FCC Test Report

Equipment	$:$ Electro-Brooch
Model No	$:$ BTS1801
Applicant	$:$ BlueTium Co., Ltd
	D-313, 357, Guseong-ro, Giheung-gu, Yongin-si,
	Gyeonggi-do, Republic of Korea
Date of test	$:$ February 14, 2019 to March 18, 2019
FCC Rule Parts)	$:$ FCC Part 15 Subpart C §15.247
Report Type	$:$

The product was received on February 14, 2019 and testing was completed on March 18, 2019. We, BWS TECH Inc. would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of BWS TECH Inc. the test report shall not be reproduced except in full.
(Date) 03/18/2019

Tested by Hyeong-Bae, Lee
(Date) 03/18/2019

Reviewed by Bang-Hyun, Nam

BUS TECH INC.

\#23, Gokhyeon-ro 480beon-gil, Mohyeon-eup, Cheoin-gu, Yongin-si, Gyeonggi-do 17031, Republic of Korea TEL: +82-31-333-5997, FAX: +82-31-333-0017
http://www.bws.co.kr

Report Revision

TEST REPORT NO.	DATE	DESCRIPTION
BWS-19-RF-0001	March 13,2019	- First Approval Report
BWS-19-RF-0001-R1	March 18,2019	- Update the AC Power Line Conducted Emission and revise standard version.

TABLE OF CONTENTS

1. General Information 4
1.1 Applicant 4
1.2 Manufacturer 4
1.3 EUT Description 4
1.4 Other Information 4
2. Description of Test Facility 5
3. Test Methodology 6
3.1 EUT Configuration 6
3.2 EUT Exercise 6
3.3 FCC Part 15.205 Restricted Bands of Operations 6
3.4 Description of Test Modes 6
4. Summary of Test Result 7
5. Test Equipment 8
6. Test Data 9
6.1 AC Power Line Conducted Emission 9
6.2 Peak Output Power Measurement. 10
6.3 Power Spectral Density 13
6.46 dB Bandwidth 16
6.5 Conducted Spurious Emission 19
6.6 Band Edges Measurement 22
6.7 Radiated Spurious Emission 25
6.8 Antenna Application 31

1. General Information

Scope - Measurement and determination of electromagnetic emission(EME) of radio frequency devices including intentional radiators and/or unintentional radiators for compliance with the technical rules and regulations of the U.S Federal Communications Commission(FCC)

1.1 Applicant

\bullet	Company Name	: BlueTium Co., Ltd
\bullet	Company Address	: D-313, 357, Guseong-ro, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
\bullet	Phone/Fax	: Tel No. : +82-31-229-3579 Fax No. : +82-31-229-3578

1.2 Manufacturer

| \bullet | Company Name |
| :--- | :--- | : BlueTium Co., Ltd $\quad . \quad$| \bullet | Company Address | : D-313, 357, Guseong-ro, Giheung-gu, Yongin-si, Gyeonggi-do,
 Republic of Korea |
| :--- | :--- | :--- |
| \bullet | Phone/Fax | :Tel No. : +82-31-229-3579 Fax No. : +82-31-229-3578 |

1.3 EUT Description

- Equipment	$:$ Electro-Brooch
- Model(s)	$:$ BTS1801
- Operation Frequency	$: 2402 \mathrm{MHz} \sim 2480 \mathrm{MHz}$
- Number of Channels	$:$ BLE Channel 40
- Modulation Method	$: 1$ Mbps GFSK
- Power Tolerance	$:+/-2 \mathrm{~dB}$
- Input Voltage	$: \mathrm{DC} 3.8 \mathrm{~V}$ Battery
- Antenna Peak Gain	$: 3.29 \mathrm{dBi}$

1.4 Other Information

\bullet FCC Rule Part(s)	: Part 15 Subpart C §15.247
\bullet FCC ID	$:$ 2ASN3BTS1801
\bullet Test Procedure	: ANSI C63.10-2013
KDB 558074 D01 DTS Meas Guidance v05	
\bullet Date of Test	: February 14, 2019 to March 13, 2019
\bullet Place of Test	: BWS TECH Inc. (FCC Registration Number : 287786) \#23, Gokhyeon-ro 480 Beon-gil, Mohyeon-eup, Cheoin-gu, Yongin-si, Gyeonggi-do 17031, South Korea TEL: +82 31 333 5997 FAX: +82 31 333 0017

2. Description of Test Facility

Site Description

Test Lab.

Name of Firm
Site Location
: BWS TECH Inc.
: \#23, Gokhyeon-ro 480 Beon-gil, Mohyeon-eup, Cheoin-gu, Yongin-si, Gyeonggi-do 17031, South Korea

3. Test Methodology

The tests documented in this report were performed in accordance with ANSI C63.10: 2013 and the requirements of FCC Rules Part 15.207, 15.209 and 15.247.
Radio testing was performed according to KDB 558074 D01 DTS Meas Guidance v05.

3.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and is operated in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

3.3 FCC Part 15.205 Restricted Bands of Operations

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

$\mathbf{M H z}$	$\mathbf{M H z}$	$\mathbf{M H z}$	$\mathbf{G H z}$
$0.090-0.110$	$16.42-16.423$	$399.9-410$	$4.5-5.15$
$10.495-0.505$	$16.69475-16.69525$	$608-614$	$5.35-5.46$
$2.1735-2.1905$	$16.80425-16.80475$	$960-1240$	$7.25-7.75$
$4.125-4.128$	$25.5-25.67$	$1300-1427$	$8.025-8.5$
$4.17725-4.17775$	$37.5-38.25$	$1435-1626.5$	$9.0-9.2$
$4.20725-4.20775$	$73-74.6$	$1645.5-1646.5$	$9.3-9.5$
$6.215-6.218$	$74.8-75.2$	$1660-1710$	$10.6-12.7$
$6.26775-6.26825$	$108-121.94$	$1718.8-1722.2$	$13.25-13.4$
$6.31175-6.31225$	$123-138$	$2200-2300$	$14.47-14.5$
$8.291-8.294$	$149.9-150.05$	$2310-2390$	$15.35-16.2$
$8.362-8.366$	$156.7-156.9$	$2483.5-2500$	$17.7-21.4$
38675	$162.0125-167.17$	$2690-2900$	$22.01-23.12$
$8.41425-8.41475$	$167.72-173.2$	$3260-3267$	$23.6-24.0$
$12.29-12.293$	$240-285$	$3332-3339$	$31.2-31.8$
$12.51975-12.52025$	$322-335.4$	$3345.8-3358$	$36.43-36.5$
$12.57675-12.57725$		$3600-4400$	$\left({ }^{2}\right)$
$13.36-13.41$			

1 Until February 1, 1999, this restricted band shall be $0.490-0.510 \mathrm{MHz}$.
2 Above 38.6
(b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in $\S 15.209$. At frequencies equal to or less than 1000 MHz , compliance with the limits in $\S 15.209$ shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz , compliance with the emission limits in $\S 15.209$ shall be demonstrated based on the average value of the measured emissions. The provisions in $\S 15.35$ apply to these measurements.

3.4 Description of Test Modes

The EUT has been tested under operating condition.
After verification, all tests were carried out with the worst case test modes as shown below, and these were chosen for full testing.
For BLE, Channel Low (Ch00 : 2402 MHz), Middle (Ch19 : 2440 MHz) and High (Ch39:2480 MHz) were chosen for full testing.

4. Summary of Test Result

Clause	TEST Description	Standard Section	Requirements	Result
6.1	AC Power Line Conducted Emission	$\S 15.207$	$\S 15.207(\mathrm{a})$	Pass
6.2	Peak Output Power Measurement	$\S 15.247(\mathrm{~b})(3)$	$\leq 30 \mathrm{dBm}$	Pass
6.3	Power Spectral Density	$\S 15.247(\mathrm{e})$	$\leq 8 \mathrm{dBm} / 3 \mathrm{kHz}$	Pass
6.4	6 dB Bandwidth	$\S 15.247(\mathrm{a})(2)$	$\geq 500 \mathrm{kHz}$	Pass
6.5	Conducted Spurious Emission	$\S 15.247(\mathrm{~d})$	$\geq 20 \mathrm{dBc} / 100 \mathrm{kHz}$	Pass
6.6	Band Edges Measurement	$\S 15.247(\mathrm{~d})$	Pass	
6.8	Antenna Application	$\S 15.205(\mathrm{a})$	Pass	

5. Test Equipment

Equipment	Model	Manufacturer	Serial number	Calibration Due date (year/month/date)
Bi-Log Antenna	VULB9163	SCHWARZBECK	01063	2019/04/20
ACTIVE HORN ANTENNA	AHA-118	COM-POWER CORP.	701064	2019/04/20
Horn Antenna	BBHA9170	SCHWARZBECK	157	2019/04/27
Loop Antenna	FMZB1519	SCHWARZBECK	00025	2020/01/04
EMI Test Receiver	ESR	ROHDE \& SCHWARZ	101450	2020/01/02
RF Amplifier $\text { (} 1 \mathrm{GHz} \sim 26.5 \mathrm{GHz})$	8449B	Agilient	3947A04710	2019/06/21
RF Amplifier ($1 \mathrm{MHz} \sim 1 \mathrm{GHz}$)	MPA-10-40	RF Bay	21163921	2019/06/21
Antenna Master (4 m)	AM 4.0	MATURO	$\begin{aligned} & \text { AM4.0/225 } \\ & \text { /17240915 } \end{aligned}$	N/A
Antenna Master (2 m)	AM 2.5	MATURO	$\begin{aligned} & \text { AM2.5/226 } \\ & \text { /17240915 } \end{aligned}$	N/A
Positioner Controller	CO2000	MATURO	$\begin{gathered} \text { NCU/459 } \\ / 17240915 \end{gathered}$	N/A
PROGRAMMABLE DC POWER SUPPLY	UDP-6015R	UNICORN	1301006	2019/08/29
SPECTRUM ANALYZER	FSP	ROHDE \& SCHWARZ	100631	2019/11/07
SPECTRUM ANALYZER	FSV30	ROHDE \& SCHWARZ	100832	2019/08/29
$\begin{aligned} & \hline \text { SYNTHESIZED } \\ & \text { SIGNAL } \\ & \text { GENERATOR } \end{aligned}$	68367C	ANRITSU	\#004908	2019/05/23
USB RF POWER SENSOR	RPR3006W	D.A.R.E!! Instruments	14I000048SNO09	2019/04/16
PROGRAMMABLE TEMP. \& HUMID. CHAMBER	SJ1013-TH	SeoJin Corp.	9204245	2019/06/08
RF Cable	RPM 513 1524/71	$\begin{gathered} \text { HUBER } \\ \text { SUHNER } \\ \text { SUCOFLEX } \end{gathered}$	3612/4FB	N/A
BANDREJECT FILTER	BRM50701	Micro-Tronics	G236	2019/09/13

6. Test Data

6.1 AC Power Line Conducted Emission

6.1.1 Test Limit

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission(MHz)	Conducted limit(dB $\mu \mathbf{V})$	
	Quasi-peak	Average
$0.15-0.5$	66 to 56^{*}	56 to 46^{*}
$0.5-5$	56	46
$5-30$	60	50

*Decreases with the logarithm of the frequency.

6.1.2 Test Procedures

1. The EUT was placed 0.4 meter from the conducting wall of the shielding room and was kept at least 80 centimeters from any other grounded conducting surface.
2. Connect EUT to the power mains through a line impedance stabilization network(LISN).
3. All the support units are connecting to the other LISN.
4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
5. The FCC states that a 50 ohm, 50 uH LISN should be used.
6. Both sides of AC line were checked for maximum conducted interference.
7. The frequency range from 150 kHz to 30 MHz was searched.
8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth $=9 \mathrm{kHz}$) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

6.1.3 Test SET-UP (Block Diagram of Configuration)

6.1.4 Test Results

Common Information

Test Line:
Comment:

L1 BTS1801

Final_Result

$\begin{aligned} & \text { Frequency } \\ & (\mathrm{MHz}) \end{aligned}$	QuasiPeak (dBuV)	CAverage (dBuV)	$\begin{aligned} & \text { Limit } \\ & (\mathrm{dBuV}) \end{aligned}$	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	PE	Corr. (dB)
0.366500	---	34.14	48.58	14.44	3000.0	9.000	L1	GND	7.8
0.369500	45.62	---	58.51	12.89	3000.0	9.000	L1	GND	7.8
0.437500	48.45	---	57.11	8.66	3000.0	9.000	L1	GND	7.8
0.441500	---	37.06	47.03	9.97	3000.0	9.000	L1	GND	7.8
0.757498	44.78	---	56.00	11.22	3000.0	9.000	L1	GND	7.8
0.757500	---	32.46	46.00	13.54	3000.0	9.000	L1	GND	7.8
1.224090	42.39	---	56.00	13.61	3000.0	9.000	L1	GND	7.8
1.319410	---	30.98	46.00	15.02	3000.0	9.000	L1	GND	7.8
1.766790	---	29.87	46.00	16.13	3000.0	9.000	L1	GND	7.8
1.781070	41.76	---	56.00	14.24	3000.0	9.000	L1	GND	7.8
2.290510	---	28.81	46.00	17.19	3000.0	9.000	L1	GND	7.8
2.334350	41.09	---	56.00	14.91	3000.0	9.000	L1	GND	7.8
2.772170	40.15	---	56.00	15.85	3000.0	9.000	L1	GND	7.8
2.819890	---	27.38	46.00	18.62	3000.0	9.000	L1	GND	7.8
3.309430	---	26.03	46.00	19.97	3000.0	9.000	L1	GND	7.8
3.349270	38.60	---	56.00	17.40	3000.0	9.000	L1	GND	7.8

Common Information

Test Line:
Comment:

N BTS1801

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	$\begin{aligned} & \text { Limit } \\ & (\mathrm{dBuV}) \end{aligned}$	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	PE	Corr. (dB)
0.358500	43.08	---	58.76	15.68	3000.0	9.000	N	GND	7.7
0.361500	---	31.72	48.69	16.98	3000.0	9.000	N	GND	7.7
0.437500	44.56	---	57.11	12.55	3000.0	9.000	N	GND	7.7
0.437500	---	33.95	47.11	13.16	3000.0	9.000	N	GND	7.7
0.737500	40.40	---	56.00	15.60	3000.0	9.000	N	GND	7.7
0.745500	---	29.60	46.00	16.40	3000.0	9.000	N	GND	7.7
1.279570	38.98	---	56.00	17.02	3000.0	9.000	N	GND	7.7
1.287550	---	29.71	46.00	16.29	3000.0	9.000	N	GND	7.7
1.757190	---	27.58	46.00	18.42	3000.0	9.000	N	GND	7.7
1.798950	39.32	---	56.00	16.68	3000.0	9.000	N	GND	7.7
2.338270	---	25.91	46.00	20.09	3000.0	9.000	N	GND	7.7
2.346290	38.56	---	56.00	17.44	3000.0	9.000	N	GND	7.7
2.807910	37.32	---	56.00	18.68	3000.0	9.000	N	GND	7.8
2.815910	---	24.64	46.00	21.36	3000.0	9.000	N	GND	7.8
3.338610	---	23.15	46.00	22.85	3000.0	9.000	N	GND	7.8
3.464630	34.44	---	56.00	21.56	3000.0	9.000	N	GND	7.8

Testing

6.2 Peak Output Power Measurement

6.2.1 Test Limit

The maximum peak power shall be less than 1 Watt (30 dBm).
Note: If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the direction gain of the antenna exceeds 6 dBi , In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi .

6.2.2 Measurement Procedure

1. The testing follows FCC KDB Publication No. 558074 D01 15.247 Meas. Guidance v05.
2. The RF output of EUT was connected to the power meter. The path loss was compensated to the results for each measurement.
3. Set to the maximum output power setting and enable the EUT transmit continuously.
4. Measure the conducted output power with cable loss and record the results in the test report.

6.2.3 Test SET-UP (Block Diagram of Configuration)

6.2.4 Test Results

[Duty Cycle]

Channel	Frequency (MHz)	Duty Cycle	Duty Cycle Factor (dB)
0	2402	0.631	2.0
19	2440	0.631	2.0
39	2480	0.631	2.0
Notes : 1. Duty Cycle $=$ Ton $/ \mathrm{T}_{\text {total }}$ 2. Duty Cycle Factor $=10^{\star} \log (1 /$ Duty Cycle) $)$			

[Peak Output Power Measurement]

Channel	Frequency (MHz)	Peak Output Power (dBm)	Antenna Gain (dBi)	Peak Output Power (EIRP) (dBm)	Duty Cycle Factor + Peak Output Power (EIRP) (dBm)	Max. Limit $(\mathbf{d B m})$	Result
0	2402	-13.8	3.29	-10.51	-8.51	≤ 30	Pass
19	2440	-14.0	3.29	-10.71	-8.71	≤ 30	Pass
39	2480	-13.6	3.29	-10.31	-8.31	≤ 30	Pass

Test Mode : : LE 2402 MHz

Test Mode : LE 2440 MHz

Page Number:
Data of Issue:

Test Mode : LE 2480 MHz

6.3 Power Spectral Density

6.3.1 Test Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiated to the Antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

6.3.2 Test Procedures

1. The testing follows FCC KDB Publication No. 558074 D01 15.247 Meas. Guidance v05.
2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Set (RBW $=3 \mathrm{kHz}$, VBW $=10 \mathrm{kHz}$, Detector = Peak, Span = 1.5 times DTS Channel Bandwidth, Trace mode = Max Hold, Sweep = Auto).
5. Measure and record the results in the test report.

6.3.3 Test SET-UP (Block Diagram of Configuration)

6.3.4 Test Results

Channel	Frequency $(\mathbf{M H z})$	Power Density $(\mathbf{d B m} / \mathbf{3} \mathbf{k H z})$	Max. Limit $(\mathbf{d B m} / \mathbf{3} \mathbf{~ k H z})$	Result
0	2402	-30.38	≤ 8.00	Pass
19	2440	-29.91	≤ 8.00	Pass
39	2480	-29.84	≤ 8.00	Pass

Test Mode : LE 2402 MHz

Date: 4.MAR.2019 11:23:04

Test Mode : LE 2440 MHz

Date: 4.MAR.2019 11:22:07

Test Mode : LE 2480 MHz

Date: 4.MAR.2019 11:21:39

6.46 dB Bandwidth

6.4.1 Test Limit

The minimum 6 dB bandwidth shall be at least 500 kHz .

6.4.2 Measurement Procedure

1. The testing follows FCC KDB Publication No. 558074 D01 15.247 Meas. Guidance v05.
2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Set (RBW $=100 \mathrm{kHz}, \mathrm{VBW}=300 \mathrm{kHz}$, Detector $=$ Peak, Trace mode $=$ Max Hold, Sweep $=$ Auto).
5. Measure and record the results in the test report.

6.4.3 Test SET-UP (Block Diagram of Configuration)

6.4.4 Test Results

Channel	Frequency $\mathbf{(M H z)}$	6dB Bandwidth $\mathbf{(k H z)}$	Limit (kHz)	Result
0	2402	702	≥ 500	Pass
19	2440	696	≥ 500	Pass
39	2480	696	≥ 500	Pass

Test Mode : LE 2402 MHz

Date: 4.MAR.2019 10:57:05

Test Mode : LE 2440 MHz

Date: 4.MAR.2019 11:18:01

Test Mode : LE 2480 MHz

Date: 4.MAR.2019 11:20:38

6.5 Conducted Spurious Emission

6.5.1 Test Limit

According to $\S 15.247(\mathrm{~d})$, in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in $\S 15.205(a)$, must also comply with the radiated emission limits specified in15.209(a).

6.5.2 Test Procedure

1. The testing follows FCC KDB Publication No. 558074 D01 15.247 Meas. Guidance v05.
2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Set (RBW $=100 \mathrm{kHz}, \mathrm{VBW}=300 \mathrm{kHz}$, Detector = Peak, Trace mode = Max Hold, Sweep = Auto).
5. Measure and record the results in the test report.

6.5.3 Test SET-UP (Block Diagram of Configuration)

Conducted Emission Test Set-Up, Frequency above 1000 MHz

6.5.4 Test Result

[Conducted Spurious Emission Test]

Test Mode : LE 2402 MHz

Date: 8.MAR.2019 19:39:38

Test Mode : LE 2440 MHz

Date: 8.MAR.2019 19:43:53

Test Mode : LE 2480 MHz

Date: 8.MAR.2019 19:46:44

6.6 Band Edges Measurement

6.6.1 Test Limit

According to $\S 15.247$ (d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

6.6.2 Test Procedure

The EUT is placed on a turntable with 1.5 meter above ground.
The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emission.
Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:

PEAK: RBW=VBW $=100 \mathrm{kHz} /$ Sweep=AUTO
AVERAGE: RBW $=100 \mathrm{kHz} / \mathrm{VBW}=10 \mathrm{~Hz} /$ Sweep=AUTO
Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

6.6.3 Test SET-UP (Block Diagram of Configuration)

(a) Conducted Emission Test Set-Up, Frequency above 1000 MHz

(b)Radiated Emission Test Set-Up, Frequency above 1000 MHz

6.6.4 Test Result

[Conducted Band Edges]

Test Mode : BLE 2402 MHz Band Edge

Date: 4.MAR.2019 11:24:38

Test Mode : BLE 2480 MHz Band Edge

Date: 4.MAR.2019 11:25:35
[Radiated Band Edges Test]

Frequency $[\mathbf{M H z}]$	Reading $[\mathrm{dB} \boldsymbol{\mu V}]$	Detector Mode	Factor $[\mathrm{dB}]$	Level $[\mathrm{dBuV} / \mathbf{m}]$	Limit $[\mathrm{dBuV} / \mathbf{m}]$	Margin $[\mathrm{dB}]$	Pol/Phase
2390	40.26	Peak	-5.0	34.24	73.98	38.51	Hor
2390	40.21	Peak	-5.0	34.85	73.98	38.12	Ver
2483.5	40.13	Peak	-4.8	34.61	73.98	38.24	Hor
2483.5	40.05	Peak	-4.8	34.87	73.98	38.86	Ver

Note : Factor = Antenna Gain + Cable loss - Amplifier Gain.

6.7 Radiated Spurious Emission

6.7.1 Test Limit

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB . In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.
Note: Wireless charger configuration was evaluated.

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement distance (meters)
$0.009-0.490$	$2400 / \mathrm{F}(\mathrm{kHz})$	300
$0.490-1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$	30
$1.705-30.0$	30	30
$30-88$	100	3
$88-216$	150	3
$216-960$	200	3
Above 960	500	3

6.7.2 Test Procedure

1. The testing follows FCC KDB Publication No. 558074 D01 15.247 Meas. Guidance v05.
2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
3. The EUT was placed on a turntable. For emissions testing at or below 1 GHz , the table height was 80 cm above the reference ground plane. For emission measurements above 1 GHz , the table height was 1.5 m .
4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. The radiation measurements are tested under 3-axes (X, Y, Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.
5. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level
6. For measurement below 1 GHz , If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
7. Use the following spectrum analyzer settings and peak emission levels are measured :
(1) Span shall wide enough to fully capture the emission being measured;
(2) Set RBW ($9-150 \mathrm{kHz}: 200 \mathrm{~Hz}, 0.15-30 \mathrm{MHz}: 9 \mathrm{kHz}, 30-1000 \mathrm{MHz}: 120 \mathrm{kHz}$, above $1 \mathrm{GHz}: 1 \mathrm{MHz}$).
(3) VBW $\geq 3 \times$ RBW ; Sweep = auto; Detector function = peak; Trace $=$ max hold

For average measurement:

- VBW $=10 \mathrm{~Hz}$, when duty cycle is no less than 98 percent.
- VBW $\geq 1 / T$, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

8. Measure and record the results in the test report.

6.7.3 Test SET-UP (Block Diagram of Configuration)

1. Radiated Emission Test Set-Up, Frequency Below 30 MHz

2. Radiated Emission Test Set-Up, Frequency Below 1000 MHz

3. Radiated Emission Test Set-Up, Frequency Above 1000 MHz.

6.7.4 Test Results

[Below 30MHz]

Frequency $[\mathrm{MHz}]$	Reading $[\mathrm{dB} \mu \mathrm{V}]$	Antenna Factor $[\mathrm{dB}]$	Cable Loss $[\mathrm{dB}]$	Preamp Factor $[\mathrm{dB}]$	Level $[\mathrm{dBuV} / \mathrm{m}]$	Pol/Phase

No other emissions were detected at a level greater than 20 dB below limit.
Remark: §15.31(o)_The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.
[Below $1 \mathrm{GHz}-30 \mathrm{MHz} \sim 1 \mathrm{GHz}$]
Test Mode : LE (Worst case : X-H)

Critical_Freqs

Frequency (MHz)	MaxPeak $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
343.407000	12.85	46.02	33.17	-	-	100.0	H	100.0	-20.3
952.324500	27.21	46.02	18.81	-	-	200.0	H	8.0	-6.5
721.464500	23.87	46.02	22.15	-	-	200.0	H	163.0	-11.4
598.759500	23.00	46.02	23.02	-	-	200.0	H	352.0	-11.3
48.333000	6.43	40.00	33.57	-	-	200.0	V	100.0	-24.9
492.302000	16.05	46.02	29.97	-	-	200.0	V	$\mathbf{2 8 8 . 0}$	-16.5

Note : Only the worst case plots for Radiated Spurious Emissions.

Page Number:
Data of Issue:

[Above 1 GHz - $1 \mathrm{GHz} \sim 18 \mathrm{GHz}$]

Test Mode : LE (Worst case : X-H)

Critical_Freqs

Frequency (MHz)	MaxPeak $(\mathrm{dBuV} / \mathrm{m})$	Average $(\mathrm{dBuV} / \mathrm{m})$	Limit $(\mathrm{dBuV} / \mathrm{m})$	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
2923.125000	32.55	--	74.00	41.45	5.0	1000.000	100.0	H	0.0
4803.750000	38.79	--	74.00	35.21	5.0	1000.000	100.0	V	36.0
8180.375000	41.66	--	74.00	32.34	5.0	1000.000	100.0	V	77.0
12392.125000	43.44	--	74.00	30.56	5.0	1000.000	100.0	H	349.0
14978.250000	45.51	--	74.00	28.49	5.0	1000.000	100.0	V	0.0
17677.000000	49.15	--	74.00	24.85	5.0	1000.000	100.0	V	86.0

Note : 1) Only the worst case plots for Radiated Spurious Emissions.
2) A filter was used for this test.
[Above $1 \mathrm{GHz}-18 \mathrm{GHz} \sim 26 \mathrm{GHz}$]
Test Mode : LE (Worst case : X-H)

Critical_Freqs

$\begin{gathered} \text { Frequency } \\ (\mathrm{MHz}) \end{gathered}$	MaxPeak ($\mathrm{dB} \neq \mathrm{iV} / \mathrm{m}$)	Average (dB¥iV/m)	$\underset{(\mathrm{dB} ¥ \mathrm{iV} / \mathrm{m})}{\mathrm{Limit}}$	$\begin{gathered} \text { Margin } \\ \text { (dB) } \end{gathered}$	Meas. Time (ms)	$\begin{gathered} \text { Bandwidth } \\ (\mathrm{kHz}) \end{gathered}$	Height (cm)	Pol	$\begin{gathered} \text { Azimuth } \\ \text { (deg) } \end{gathered}$
--	---	---	---	--	---	--	---		---

Note : Only the worst case plots for Radiated Spurious Emissions.

6.8 Antenna Application

6.8.1 Antenna Requirement

According to $\S 15.203$, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.
And according to $\S 15.247$ (b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi .

6.8.2 Test Results

Antenna Type	Frequency	Antenna Gain	Limit	Result
Chip Antenna	2.450 GHz	3.29 dBi	$\leq 6 \mathrm{dBi}$	Pass

