

FCC TEST REPORT FCC ID: 2ASN2MPD553BZ

Product	:	SPEAKER			
Model Name	:	MPD553BZ, UK-1602, UK-1906, UK-1907, UK-1908			
Brand	:	Ukeen, Sing-e, MAX POWER			
Report No.	:	PTC19030701501E-FC01			
		Prepared for			
	UKI	EEN TECHNOLOGY(HK)LIMITED			
ROOM 803, CHEVALIER	ROOM 803, CHEVALIER HOUSE, 45-51 CHATHAM ROAD SOUTH, TSIM SHA TSUI, KOWLOON, HONG KONG				
		Prepared by			
Dc	ongguan	Precise Testing & Certification Corp., Ltd.			
Building D, Baoding Tec	Building D, Baoding Technology Park, Guangming Road 2, Guangming Community, Dongcheng District, Dongguan, Guangdong, China				

1 TEST RESULT CERTIFICATION

Applicant's name	:	UKEEN TECHNOLOGY(HK)LIMITED	
Address	:	ROOM 803, CHEVALIER HOUSE, 45-51 CHATHAM ROAD SOUTH, TSIM SHA TSUI, KOWLOON, HONG KONG	
Manufacture's name	:	DONGGUAN CITY SING-E ELECTRONICS TECHNOLOGY CO., LTD	
Address	:	NO.5 Jingsheng Road, Langxia Village, Qiaotou Town, Dongguan, Guandong Province, China	
Product name	:	SPEAKER	
Model name	:	MPD553BZ, UK-1602, UK-1906, UK-1907, UK-1908	
Standards	:	FCC CFR47 Part 15 Section 15.247	
Test procedure	:	ANSI C63.10:2013	
Test Date	:	March 11, 2019 to March 30, 2019	
Date of Issue	:	March 30, 2019	
Test Result	:	Pass	

This device described above has been tested by PTC, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of PTC, this document may be altered or revised by PTC, personal only, and shall be noted in the revision of the document.

Test Engineer:

Leo Yang

Leo Yang / Engineer

chim

Chris Du / Manager

Technical Manager:

Contents

Page

1	TEST RESULT CERTIFICATION					
2	TEST SUMMARY		5			
	2.1	TEST SITE	6			
3	GENERAL INFORMATIO	N	7			
	3.1	GENERAL DESCRIPTION OF E.U.T.	7			
	3.2	CHANNEL LIST	8			
4	EQUIPMENT DURING TE	EST	9			
	4.1	EQUIPMENTS LIST	9			
	4.2	MEASUREMENT UNCERTAINTY	.11			
	4.3	DESCRIPTION OF SUPPORT UNITS	.12			
5	CONDUCTED EMISSION	l	.13			
	5.1	E.U.T. OPERATION	.13			
	5.2	EUT SETUP	. 13			
	5.3	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	.14			
	5.4	MEASUREMENT PROCEDURE	. 14			
	5.5	CONDUCTED EMISSION LIMIT	. 14			
	5.6	MEASUREMENT DESCRIPTION	.14			
	5.7	CONDUCTED EMISSION TEST RESULT	.14			
6	RADIATED SPURIOUS E	MISSIONS	.17			
	6.1	EUT OPERATION	. 17			
	6.2	TEST SETUP	. 18			
	6.3	SPECTRUM ANALYZER SETUP	. 19			
	6.4	Test Procedure	. 20			
	6.5	SUMMARY OF TEST RESULTS	. 22			
7	BAND EDGE MEASURE	MENT	. 27			
	7.1	Test Procedure	. 27			
	7.2	TEST RESULT	. 28			
8	6DB BANDWIDTH MEAS	UREMENT	.36			
	8.1	TEST PROCEDURE	.36			

	8.2	TEST RESULT	. 36
9	MAXIMUM PEAK OUTPU	T POWER	. 40
	9.1	TEST SETUP	. 40
	9.2	TEST PROCEDURE	.40
	9.3	TEST RESULT	. 40
10	POWER SPECTRAL DEN	ISITY	.42
	10.1	TEST PROCEDURE	. 42
	10.2	TEST RESULT	. 42
11	ANTENNA APPLICATION	۱	. 46
	11.1	ANTENNA REQUIREMENT	. 46
	11.2	RESULT	. 46
12	TEST SETUP		. 47
13	EUT PHOTOS		. 49

2 Test Summary

Test Items	Test Requirement	Result
Conduct Emission	15.207	PASS
Radiated Spurious Emissions	15.205(a) 15.209 15.247(d)	PASS
Conducted Spurious Emission	15.247(d)	PASS
Band edge	15.247(d) 15.209 15.205(a)	PASS
6dB Bandwidth	15.247(a)(2)	PASS
Maximum Peak Output Power	15.247(b)(3)	PASS
Power Spectral Density	15.247(e)	PASS
Antenna Requirement	15.203	PASS

Remark:

1. The EUT is powered by full-charged battery during the test.

2.1 Test Site

Dongguan Precise Testing & Certification Corp., Ltd. Address: Building D, Baoding Technology Park, Guangming Road2, Dongcheng District, Dongguan, Guangdong, China FCC Registration Number: 790290 A2LA Certificate No.: 4408.01 IC Registration Number: 12191A-1

3 General Information

3.1 General Description of E.U.T.

Product Name		SPEAKER
Model Name	:	MPD553BZ, UK-1602, UK-1906, UK-1907, UK-1908 (Note: The samples are the same except appearance and model number. So MPD553BZ was selected for full tested.)
Version		BLE 5.0
Operating frequency		2402-2480MHz
Number of Channels		40
Type of Modulation	• •	GFSK
Antenna installation	:	Internal PCB Antenna
Antenna Gain		-0.68 dBi
Power supply	• •	DC 3.7VBattery
Hardware Version	:	V2.0
Software Version		V1.0

3.2 Channel List

The EUT has been tested under its typical operating condition. Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting. Only the worst case data were reported.

The EUT has been associated with peripherals pursuant to ANSI C63.10-2013 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation (9 KHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).

The details of test channels and bandwidth were for RF conductive measurement.

Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

Model	Frequency Range (MHz)	Tested Frequency (MHz)	Modulation	Data Rate(Mbps)
Bluetooth LE	2402-2480	2402, 2442, 2480	GFSK	1
Bluetooth LE	2402-2480	2402, 2442, 2480	GFSK	2

Note:

 Test of channel was included the lowest 2402MHz, middle 2442MHz and highest frequency 2480MHz in highest data rate and to perform the test, then record on this report.

4 Equipment During Test

4.1 Equipments List

RF Conducted Test

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due
MXG Signal Analyzer	Agilent	N9020A	MY56070279	10Hz-30GHz	Sep.19, 2019
Coaxial Cable	CDS	79254	46107086	10Hz-30GHz	Sep.19, 2019
Antenna Connector	Florida RF Labs	N/A	RF01#	N/A	Sep.19, 2019
Power Meter	Anritsu	ML2495A	0949003	N/A	Sep.19, 2019
Power Sensor	Anritsu	MA2411B	0917017	N/A	Sep.19, 2019
Attenuator	Marvelous	MVE2213-10	RF30	N/A	Sep.19, 2019

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

Radiated Emissions

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due
Spectrum Analyzer	Agilent	E4407B	MY45109572	9KHz-26.5GHz	Sep.19, 2019
Loop Antenna	Schwarzbeck	FMZB 1519	012	9 KHz -30MHz	Sep.19, 2019
Bilog Antenna	SCHWARZBECK	VULB9160	9160-3355	25MHz-2GHz	Sep.19, 2019
Preamplifier (low frequency)	SCHWARZBECK	BBV 9475	9745-0013	1MHz-1GHz	Sep.19, 2019
Cable	Schwarzbeck	PLF-100	549489	9KHz-3GHz	Sep.19, 2019
Spectrum Analyzer	Agilent	E4407B	MY45109572	9KHz-40GHz	Sep.19, 2019
Horn Antenna	SCHWARZBECK	9120D	9120D-1246	1GHz-18GHz	Sep.19, 2019
Horn Antenna	SCHWARZBECK	BBHA 9170	9170-181	14GHz-40GHz	Sep.25, 2019
Amplifier	SCHWARZBECK	BBV 9721	9721-205	18GHz-40GHz	Sep.19, 2019
RF Cable	R&S	R204	R21X	1GHz-40GHz	Sep.19, 2019

Conducted Emissions

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due
EMI Test Receiver	Rohde&Schwarz	ESCI	101417	9KHz-3GHz	Sep.19, 2019
Artificial Mains Network	Rohde&Schwarz	L2-16B	000WX31025	9KHz-300MHz	Sep.19, 2019
Artificial Mains Network	Rohde&Schwarz	ENV216	101342	9KHz-300MHz	Sep.19, 2019

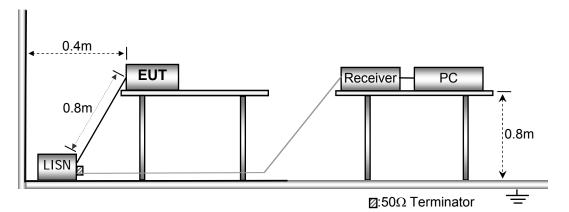
4.2 Measurement Uncertainty

Parameter	Uncertainty				
RF output power, conducted	±1.0dB				
Power Spectral Density, conducted	±2.2dB				
Radio Frequency	$\pm 1 \times 10^{-6}$				
Bandwidth	± 1.5 x 10 ⁻⁶				
Time	±2%				
Duty Cycle	±2%				
Temperature	±1°C				
Humidity	±5%				
DC and low frequency voltages	±3%				
Conducted Emissions (150kHz~30MHz)	±3.64dB				
Radiated Emission(30MHz~1GHz)	±5.03dB				
Radiated Emission(1GHz~25GHz) ±4.74dB					
Remark: The coverage Factor (k=2), and measurement Uncertainty for a level of Confidence of 95%					

4.3 Description of Support Units

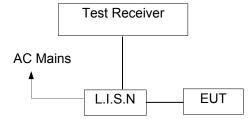
Equipment	Model No.	Series No.
Adapter	Model: PS65B150Y3000S Input: AC100-240V, 50/60Hz, 1.5A Output: DC 5V, 3000mA	N/A

5 Conducted Emission


Test Requirement	:	FCC CFR 47 Part 15 Section 15.207
Test Method	:	ANSI C63.10: 2013
Test Result	:	PASS
Frequency Range	:	150kHz to 30MHz
Class/Severity	:	Class B

5.1 E.U.T. Operation

Operating Environment :		
Temperature	:	25.5 °C
Humidity	:	51 % RH
Atmospheric Pressure	:	101.2kPa


5.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

5.3 Test SET-UP (Block Diagram of Configuration)

5.4 Measurement Procedure

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured was complete.

5.5 Conducted Emission Limit

Conducted Emission

Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

Note:

1. The lower limit shall apply at the transition frequencies

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

5.6 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

5.7 Conducted Emission Test Result

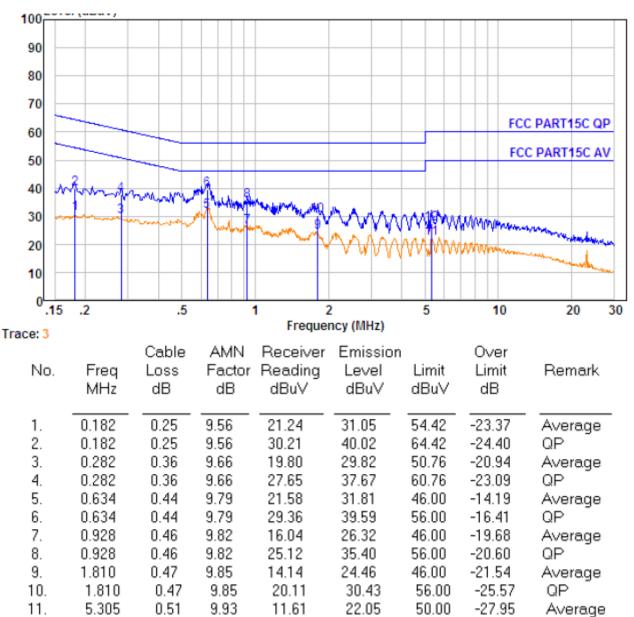
Pass.

12.

5.305

0.51

9.93


16.69

27.13

60.00

-32.87

QP

-27.47

-31.37

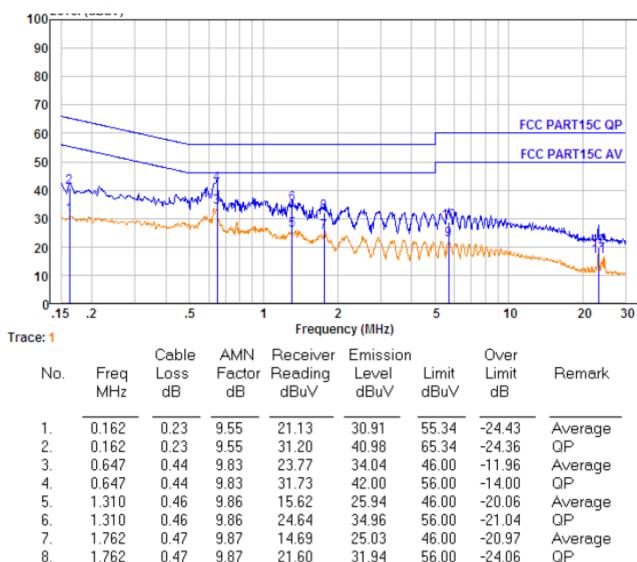
-33.24

-40.19

Average

Average

QP


QP

50.00

60.00

50.00

60.00

Neutral

9.

10.

11.

12.

5.683

5.683

23.140

23.140

0.52

0.52

0.49

0.49

9.97

9.97

10.02

10.02

12.04

18.14

6.25

9.30

22.53

28.63

16.76

19.81

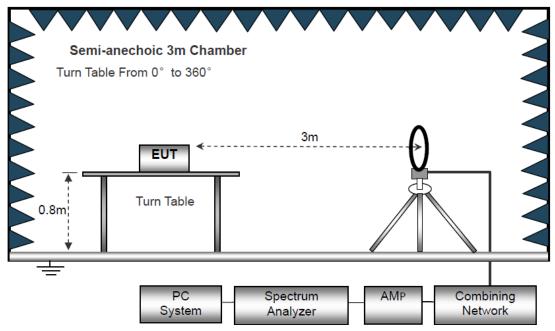
6 Radiated Spurious Emissions

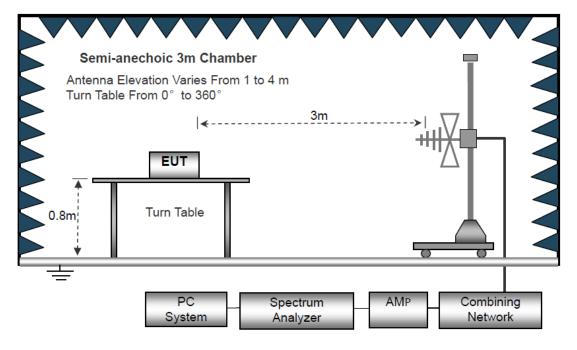
Test Requirement	:	FCC CFR47 Part 15 Section 15.209 & 15.247
Test Method	:	ANSI C63.10:2013
Test Result	:	PASS
Measurement Distance	:	3m
Limit	:	See the follow table

	Field Strer	igth	Field Strength Limit at 3m Measurement Dist			
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

6.1 EUT Operation

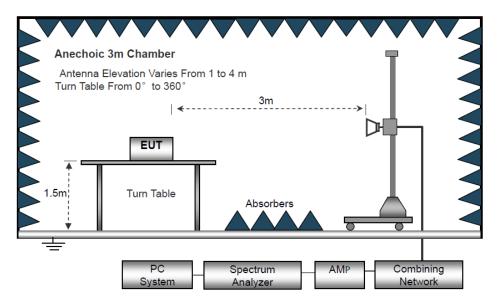
Operating Environment :


Temperature	:	23.5 °C
Humidity	:	51.1 % RH
Atmospheric Pressure	:	101.2kPa


6.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site

The test setup for emission measurement below 30MHz



The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz

6.3 Spectrum Analyzer Setup

	Frequency	Detector	RBW	VBW	Remark
	Below 30MHz		10kHz	10kHz	
Receiver Setup	30MHz ~ 1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
		RMS	1MHz	3MHz	Average Value

6.4 Test Procedure

- 1. The testing follows the guidelines in Spurious Radiated Emissions of ANSI C63.10-2013.
- 2. Below 1000MHz, The EUT was placed on a turn table which is 0.8m above ground plane. And above 1000MHz, The EUT was placed on a styrofoam table which is 1.5m above ground plane.
- 3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (From 1m to 4m) and turntable (from 0 degree to 360 degree) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Final measurement (Above 1GHz): The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1MHz. The measurement will be performed in horizontal and vertical polarization of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 degree to 360 degree in order to have the antenna inside the cone of radiation.
- 7. Test Procedure of measurement (For Above 1GHz):
- 1) Monitor the frequency range at horizontal polarization and move the antenna over all sides of the EUT(if necessary move the EUT to another orthogonal axis).
- 2) Change the antenna polarization and repeat 1) with vertical polarization.
- 3) Make a hardcopy of the spectrum.
- 4) Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 5) Change the analyser mode to Clear/ Write and found the cone of emission.
- 6) Rotate and move the EUT, so that the measuring distance can be enlarged to 3m and the antenna will be still inside the cone of emission.
- 7) Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarization and azimuth and the peak and average detector, which causes the maximum emission.
- 8) Repeat steps 1) to 7) for the next antenna spot if the EUT is larger than the antenna beamwidth.
- 8. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

For Average Measurement:

VBW=10Hz, when duty cycle is no less than 98 percent.

VBW≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Band	Duty Cycle(%)	T(µs)	1/T(KHz)	Average Correction Factor	VBW Setting
2402-2480	100	-	-	0	10Hz

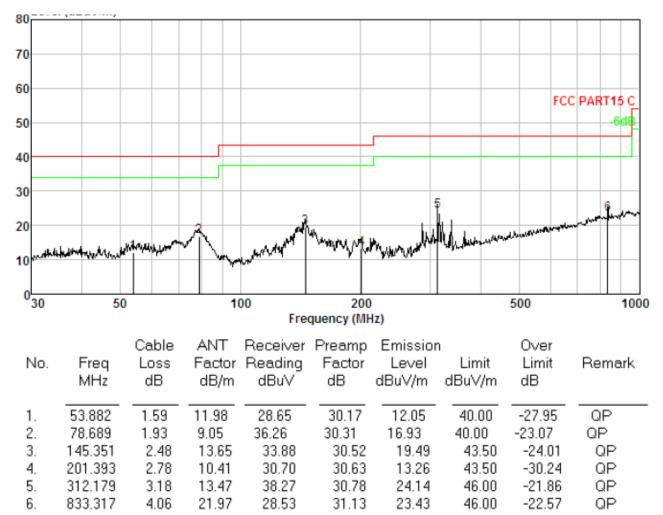
6.5 Summary of Test Results

Test Frequency: 9KHz-30MHz

Freq.	Ant.Pol.	Emission Level	Limit 3m	Over
(MHz)	H/V	(dBuV/m)	(dBuV/m)	(dB)
				>20

Note:

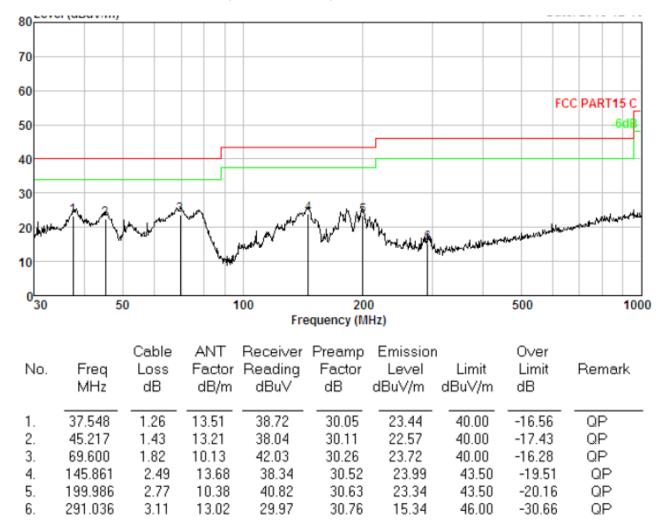
The amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.


Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

Test Frequency: 30MHz ~ 1GHz

Pass.

Please refer to the following test plots for the worst test mode (GFSK (CH00: 2402MHz)).



Antenna Polarization: Horizontal GFSK(CH00: 2402MHz)

Remark:Emission Level=Reading+Cable Loss+ANT Factor-AMP Factor

Antenna Polarization: Vertical GFSK(CH00: 2402MHz)

Remark: Emission Level=Reading+Cable Loss+ANT Factor-AMP Factor

Test Frequency: Above 1GHz:

BLE Mode

		LO	w Channel	(24021/11	HZ)			
S.A	Detector	Polarity	Ant.	Cable	Pre-	Emission	Limit	Margin
Reading	(PK/AV)	(H/V)	Factor	Loss	Amp.	Level	(dBuV/m)	(dB)
(dBuV)			(dB/m)	(dB)	Gain	(dBuV/m)		
					(dB)			
35.69	AV	V	30.58	4.92	35.87	35.32	54	-18.68
36.15	AV	Н	30.58	4.92	35.87	35.78	54	-18.22
41.45	PK	V	30.58	4.92	35.87	41.08	74	-32.92
46.22	PK	Н	30.58	4.92	35.87	45.85	74	-28.15
34.28	AV	V	30.76	4.98	35.04	34.98	54	-19.02
35.02	AV	Н	30.76	4.98	35.04	35.72	54	-18.28
46.82	PK	V	30.76	4.98	35.04	47.52	74	-26.48
48.12	PK	Н	30.76	4.98	35.04	48.82	74	-25.18
	Reading (dBuV) 35.69 36.15 41.45 46.22 34.28 35.02 46.82	Reading (dBuV) (PK/AV) 35.69 AV 36.15 AV 41.45 PK 46.22 PK 34.28 AV 35.02 AV 46.82 PK	S.A Reading (dBuV) Detector (PK/AV) Polarity (H/V) 35.69 AV V 36.15 AV H 41.45 PK V 46.22 PK H 34.28 AV V 35.02 AV V	S.A Reading (dBuV) Detector (PK/AV) Polarity (H/V) Ant. Factor (dB/m) 35.69 AV V 30.58 36.15 AV H 30.58 41.45 PK V 30.58 46.22 PK H 30.58 34.28 AV V 30.76 35.02 AV H 30.76 46.82 PK V 30.76	S.A Reading (dBuV) Detector (PK/AV) Polarity (H/V) Ant. Factor (dB/m) Cable Loss (dB) 35.69 AV V 30.58 4.92 36.15 AV H 30.58 4.92 41.45 PK V 30.58 4.92 46.22 PK H 30.58 4.92 34.28 AV V 30.76 4.98 35.02 AV H 30.76 4.98 46.82 PK V 30.76 4.98	Reading (dBuV) (PK/AV) (H/V) Factor (dB/m) Loss (dB) Amp. Gain (dB) 35.69 AV V 30.58 4.92 35.87 36.15 AV H 30.58 4.92 35.87 41.45 PK V 30.58 4.92 35.87 46.22 PK H 30.58 4.92 35.87 34.28 AV V 30.76 4.98 35.04 35.02 AV H 30.76 4.98 35.04 46.82 PK V 30.76 4.98 35.04	S.A Reading (dBuV) Detector (PK/AV) Polarity (H/V) Ant. Factor (dB/m) Cable Loss (dB/m) Pre- Loss (dB) Emission Level (dB) 35.69 AV V 30.58 4.92 35.87 35.32 36.15 AV H 30.58 4.92 35.87 35.78 41.45 PK V 30.58 4.92 35.87 41.08 46.22 PK H 30.58 4.92 35.87 45.85 34.28 AV V 30.76 4.98 35.04 34.98 35.02 AV H 30.76 4.98 35.04 47.52	S.A Reading (dBuV) Detector (PK/AV) Polarity (H/V) Ant. Factor (dB/m) Cable Loss (dB/m) Pre- Amp. (dB) Emission Level (dBuV/m) Limit (dBuV/m) 35.69 AV V 30.58 4.92 35.87 35.32 54 36.15 AV H 30.58 4.92 35.87 35.78 54 41.45 PK V 30.58 4.92 35.87 41.08 74 46.22 PK H 30.58 4.92 35.87 45.85 74 34.28 AV V 30.76 4.98 35.04 34.98 54 35.02 AV H 30.76 4.98 35.04 35.72 54 46.82 PK V 30.76 4.98 35.04 35.72 54

Low Channel (2402MHz)

Middle Channel (2442MHz)

Frequency	S.A	Detector	Polarity	Ant.	Cable	Pre-	Emission	Limit	Margin	
(MHz)	Reading	(PK/AV)	(H/V)	Factor	Loss	Amp.	Level	(dBuV/m)	(dB)	
	(dBuV)			(dB/m)	(dB)	Gain	(dBuV/m)			
						(dB)				
4884	36.21	AV	V	30.63	4.93	35.98	35.79	54	-18.21	
4884	37.04	AV	Н	30.63	4.93	35.98	36.62	54	-17.38	
4884	42.15	PK	V	30.63	4.93	35.98	41.73	74	-32.27	
4884	43.68	PK	Н	30.63	4.93	35.98	43.26	74	-30.74	
7326	35.22	AV	V	30.71	4.97	35.42	35.48	54	-18.52	
7326	37.81	AV	Н	30.71	4.97	35.42	38.07	54	-15.93	
7326	44.29	PK	V	30.71	4.97	35.42	44.55	74	-29.45	
7326	47.58	PK	Н	30.71	4.97	35.42	47.84	74	-26.16	

High Channel (2480MHz)

Frequency	S.A	Detector	Polarity	Ant.	Cable	Pre-	Emission	Limit	Margin
(MHz)	Reading	(PK/AV)	(H/V)	Factor	Loss	Amp.	Level	(dBuV/m)	(dB)
	(dBuV)			(dB/m)	(dB)	Gain	(dBuV/m)		
						(dB)			
4960	34.15	AV	V	31.22	5.10	36.51	33.96	54	-20.04
4960	35.29	AV	Н	31.22	5.10	36.51	35.1	54	-18.9
4960	41.02	PK	V	31.22	5.10	36.51	40.83	74	-33.17
4960	42.16	PK	Н	31.22	5.10	36.51	41.97	74	-32.03
7440	33.28	AV	V	31.53	5.22	35.16	34.87	54	-19.13
7440	34.35	AV	Н	31.53	5.22	35.16	35.94	54	-18.06
7440	42.55	PK	V	31.53	5.22	35.16	44.14	74	-29.86
7440	43.69	PK	Н	31.53	5.22	35.16	45.28	74	-28.72

BT 5.0 Mode

Low Channel (2402MHz)

Frequency	S.A	Detector	Polarity	Ant.	Cable	Pre-	Emission	Limit	Margin
(MHz)	Reading	(PK/AV)	(H/V)	Factor	Loss	Amp.	Level	(dBuV/m)	(dB)
	(dBuV)			(dB/m)	(dB)	Gain	(dBuV/m)		
						(dB)			
4804	35.26	AV	V	30.55	4.95	36.05	34.71	54	-19.29
4804	36.47	AV	Н	30.55	4.95	36.05	35.92	54	-18.08
4804	41.28	PK	V	30.55	4.95	36.05	40.73	74	-33.27
4804	43.66	PK	Н	30.55	4.95	36.05	43.11	74	-30.89
7206	36.08	AV	V	30.78	4.98	35.92	35.92	54	-18.08
7206	38.41	AV	Н	30.78	4.98	35.92	38.25	54	-15.75
7206	44.29	PK	V	30.78	4.98	35.92	44.13	74	-29.87
7206	45.12	PK	Н	30.78	4.98	35.92	44.96	74	-29.04

Middle Channel (2442MHz)

						/			
Frequency	S.A	Detector	Polarity	Ant.	Cable	Pre-	Emission	Limit	Margin
(MHz)	Reading	(PK/AV)	(H/V)	Factor	Loss	Amp.	Level	(dBuV/m)	(dB)
	(dBuV)			(dB/m)	(dB)	Gain	(dBuV/m)		
	. ,			. ,		(dB)	. ,		
4884	36.15	AV	V	30.66	4.94	35.86	35.89	54	-18.11
4884	37.05	AV	Н	30.66	4.94	35.86	36.79	54	-17.21
4884	43.15	PK	V	30.66	4.94	35.86	42.89	74	-31.11
4884	47.21	PK	Н	30.66	4.94	35.86	46.95	74	-27.05
7326	37.21	AV	V	30.79	4.51	35.51	37	54	-17
7326	38.04	AV	Н	30.79	4.51	35.51	37.83	54	-16.17
7326	45.92	PK	V	30.79	4.51	35.51	45.71	74	-28.29
7326	46.35	PK	Н	30.79	4.51	35.51	46.14	74	-27.86

High Channel (2480MHz)

					· ·	/			
Frequency	S.A	Detector	Polarity	Ant.	Cable	Pre-	Emission	Limit	Margin
(MHz)	Reading	(PK/AV)	(H/V)	Factor	Loss	Amp.	Level	(dBuV/m)	(dB)
	(dBuV)			(dB/m)	(dB)	Gain	(dBuV/m)		
						(dB)			
4960	37.15	AV	V	30.69	4.82	36.04	36.62	54	-17.38
4960	38.06	AV	Н	30.69	4.82	36.04	37.53	54	-16.47
4960	44.22	PK	V	30.69	4.82	36.04	43.69	74	-30.31
4960	46.91	PK	Н	30.69	4.82	36.04	46.38	74	-27.62
7440	38.42	AV	V	30.84	4.91	35.87	38.3	54	-15.7
7440	39.06	AV	Н	30.84	4.91	35.87	38.94	54	-15.06
7440	46.38	PK	V	30.84	4.91	35.87	46.26	74	-27.74
7440	47.11	PK	Н	30.84	4.91	35.87	46.99	74	-27.01

Note: 1. The testing has been conformed to 10*2480MHz=24800MHz.

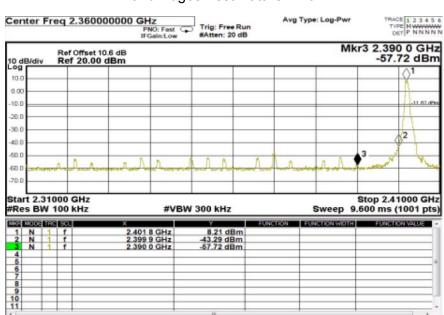
2. All other emissions more than 30dB below the limit.

3. Factor = Antenna Factor + Cable Loss – Pre-amplifier. Emission Level = Reading + Factor Margin=Emission Level-Limit

7 Band Edge Measurement

Test Requirement	:	Section 15.247(d) In addition, radiated emissions which fall in the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).
Test Method	:	ANSI C63.10:2013
Test Limit	:	Regulation 15.247 (d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.1 Test Procedure


1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold

7.2 Test Result

BLE Mode:

Band Edges Test Data CH-Low

Band Edges Test Data CH-High

nter Freq 2.		Hz PNO: Fast C FGain:Low	Trig: Free R #Atten: 20 d	in .	g Type: Log	-Pwr T	TYPE NNNN
	ffset 10.6 dB 20.00 dBm				N	1kr3 2.483 -54	600 GH: 4.95 dBm
		-					
	11						-11.62.09
	2 h	-				-	
	1 1						
- and an		3				M	
			March Share 11-	and of the second	we also and the second	manada and the	
rt 2.47500 G	Hz					Stop 2	50000 GH
s BW 100 kl		#VB	W 300 kHz		Swe	ep 2.400 ms	
N 1 1 N 1 1	× 2.479 7 2.483 5	00 GHz	8.46 dBm -63.79 dBm		FUNCTION	WIDTH FUN	CTION VALUE
N 1 f	2.483 6	00 GHz	-54.95 dBm				
		-				_	
				-			

BT 5.0 Mode

Band Edges Test Data CH-Low

Center	Free	2.30	50000		Z NO: Fast Sain:Low	Trig: Free #Atten: 20		Avg Ty	pe: Log-Pwi	TY	ET P NNNN
10 dB/div			et 10.6						м	kr3 2.39	0 0 GH2 77 dBm
to.o											01
0.00											Ň
10.0											1214 00
20.0											
30.0										4	2
40.0									-		
50.0										3	1
50.0		M.	in a	A.A.	Mun	A.M. A.	n.	AL.d.	M.A.	and the second	~
70.0		-						100			
start 2. Res B					#VE	300 kHz			Sweep	Stop 2.4 9.600 ms (
ANR MODE	TRC	23		×		¥		CTION	UNCTION WOT	H FUNCT	ON WALUE
1 N 2 N	1	1		2.402	9 GHz	7.48 dE					
3 N 4	1	1		2.390		-67.77 dB					
5					-			_			
6					-		-				
8		-					-				
10							-				
	• •				-		1	1		1	

Band Edges Test Data CH-High

enter Freq 2.4875000	PN0: Fast C IFGain:Low	Trig: Free Run #Atten: 20 dB	Avg Type	: Log-Pwr	TRACE 1 2 3 4 5 0 TYPE MWWWW DET P NNNN
Ref Offset 10.6 0 dB/div Ref 20.00 dB				Mkr3 2.48	3 600 GHz 51.09 dBm
10.0					_
0.00	2				-11.91.40
20.0	1				-
30.0	M2	+			
10.0	3-				-
50.0 arcatoroff	- and along	Mark Marker and Marker	mound	Marchanne Mar	mand
70.0					
tart 2.47500 GHz Res BW 100 kHz	#VB	W 300 kHz	5	Stop Sweep 2.400 n	2.50000 GH ns (1001 pts
NORE THE SOL	× 2.480 025 GHz	7.76 dBm	FUNCTION FUN	CTION WIDTH FL	INCTION VALUE
2 N 1 f	2.483 500 GHz	-47.72 dBm -51.09 dBm			
5					
6 7					
9					
10					

Conducted Spurious Emission Measurement Result

BLE Mode:

CH-Low 30MHz-3GHz

enter Fr	eq 1.515		Fast G	Trig: Free R #Atten: 20 d		AND IND	e: Log-Pwr	TVP	E 1 2 3 4 5 E MWWWW T P NNNN
0 dB/div	Ref Offset Ref 20.0						м	kr1 2.403 8.1	0 GH 20 dBr
								♦ 1	
1.00									
0.0									-11.82 (#
0.0	_								
0.0	_								
0.0	_							-	
0.0	_			-			t d	A	_
0.0		and the second s	to be dealers		-	the party and	A Almarks	() Henry Mar	- the state of the
0.0								-	
enter 1.5 Res BW			#VBW	300 kHz			Sweep 2	Span 2 283.9 ms (
R MODE TRO	f I	2.403 0 0	Hz	8.20 dBm		TION	NCTION WIDTH	FUNCTION	IN VALUE
2 3 4									
6			_			_			
6 7 8 9						_			
0						-			
1									

CH-Low 3GHz-26.5GHz

Center Freq 14.750	PNO: Fast G	Trig: Free Ru #Atten: 20 dl	m	Type: Log-Pwr	TRACE 1 2 3 4 5 TYPE MWWWW DET P NNNN
Ref Offset 10 10 dB/div Ref 20.00).6 dB			Mk	r1 4.809 5 GHz -48.30 dBm
-og					
0.00				_	
10.0					-11.82.49
20.0		+ +			
30.0		+		_	
40.0					
50.0				and the state of the state	and an all and and and the
50.0 - Carton and the contraction of the		the state of the second	provide a series	and the second s	
70.0		+			
enter 14.75 GHz Res BW 100 kHz	#VB	W 300 kHz			Span 23.50 GH 2.246 s (1001 pts
	4.809 5 GHz	-48.30 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE
2					
5					
7 8					
9					
10					
		100			

CH-Mid 30MHz-3GHz

Center Freq 1.51	5000000 GHz PN0: Fast G IFGain:Low	Trig: Free Run #Atten: 20 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 TYPE MWWW DET P NNNN
10 dB/div Ref 20.	et 10.6 dB 00 dBm		Mk	1 2.441 6 GH 8.12 dBn
to 0				↓ 1
0.00				
10.0				-11.66.0
20.0				-
30.0				
40.0				
50.0				
50.0	and the second states and the second		and a service and the service of the	William Martin and
70.0				
enter 1.515 GHz Res BW 100 kHz	#VBV	V 300 kHz		Span 2.970 GH 3.9 ms (1001 pt
N 1 1	2.441 6 GHz	8.12 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE
2 3				
4 5				
7				
8				
10				
11		10	1 1	,

CH-Mid3GHz-26.5GHz

Center Fr	eq 14.750	PN0: Fast C IFGain:Low	Trig: Free Ru #Atten: 20 dB	n	Type: Log-Pwr	TYPE NWWWW DET P NNNN
10 dB/div	Ref Offset Ref 20.00				Mk	r1 4.880 0 GHz -49.27 dBm
10.0						
0.00	_					
10.0						-11.66.49
20.0						
30.0						
40.0	A1					
50.0	Y					much some law and a start
50.0	al markene	den and a second	all an and the second		the state of the s	
70.0	_					
Center 14. Res BW	100 kHz	#VB	W 300 kHz			Span 23.50 GH 2.246 s (1001 pts
NR MODE TH	1	4.880 0 GHz	-49.27 dBm	FUNCTION	FUNCTION WOTH	FUNCTION VALUE
2 3						
4						
6						
8						
10						
			5.89		1	,

CH-High30MHz-3GHz

Center Freq 1.5	15000000 GHz PNO: Fast IFGain:Low		Avg Type: Log-Pw	TRACE 1 2 3 4 TYPE MWWW DET P N N N
10 dB/div Ref 2	/set 10.6 dB 0.00 dBm		N	1kr1 2.480 3 GI 6.76 dB
10.0				1
0.00				
10.0				-11.62
20.0				
30.0				
40.0				
50.0		_		1.1.
50.0	Concerned Jacob Statistic discountered	and the second second		with William to star
70.0				
Center 1.515 GH Res BW 100 kH		BW 300 kHz	Sweep	Span 2.970 G 283.9 ms (1001 p
NRE MODE THE SOL	× 2.480 3 GHz	6.76 dBm	FUNCTION FUNCTION WID	TH FUNCTION VALUE
2 3 4				
5				
7 8				
9				
10				
		3. 10		

CH-High3GHz-26.5GHz

Cente	er Fr	eq 1	4.7500	000000	GHz PNO: Fast IFGain:Low		rig: Free Atten: 20		Avg Ty	pe: Log-Pwr	т	VPE NNNN
10 dB/	div		Offset 10 20.00							Mk		6 5 GH: 97 dBn
10.0					_	_			-			
0.00		_		-	-							-
10.0		_			_	_						-11.62.05
20.0												
0.0												
0.0		-		-	_	-					-	
50.0	0.2	-			1 1 1 1 1	-				A	-	and man
50.0	An	and the	and the factor	Logland Star	mannial	witherve	- Statement	and the second second	- Herrican Contraction	Automations		
70.0		-		-		-			-		-	
Res	er 14. BW	100 k			#V	BW 30	0 kHz				2.246 s	
1 N 2		1		26.0	06 5 GHz	-4	9.97 dB		CTION F	UNCTION WIDTH	H FUNC	NON WALVE
3	-	\mp						-				
5	-	\pm						-				
6		\pm							-			
8	-							-				
10								-				
							19				· .	

BT 5.0 Mode

CH-Low 30MHz-3GHz

Center Freq 1.5150	PN0: Fast G IFGain:Low	Trig: Free Run #Atten: 20 dB	Avg Type: Log-Pwr	TYPE MWWWWW DET P NNNN
Ref Offset 1 10 dB/div Ref 20.00			Mkr	1 2.403 0 GHz 3.80 dBm
10.0				I
0.00	-			
10.0				-12.14 dD
20.0				
30.0				
40.0				
50.0				
60.0	an any farmer of the state of the state		Million American annound Million	Man Harden Landon
70.0				
Center 1.515 GHz #Res BW 100 kHz	#VBV	V 300 kHz	Sweep 283	Span 2.970 GH 3.9 ms (1001 pts
1 N 1 f	× 2.403 0 GHz	3.80 dBm	FUNCTION FUNCTION WRITH	FUNCTION VALUE
3				
4 5 6				
6 7				
8				
10				
< [] · · · ·		. 17		

CH-Low 3GHz-26.5GHz

enter Fr	eq 14.750	PNO: Fast C IFGain:Low	Trig: Free Run #Atten: 20 dB		ype: Log-Pwr	TYPE NUMBER P NNNN
0 dB/div	Ref Offset 1 Ref 20.00			1000	Mkr	1 26.100 5 GH -49.69 dBn
0.0						-12.14.d
0.0					_	
0.0						
0.0						
0.0						marter dere under
0.0	The Sector And	- Annoning - m	to any and the second	and the second second	and a straight of the state	
0.0		+	+ +			
enter 14 Res BW		#VB	W 300 kHz		Sweep	Span 23.50 GH 2.246 s (1001 pt
28 MODE 118 1 N 1 2	f	26.100 5 GHz	-49.69 dBm	FUNCTION	FUNCTION WOTH	FUNCTION VALUE
3 4						
5 6						
8						
9						
1						

CH-Mid 30MHz-3GHz

Center Freq 1.515	PNO: Fast IFGain:Low	Trig: Free Run #Atten: 20 dB	Avg Type: Log-Pwr	TYPE NNNN DET P NNNN
Ref Offset 0 dB/div Ref 20.00			Mkr	1 2.441 6 GHz 7.09 dBm
.og				1
.00				
0.0				-11.97 dD
0.0				
0.0				
0.0				
0.0				
0.0			a his and the second second filled	Where an and a series
0.0				
enter 1.515 GHz Res BW 100 kHz	#VBV	V 300 kHz	Sweep 28	Span 2.970 GH 3.9 ms (1001 pts
2 MOICE THE SCL 1 N 1 f 2	2.441 6 GHz	7.09 dBm	FUNCTION FUNCTION WOTH	FUNCTION WALUE
3 4				
5				
6 7				
8				
0				

CH-Mid3GHz-26.5GHz

Center F	req 14.7	50000000 GHz PNO: Fast IFGain:Low		n	pe: Log-Pwr	TRACE 1 2 3 4 5 TYPE MWWW DET P NNNN
10 dB/div		et 10.6 dB 00 dBm			Mkr1	25.936 0 GH -49.44 dBn
10.0						
0.00			-		-	
10.0						-11.97 d0
0.0						
0.0						
0.0					-	
0.0		_				ang to a full many shifts and
0.0	along in thethe	and a state of the second	Harpense Mandard	and the state of t		
0.0					++	
Res BW	4.75 GHz / 100 kHz	#V	BW 300 kHz			Span 23.50 GH 2.246 s (1001 pt
1 N 2	1 1	25.936 0 GHz	-49,44 dBm	FUNCTION	UNCTION WETH	FUNCTION VALUE
3 4						
5						
7						
8 9						
10						
			11			

CH-High30MHz-3GHz

Center Freq 1.5150	PN0: Fast C IFGain:Low	Trig: Free Run #Atten: 20 dB	n	Type: Log-Pwr	TYPE MWWWW DET P NNNI
Ref Offset 10 dB/div Ref 20.00				Mkr	1 2.480 3 GH 4.37 dB
10.0					▲ ¹
0.00					Y
-10.0					-11.91.0
20.0					
30.0					
40.0					
50.0				_	
60.0	and the stand of the stand	And the second second second		- manhattilling - and	Mahrunan
-70.0					
Center 1.515 GHz #Res BW 100 kHz	#VB	W 300 kHz			Span 2.970 GH 3.9 ms (1001 pt
MOR MODE THE SOL	2.480 3 GHz	4.37 dBm	FUNCTION	FUNCTION WOTH	FUNCTION VALUE
2 3					
4					
6 7 8 9					
8					
10					
	1				

CH-High3GHz-26.5GHz

ornol rite	q 14.750	PN0: Fast (IFGain:Low	Trig: Free Rui #Atten: 20 dB	1	ype: Log-Pwr	TRACE 1 2 3 4 5 TYPE MWWWW DET P NNNN
0 dB/div	Ref Offset 1 Ref 20.00				Mkr	-49.99 dBn
10.0						
12.2						
1.00						
0.0					-	-11.91 df
0.0	-					
0.0	-				-	
0.0						
0.0	_					the local states
0.0	the marine	with ingrange and the store	moved with my	and the strands	bar grid opris all a	المريد معالية والمحمد والحمو المدام
0.0						
enter 14.7 Res BW 1		#VE	W 300 kHz		Sweep	Span 23.50 GH 2.246 s (1001 pt
RR MODE TRO	500. f	26.006 5 GHz	-49.99 dBm	FUNCTION	FUNCTION WOTH	FUNCTION VALUE
2 3	_					
4						
6						
7 8	_					
9						
0						

6dB Bandwidth Measurement 8

Test Requirement	:	FCC CFR47 Part 15 Section 15.247
Test Method	:	ANSI C63.10:2013
Test Limit		Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

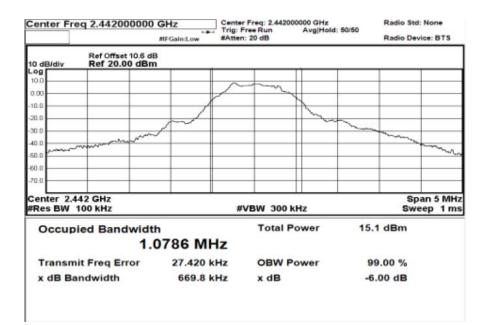
8.1 Test Procedure

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- Set to the maximum power setting and enable the EUT transmit continuously.
 Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100KHz, Set the Video Bandwidth(VBW)= 300KHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500KHz.
- 4. Measure and record the results in the test report.

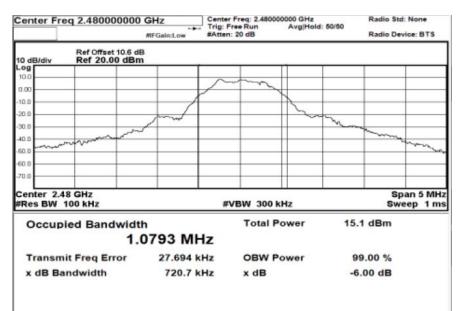
8.2 Test Result

BLE Mode

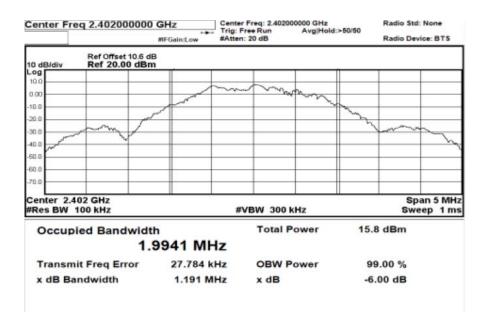
Channel frequency	Measurement level	Required Limit
(MHz)	(KHz)	(KHz)
2402	688	>500
2440	670	>500
2480	721	>500

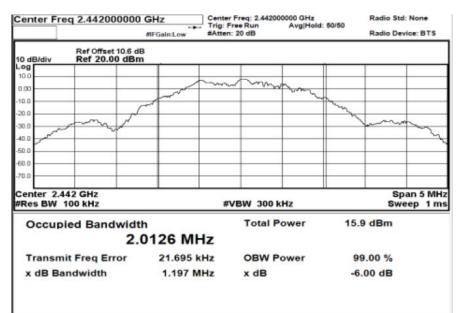

BT5.0 Mode

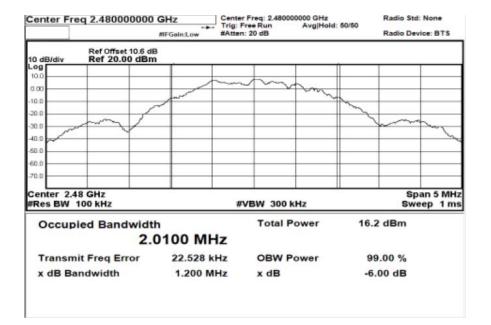
Channel frequency (MHz)	Measurement level	Required Limit
(10112)	(KHz)	(KHz)
2402	1191	>500
2440	1197	>500
2480	1200	>500



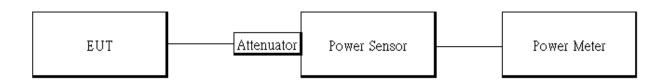
BLE Mod







BT 5.0 Mode



9 Maximum Peak Output Power

Test Requirement	:	FCC CFR47 Part 15 Section 15.247
Test Method	:	ANSI C63.10:2013
Test Limit	:	Regulation 15.247 (b)(3), For systems using digital modulation in the 902- 928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power.

9.1 Test Setup

9.2 Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. The testing follows the Measurement Procedure of FCC KDB 558074 D01 DTS Meas. Guidance.
- 3. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to th power meter.
- 4. Record the max. Reading as observed from Power Meter.
- 5. Repeat above procedures until all test default channel measured was complete.

9.3 Test Result

BLE Mode:

Frequency (MHz)	Peak Power Output (dBm)	Limit(dBm)
2402	8.33	30
2442	8.26	30
2480	8.53	30

BT5.0 Mode:

Frequency (MHz)	Peak Power Output (dBm)	Limit(dBm)
2402	7.93	30
2442	8.09	30
2480	8.19	30

10 Power Spectral density

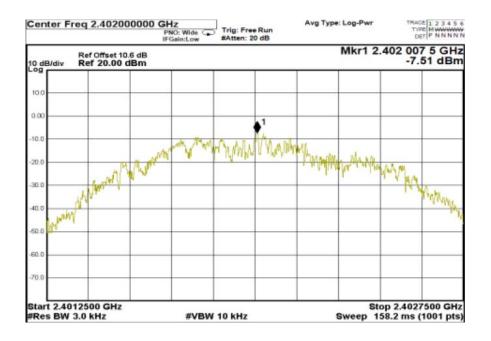
Test Requirement	:	FCC CFR47 Part 15 Section 15.247
Test Method	:	ANSI C63.10:2013
Test Limit	:	Regulation 15.247(f) The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

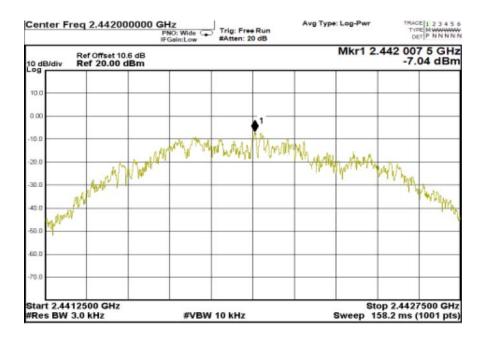
10.1 Test Procedure

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW = 3KHz, Video Bandwidth (VBW) = 10KHz, in order to make an accurate measurement, set the span to 1.5 times DTS channel bandwidth.
- 4. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 5. Measure and record the result in the test report.

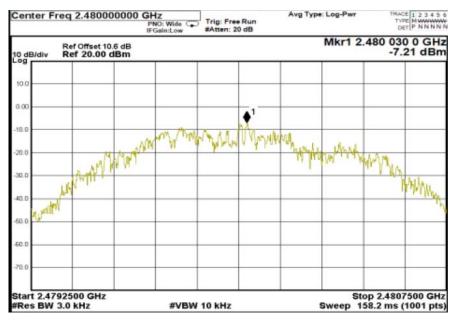
10.2 Test Result

BLE Mode

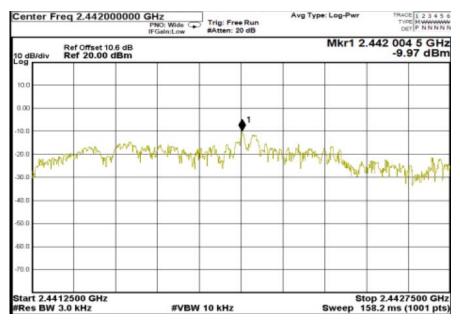

Channel frequency (MHz)			Pass/Fail	
	PSD/3kHz	(dBm/3kHz)		
2402	-7.51	8	PASS	
2442	-7.04	8	PASS	
2480	-7.21	8	PASS	

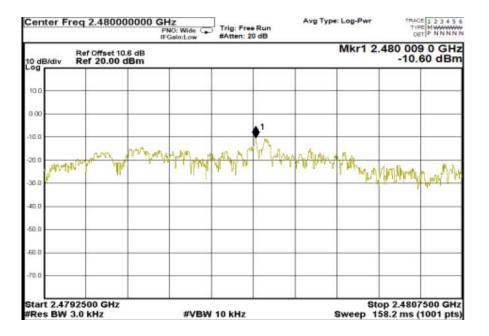

BT 5.0 Mode

Channel frequency (MHz)	Measurement level (dBm)	Required Limit	Pass/Fail	
	PSD/3kHz	(dBm/3kHz)		
2402	-11.31	8	PASS	
2442	-9.98	8	PASS	
2480	-10.60	8	PASS	



BLE Mode





BT 5.0 Mode

			FGain:Low	#Atten: 20	0 dB		Mkr1 2	.402 04	
0 dB/div	Ref Offset Ref 20.00						WINT I Z	-11.	31 dBr
^{og}									
10.0			-			-		-	
0.00		_							
0.0					♦ ¹				
	nari.	what	A hra .	A 105	Mary	astron a			
20.0	hereit	A T	A.M. A.M.	A. M.A.	• • • • • •	an had	TYMAN	milant	A.
30:0							1.14	and dealer	Mar.
40.0									
50.0									
60.0									
70.0			-						
	12500 GH2							op 2.4027	

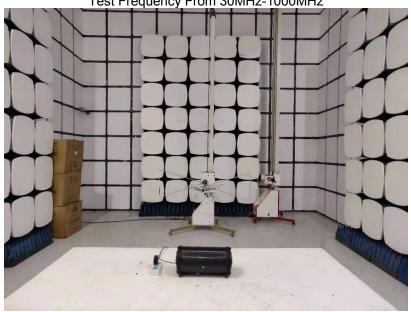
11 Antenna Application

11.1 Antenna Requirement

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

11.2 Result

The EUT'S antenna, permanent attached antenna, is internal antenna. The antenna's gain is -0.68dBi and meets the requirement.



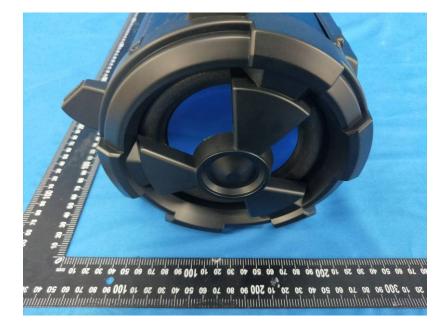
12 Test Setup

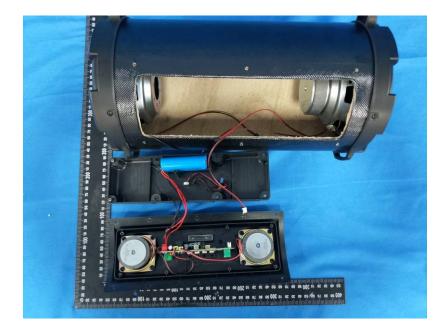
Conducted Emission

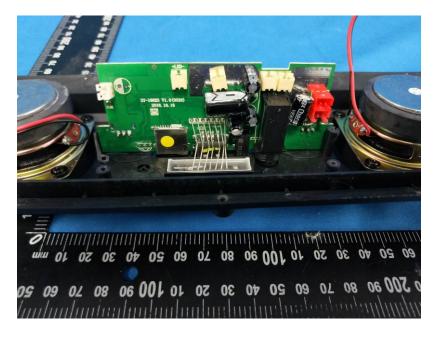
Radiated Spurious Emissions Test Frequency From 30MHz-1000MHz

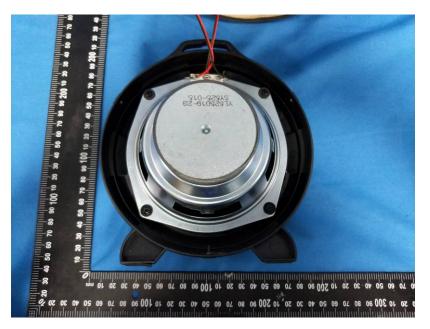
Test Frequency From 1000MHz-26.5GHz

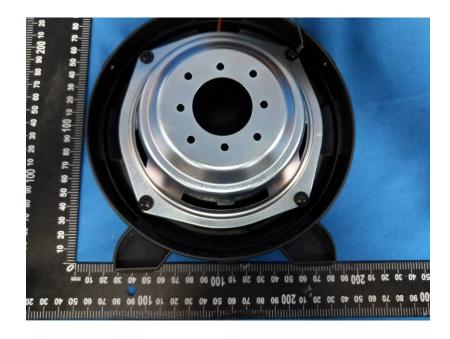
13 EUT Photos

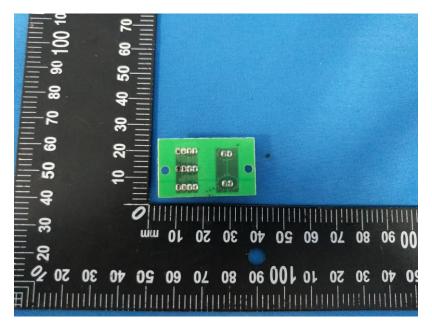


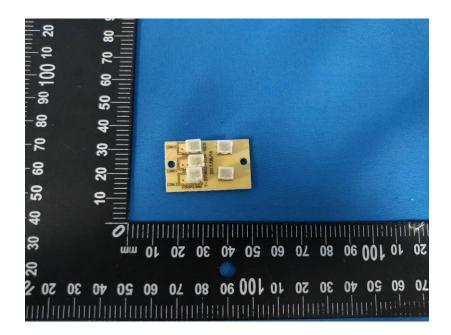


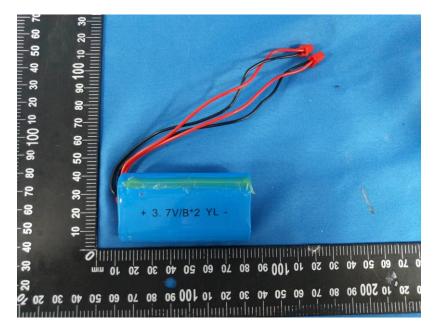












*****THE END REPORT*****