT80 Mode:

								5210	MHz								
			Hor	izonta	l							Ve	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
5113.463	40.77	4.85	45.62	54.00	-8.38	160	40	Average	5148.098	46.99	4.92	51.91	54.00	-2.09	152	303	Average
5113.463	52.64	4.85	57.49	74.00	-16.51	160	40	Peak	5148.098	59.50	4.92	64.42	74.00	-9.58	152	303	Peak
5210.000	81.30	4.95	86.25			160	40	Average	5210.000	94.49	4.95	99.44			152	303	Average
5210.000	90.82	4.95	95.77			160	40	Peak	5210.000	103.83	4.95	108.78			152	303	Peak
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
10420.000	40.79	11.00	51.79	68.20	-16.41	151	207	Peak	10420.000	39.75	11.00	50.75	68.20	-17.45	149	68	Peak
15630.000	32.33	14.10	46.43	54.00	-7.57	147	146	Average	15630.000	32.54	14.10	46.64	54.00	-7.36	153	181	Averag
15630.000	41.83	14.10	55.93	74.00	-18.07	147	146	Peak	15630.000	42.14	14.10	56.24	74.00	-17.76	153	181	Peak
									1								

Level (Result) = Reading + Factor.

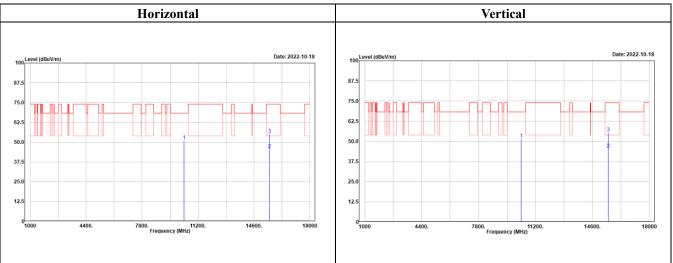

Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss – Amplifier Gain.

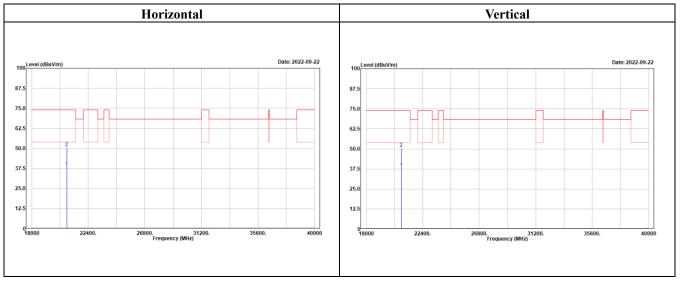
Mode 7:

(worst case is 802.11ac20 mode 5180MHz)

30MHz-1GHz:


Level (Result) = Reading + Factor.

Margin = Level - Limit.


Factor = Antenna Factor + Cable Loss – Amplifier Gain.

No.: RXZ220803003RF02

1GHz-18GHz:

18GHz-40GHz:

Above 1GHz:

802.11a Mode:

								5180) MHz								
			Hor	izonta	1							Ve	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
5148.899	46.95	4.92	51.87	54.00	-2.13	105	101	Average	5133.684	40.12	4.89	45.01	54.00	-8.99	106	354	Average
5148.899 5180.000		4.92 4.99	66.23 109.29	74.00	-7.77	105 105	101 101	Peak Average	5133.684	52.76	4.89 4.99	57.65	74.00	-16.35	106		Peak
5180.000		4.99	119.00			105	101	Peak	5180.000 5180.000	91.82 101.57	4.99	96.81 106.56			106 106		Average Peak
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
0360.000	39.26	10.87	50.13	68.20	-18.07	149	221	Peak	10360.000	39.14	10.87	50.01	68.20	-18.19	152	119	Peak
5540.000 5540.000		14.04 14.04	45.39 55.48	54.00 74.00	-8.61 -18.52	151 151	64 64	Average Peak	15540.000 15540.000	31.46 41.07	14.04 14.04	45.50 55.11	54.00 74.00	-8.50 -18.89			Averag Peak
								5200									
			Hor	izonta	1			5200) MHz			Vo	rtical				
Freq. MHz		Factor 	Level dBuV/m	Limit dBuV/m	Margin 	Height (cm)	Degree	Remark	Freq. 	Reading dBuV	Factor dB/m	Level	Limit dBuV/m	Margin 		Degree	Remark
				0000711	ub								ubuv/m	ub			
	105.81 115.80	5.03 5.03	110.84 120.83			111 111		Average Peak	5200.000 5200.000	94.45 104.29	5.03 5.03	99.48 109.32			106 106	354 354	Averag Peak
Freq	. Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MH	z dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
																	Peak
		11.01	50.82	68.20	-17.38		2	Peak	10400.000	40.59	11.01	51.60	68.20	-16.60	147		
15600.000	31.55	11.01 14.08 14.08	50.82 45.63 58.09	68.20 54.00 74.00	-17.38 -8.37 -15.91	149	2 155 155	Peak Average Peak	10400.000 15600.000 15600.000	40.59 31.93 42.85	11.01 14.08 14.08	51.60 46.01 56.93	68.20 54.00 74.00	-16.60 -7.99 -17.07	147 152 152	182	
10400.000 15600.000 15600.000	31.55	14.08	45.63	54.00	-8.37	149	155	Average Peak	15600.000	31.93	14.08	46.01	54.00	-7.99	152	182	Average
15600.000	31.55	14.08	45.63 58.09	54.00	-8.37 -15.91	149	155	Average Peak	15600.000 15600.000	31.93	14.08	46.01 56.93	54.00	-7.99	152	182	Average
15600.000	31.55	14.08 14.08	45.63 58.09	54.00 74.00	-8.37 -15.91	149 149	155 155	Average Peak	15600.000 15600.000) MHz	31.93	14.08 14.08	46.01 56.93	54.00 74.00	-7.99 -17.07	152 152	182	Averag Peak
15600.000	0 31.55 0 44.01	14.08 14.08	45.63 58.09 Hor	54.00 74.00	-8.37 -15.91	149 149	155 155	Average Peak	15600.000 15600.000) MHz	31.93 42.85	14.08 14.08	46.01 56.93	54.00 74.00	-7.99 -17.07 Margin	152 152	182 182	Averag Peak
15600.000 15600.000 Freq. NHz 5240.000	Reading dBuV 106.12	14.08 14.08 Factor dB/m 4.75	45.63 58.09 Hor Level dBuV/m 110.87	54.00 74.00	-8.37 -15.91	149 149 Height (cm) 103	155 155 Degree (°) 101	Average Peak 5240	15600.000 15600.000) MHz 	31.93 42.85 Reading dBuV 94.97	14.08 14.08 Factor dB/m 4.75	46.01 56.93 Ve	54.00 74.00	-7.99 -17.07 Margin	152 152 Height (cm) 100	182 182 Degree (°) 352	Averag Peak Remark
15600.000 15600.000 Freq. MHz 5240.000 5240.000	Reading dBuV 106.12 115.64	14.08 14.08 Factor dB/m 4.75 4.75	45.63 58.09 Horr Level dBuV/m 110.87 120.39	54.00 74.00 izonta Limit dBuV/m	-8.37 -15.91 Margin dB	149 149 Height (cm) 103 103	155 155 Degree (°) 101 101	Average Peak 5240 Remark Average Peak	15600.000 15600.000) MHz 	31.93 42.85 Reading dBuV 94.97 104.70	14.08 14.08 Factor dB/m 4.75 4.75	46.01 56.93 Ve Level dBuV/m 99.72 109.45	54.00 74.00 rtical	-7.99 -17.07 Margin dB	152 152 Height (cm) 100 100	182 182 Degree (°) 352 352	Averag Peak Remark Averag Peak
15600.000 15600.000 Freq. NHz 5240.000	Reading	14.08 14.08 Factor dB/m 4.75	45.63 58.09 Hor Level dBuV/m 110.87	54.00 74.00	-8.37 -15.91	149 149 Height (cm) 103	155 155 Degree (°) 101 101 101	Average Peak 5240	15600.000 15600.000) MHz 	31.93 42.85 Reading dBuV 94.97	14.08 14.08 Factor dB/m 4.75	46.01 56.93 Ve	54.00 74.00 rtical Limit dBuV/m 54.00	-7.99 -17.07 Margin	152 152 Height (cm) 100	182 182 Degree (°) 352 352 352	Averag Peak Remark Averag Peak
15600.001 15600.001 Freq. MHz 5240.000 5359.866 5359.866	Reading	14.08 14.08 Factor dB/m 4.75 4.75 4.67 4.67	45.63 58.09 Hor Level dBuV/m 110.87 120.39 49.85	54.00 74.00 izonta Limit dBuV/m 54.00 74.00	-8.37 -15.91 Margin dB -4.15	149 149 (cm) 103 103 103	155 155 Degree (°) 101 101 101	Average Peak 5240 Remark Average Peak Average Peak	15600.000 15600.000) MHz 	31.93 42.85 Reading dBuV 94.97 104.70 39.95	14.08 14.08 Factor dB/m 4.75 4.66 4.66	46.01 56.93 Ve Level dBuV/m 99.72 109.45 44.61	54.00 74.00 rtical Limit dBuV/m 54.00 74.00	-7.99 -17.07 Margin dB	152 152 Height (cm) 100 100 100	182 182 Degree (°) 352 352 352 352	Average Peak Average Peak Average Peak
15600.001 15600.001 Freq. MHz 5240.000 5359.866 5359.866	Reading Heading Heading Heading Heading Heading Heading Reading Reading Reading Hea	14.08 14.08 Factor dB/m 4.75 4.75 4.67 4.67	45.63 58.09 Hor Level dBuV/m 110.87 120.39 49.85 62.70	54.00 74.00 izonta Limit dBuV/m 54.00 74.00	-8.37 -15.91 Margin dB -4.15 -11.30 Margin	149 149 (cm) 103 103 103	155 155 Degree (°) 101 101 101	Average Peak 5240 Remark Average Peak Average Peak	15600.000 15600.000) MHz 	31.93 42.85 Reading dBuV 94.97 104.70 39.95 52.17	14.08 14.08 Factor dB/m 4.75 4.66 4.66	46.01 56.93 Ver Level dBuV/m 99.72 109.45 44.61 56.83	54.00 74.00 rtical Limit dBuV/m 54.00 74.00	-7.99 -17.07 Margin dB -9.39 -17.17	152 152 152 Height (cm) 100 100 100 Height	182 182 Degree (°) 352 352 352 352	Average Peak Average Peak Average Peak
15600.004 15600.004 Freq. NHz 5240.006 5359.866 5359.866 Freq.	Reading dBuV) 106.12) 115.64 dBuV a 45.18 b 58.03 dBuV dBuV d0.74	14.08 14.08 4.09 4.75 4.67 4.67 Factor	45.63 58.09 Hor Level dBuV/m 110.87 120.39 49.85 62.70 Level	54.00 74.00 izonta Limit dBuV/m 54.00 74.00 Limit	-8.37 -15.91 Margin dB -4.15 -11.30 Margin	149 149 149 (cm) 103 103 103 103 103 103 103 103 103 103	155 155 0egree (°) 101 101 101 101	Average Peak 5240 Remark Average Peak Average Peak exemark	15600.000 15600.000 DMHz Freq. 	31.93 42.85 dBuV 94.97 104.70 39.95 52.17 Reading	14.08 14.08 General Action 14.08 4.06 4.75 4.66 4.66 4.66 Factor	46.01 56.93 Vel Level dBuV/m 99.72 109.45 44.61 56.83 Level	54.00 74.00 Limit dBuV/m 54.00 74.00 Limit dBuV/m	-7.99 -17.07 Margin dB -9.39 -17.17 Margin	152 152 152 Height (cm) 100 100 100 Height	182 182 200 (°) 352 352 352 352 352 20 20 20 20 20 20 20 20 20 20 20 20 20	Average Peak Average Peak Average Peak

Level (Result) = Reading + Factor.

Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss – Amplifier Gain.

802.11ac VHT20 Mode:

								5180	MHz								
			Hor	izonta	1							Ve	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	e Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
5146.096	47.13	4.92	52.05	54.00	-1.95	112	102	Average	5149.700	39.91	4.92	44.83	54.00	-9.17	108	344	Avera
5146.096 5180.000	62.69 104.95	4.92	67.61 109.94	74.00	-6.39	112 112	102 102	Peak Average	5149.700	52.92	4.92	57.84	74.00	-16.16	108	344	Peak
5180.000		4.99	119.83			112	102	Peak	5180.000 5180.000	91.80 101.42	4.99 4.99	96.79 106.41			108 108	344 344	Avera Peak
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
0360.000	40.20	10.87	51.07	68.20	-17.13	153	196	Peak	10360.000	40.73	10.87	51.60	68.20	-16.60	147	92	Peak
15540.000 15540.000	31.34 41.08	14.04 14.04	45.38 55.12	54.00 74.00	-8.62 -18.88	148 148	288 288	Average Peak	15540.000 15540.000		14.04 14.04	45.36 55.27	54.00 74.00	-8.64 -18.73	151 151	296 296	Averag Peak
								5200	MHz								
			Hor	izonta	1							Ve	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
5200.000	105.94	5.03	110.97			102		Average	5200.000	94.59	5.03	99.62			105	354	Averag
5200.000	115.55	5.03	120.58			102	99	Peak	5200.000	103.80	5.03	108.83			105	354	Peak
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
0400.000	40.30	11.01	51.31	68.20	-16.89	152	214	Peak	10400.000	40.21	11.01	51.22	68.20	-16.98	147	325	Peak
5600.000 5600.000	31.69 42.33	14.08 14.08	45.77 56.41	54.00 74.00	-8.23 -17.59	147 147	176 176	Average Peak	15600.000 15600.000	31.49 42.83	14.08 14.08	45.57	54.00	-8.43	153 153		Average Peak
								5240	MHz								
			Hor	izonta	1							Ve	rtical				
			-														
	Reading		Level		Margin			Remark		Reading		Level		Margin H			Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
5240.000 5240.000	105.96 115.66	4.75	110.71 120.41			102 102		Average Peak	5240.000 5240.000	95.36 105.11	4.75	100.11 109.86			101 101		Average Peak
5372.583	44.47	4.69	49.16	54.00	-4.84	102	100	Average	5405.826	39.80	4.72	44.52	54.00	-9.48	101	353	Average
5372.583	56.99	4.69	61.68	74.00	-12.32	102	100	Peak	5405.826	52.70	4.72	57.42	74.00	-16.58	101	353	Peak
Freq	Reading	Factor	Level	Limit	Margin	Hejab+	Degree	Remark	Frea.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remar
i eq.		dB/m	dBuV/m		dB				MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		(°)	
					aB	(cm)	(°)		1972	abuv	abyin	0004/10	abav/m	ub	(cm)	< /	
MHz	dBuV								10100 575	10 55	40.05	FA 45	60.00			4.5.5	
MHz 0480.000 5720.000	40.51 31.38	10.96 14.13	51.47 45.51	68.20 54.00	-16.73	153 148	232 Ø	Peak Average	10480.000 15720.000	40.53 31.20	10.96 14.13	51.49 45.33	68.20 54.00	-16.71	148 151		Peak Avera

Level (Result) = Reading + Factor.

Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss – Amplifier Gain.

802.11ac VHT40 Mode:

								01/0	MHz								
			Hor	izonta	l							Ve	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	·	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
5147.297	47.12	4.93	52.05	54.00	-1.95	104	101	Average	5100.050	40.56	4.83	45.39	54.00	-8.61	102	356	Average
5147.297		4.93	66.42	74.00			101	Peak	5100.050	53.14	4.83	57.97	74.00	-16.03	102		Peak
5190.000	97.97	5.01	102.98			104	101	Average	5190.000	85.92	5.01	90.93			102	356	Average
5190.000	107.52	5.01	112.53			104	101	Peak	5190.000	95.57	5.01	100.58			102	356	Peak
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
0380.000	39,99	10.94	50,93	68.20	-17.27	151	128	Peak	10380.000	40.15	10,94	51.09	68.20	-17.11	147	129	Peak
5570.000	31.41	14.05	45.46	54.00	-8.54	148	9	Average	15570.000		14.05	45.60	54.00	-8.40	155	289	Averag
	42.36	14.05	56.41	74.00	-17.59	148	9	Peak	15570.000		14.05	57.07	74.00	-16.93	155	289	Peak
.5570.000	42.30																
.5570.000	42.30							5230	MHz								
5570.000	42.30		Hor	izonta	ıl			5230	MHz			Ve	rtical				
		Factor	Hor	izonta		Height	Degree			Reading	Factor	Ve	rtical	Margin	Height	Degree	Remark
		Factor dB/m				Height (cm)	Degree (°)				Factor dB/m			Margin —dB	Height (cm)	Degree (°)	Remark
Freq.	Reading		Level	Limit	Margin				Freq. 	dBuV	dB/m	Level dBuV/m	Limit		(cm)	(°)	Remark
Freq. MHz	Reading 	dB/m	Level dBuV/m	Limit	Margin	(cm)	(°)	Remark 	Freq.	dBuV 92.18		Level	Limit				Remark Averag Peak
Freq. MHz 5230.000	Reading dBuV 103.48 112.95 45.44	dB/m	Level dBuV/m 108.30	Limit	Margin dB -3.91	(cm) 105	(°) 103	Remark Average	Freq. 	dBuV 92.18 101.41	dB/m	Level dBuV/m 97.00	Limit		(cm) 106	(°) 353	Averag Peak
Freq. MHz 5230.000 5230.000	Reading 	dB/m 4.82 4.82	Level dBuV/m 108.30 117.77	Limit dBuV/m	Margin dB	(cm) 105 105	(°) 103 103	Remark Average Peak	Freq. 	dBuV 92.18 101.41 40.51	dB/m 4.82 4.82	Level dBuV/m 97.00 106.23	Limit dBuV/m	-8.74	(cm) 106 106	(°) 353 353	Averag Peak
Freq. MHz 5230.000 5350.010 5350.010	Reading dBuV 103.48 112.95 45.44	dB/m 4.82 4.82 4.65 4.65	Level dBuV/m 108.30 117.77 50.09	Limit dBuV/m 54.00	Margin dB -3.91 -12.14	(cm) 105 105 105 105	(°) 103 103 103	Remark Average Peak Average Peak	Freq. NHz 5230.000 5230.000 5397.618 5397.618	dBuV 92.18 101.41 40.51	dB/m 4.82 4.82 4.75 4.75	Level dBuV/m 97.00 106.23 45.26	Limit dBuV/m 54.00	-8.74 -16.59	(cm) 106 106 106 106	(°) 353 353 353 353	Averag Peak Averag Peak
Freq. MHz 5230.000 5350.010 5350.010	Reading dBuV 103.48 112.95 45.44 57.21	dB/m 4.82 4.82 4.65 4.65	Level dBuV/m 108.30 117.77 50.09 61.86	Limit dBuV/m 54.00 74.00	Margin dB -3.91 -12.14	(cm) 105 105 105 105	(°) 103 103 103 103	Remark Average Peak Average Peak	Freq. NHz 5230.000 5230.000 5397.618 5397.618	dBuV 92.18 101.41 40.51 52.66 Reading	dB/m 4.82 4.82 4.75 4.75 Factor	Level dBuV/m 97.00 106.23 45.26 57.41	Limit dBuV/m 54.00 74.00	-8.74 -16.59	(cm) 106 106 106 106 Height	(°) 353 353 353 353	Averag Peak Averag Peak
Freq. MHz 5230.000 5350.010 5350.010 Freq. MHz	Reading dBuV 103.48 112.95 45.44 57.21 Reading dBuV	dB/m 4.82 4.65 4.65 4.65 Factor	Level dBuV/m 108.30 117.77 50.09 61.86 Level dBuV/m	Limit dBuV/m 54.00 74.00 Limit dBuV/m	Margin dB -3.91 -12.14 Margin dB	(cm) 105 105 105 105 Height (cm)	(°) 103 103 103 103 103 Degree (°)	Remark Average Peak Average Peak Remark	Freq. MHz 5230.000 5397.618 5397.618 Freq. MHz	dBuV 92.18 101.41 40.51 52.66 Reading dBuV	dB/m 4.82 4.75 4.75 4.75 Factor dB/m	Level dBuV/m 97.00 106.23 45.26 57.41 Level dBuV/m	Limit dBuV/m 54.00 74.00 Limit dBuV/m	-8.74 -16.59 Margin dB	(cm) 106 106 106 106 106 Height (cm)	(°) 353 353 353 353 353 353 353	Averag Peak Averag Peak Remark
Freq. MHz 5230.000 5230.000 5350.010 5350.010 Freq.	Reading dBuV 103.48 112.95 45.44 57.21 Reading dBuV 42.09	dB/m 4.82 4.65 4.65 Factor	Level dBuV/m 108.30 117.77 50.09 61.86 Level	Limit dBuV/m 54.00 74.00 Limit	Margin dB -3.91 -12.14 Margin	(cm) 105 105 105 105 Height	(°) 103 103 103 103 Degree	Remark Average Peak Average Peak	Freq. MHz 5230.000 5330.000 5397.618 5397.618 Freq.	dBuV 92.18 101.41 40.51 52.66 Reading dBuV 0 40.50	dB/m 4.82 4.75 4.75 Factor dB/m 10.97	Level dBuV/m 97.00 106.23 45.26 57.41 Level	Limit dBuV/m 54.00 74.00 Limit	-8.74 -16.59 Margin dB	(cm) 106 106 106 106 Height	(°) 353 353 353 353	Averag Peak Averag Peak

802.11ac VHT80 Mode:

								5210	MHz								
			Hor	izonta	l							Ve	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
5149.500	46.13	4.92	51.05	54.00	-2.95	109	101	Average	5149.900	40.91	4.92	45.83	54.00	-8.17	105	355	Average
5149.500	60.26	4.92	65.18	74.00	-8.82	109	101	Peak	5149.900	52.72	4.92	57.64	74.00	-16.36	105		Peak
5210.000	91.01	4.82	95.83			109	101	Average	5210.000	79.71	4.95	84.66			105		Average
5210.000	101.69	4.82	106.51			109	101	Peak	5210.000	89.32	4.95	94.27			105	355	Peak
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
10420.000	40.36	11.00	51.36	68.20	-16.84	147	210	Peak	10420.000	40.33	11.00	51.33	68.20	-16.87	153	200	Peak
15630.000	32.40	14.10	46.50	54.00	-7.50	152	218	Average	15630.000	32.11	14.10	46.21	54.00	-7.79	149	299	Average
15630.000	42.55	14.10	56.65	74.00	-17.35	152	218	Peak	15630.000	42.84	14.10	56.94	74.00	-17.06	149	299	Peak

Level (Result) = Reading + Factor.

Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss – Amplifier Gain.