

REGULATORY COMPLIANCE TEST REPORT

FCC CFR 47 Part 15.225 & ISED RSS-210 Report No.: LYFT21-U7 Rev A

Company: Lyft, Inc

Model Name: BIT042N

REGULATORY COMPLIANCE TEST REPORT

Company Name: Lyft, Inc

Model Name: BIT042N

To: FCC CFR 47 Part 15.225 & ISED RSS-210

Test Report Serial No.: LYFT21-U7 Rev A

This report supersedes: NONE

Applicant: Lyft, Inc 185 Berry St #5000 San Francisco, California 94107 USA

Issue Date: 18th April 2023

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Table of Contents

1. ACCREDITATION, LISTINGS & RECOGNITION	4
1.1. TESTING ACCREDITATION	4
1.2. RECOGNITION	5
1.3. PRODUCT CERTIFICATION	6
2. DOCUMENT HISTORY	7
3. TEST RESULT CERTIFICATE	8
4. REFERENCES AND MEASUREMENT UNCERTAINTY	9
4.1. Normative References	9
4.2. Test and Uncertainty Procedure	10
5. PRODUCT DETAILS AND TEST CONFIGURATIONS	11
5.1. Technical Details	11
5.2. Scope Of Test Program	12
5.3. Equipment Model(s) and Serial Number(s)	13
5.4. Antenna Details	13
5.5. Cabling and I/O Ports	13
5.6. Test Configurations	13
5.7. Equipment Modifications	13
5.8. Deviations from the Test Standard	13
6. TEST SUMMARY	14
7. TEST EQUIPMENT CONFIGURATION(S)	15
7.1. Conducted Test Setup	15
7.2. Radiated Emissions - 3m Chamber	17
8. MEASUREMENT AND PRESENTATION OF TEST DATA	20
9. TEST RESULTS	21
9.1. Frequency Tolerance	21
9.2. Radiated Emissions	23
IX Spurious & Restricted Band Emissions	23
A. Appendix A – Graphical Images	29
A.1. Frequency Stability	30

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2017. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>

Accredited Laboratory

A2LA has accredited

MICOM LABS

Pleasanton, CA

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 14th day of January 2022.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2381.01 Valid to November 30, 2023

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

1.2. RECOGNITION

MiCOM Labs, Inc is widely recognized for its wireless testing and certification capabilities. In addition to being recognized for Testing and Certification under Phase 2 Mutual Recognition Agreements (MRA) with Canada, Europe, United Kingdom and Japan, our international recognition includes Conformity Assessment Body (CAB) designation status under agreements with Asia Pacific (APEC) MRA Phase 1 countries giving acceptance of MiCOM Labs test reports. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	MRA Phase	Identification No.
USA	Federal Communications Commission (FCC)	ТСВ	-	US0159 Test Firm Designation#: US1084
Canada	Industry Canada (ISED)	FCB	APEC MRA 2	US0159 ISED#: 4143A
Japan	MIC (Ministry of Internal Affairs and Communication) Japan Approvals Institute for Telecommunication Equipment (JATE)	CAB	Japan MRA 2	RCB 210
	VCCI			A-0012
Europe	European Commission	NB	EU MRA 2	NB 2280
United Kingdom	Department for Business, Energy & Industrial Strategy (BEIS)	AB	UK MRA 2	AB 2280
Mexico	Instituto Federal de Telecomunicaciones (IFT)	CAB	Mexico MRA 1	US0159
Australia	Australian Communications and Media Authority (ACMA)			
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB		US0159
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)			
Singapore	Infocomm Development Authority (IDA)		APEC MRA 1	
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI) Ministry of Communication (MIC)			

TCB – Telecommunications Certification Bodies (TCB)

FCB – Foreign Certification Body

CAB – Conformity Assessment Body

NB – Notified Body

AB – Approved Body

MRA – Mutual Recognition Agreement

MRA Phase I - recognition for product testing

MRA Phase II - recognition for both product testing and certification

1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>

Accredited Product Certification Body

A2LA has accredited

MiCOM LABS

Pleasanton, CA

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC 17065:2012 Requirements for bodies certifying products, processes and services. This product certification body also meets the A2LA R322 – Specific Requirements – Notified Body Accreditation Requirements and A2LA R308 - Specific Requirements - ISO-IEC 17065 - Telecommunication Certification Body Accreditation Program. This accreditation demonstrates technical competence for a defined scope and the operation of a management system.

Presented this 14th day of January 2022

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2381.02 Valid to November 30, 2023

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation.

United States of America – Telecommunication Certification Body (TCB) Industry Canada – Certification Body, CAB Identifier – US0159 Europe – Notified Body (NB), NB Identifier - 2280 UK – Approved Body (AB), AB Identifier - 2280 Japan – Recognized Certification Body (RCB), RCB Identifier - 210

2. DOCUMENT HISTORY

Document History			
Revision	Date	Comments	
Draft	13 th April 2023	Draft report for client for review.	
Rev A	18 th April 2023	Initial Release	

In the above table the latest report revision will replace all earlier versions.

3. TEST RESULT CERTIFICATE

Manufacturer:	Lyft, Inc
	185 Berry St #5000
	San Francisco California 94107
	USA

Model: BIT042N

Type Of Equipment: E-Bicycle location and control module

S/N's: FK2309CVCU6NC0388

Test Date(s): 3rd – 5th April 2023

Tested By: MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA

Telephone: +1 925 462 0304

Fax: +1 925 462 0306

Website: www.micomlabs.com

STANDARD(S)

FCC CFR 47 Part 15.225 & ISED RSS-210

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

1. This document reports conditions under which testing was conducted and the results of testing performed.

2. Details of test methods used have been recorded and kept on file by the laboratory.

3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve Quality Manager MiCOM Labs, Inc.

Gordon Hurst President & CEO MiCOM Labs, Inc.

TEST RESULTS

EQUIPMENT COMPLIES

4. REFERENCES AND MEASUREMENT UNCERTAINTY

4.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
I	KDB 662911 D01 & D02	Oct 31 2013	Guidance for measurement of output emission of devices that employ single transmitter with multiple outputs or systems with multiple transmitters operating simultaneously in the same frequency band
Π	A2LA	22nd June 2022	R105 - Requirement's When Making Reference to A2LA Accreditation Status
ш	ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices
IV	ANSI C63.4	2014	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
V	CISPR 32	2015	Electromagnetic compatibility of multimedia equipment - Emission requirements
VI	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
VII	FCC 47 CFR Part 15.225	2022	Operation within the band 13.110-14.010MHz
VIII	ICES-003	Issue 7 ; October 15, 2020	Information Technology Equipment (Including Digital Apparatus) – Limits and methods of measurement.
IX	M 3003	Edition 3 Nov.2012	Expression of Uncertainty and Confidence in Measurements
х	RSS-210	lssue 10 December 2019	RSS-210 — Licence-Exempt Radio Apparatus: Category I Equipment
хі	RSS-Gen Issue 5	March 2019 Amendment 1 February 2021 Amendment 2	General Requirements for Compliance of Radio Apparatus
XII	FCC 47 CFR Part 2.1033	2020	FCC requirements and rules regarding photographs and test setup diagrams.

4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. Technical Details

Details	Description
Purpose:	Test of the Lyft, Inc BIT042N to FCC CFR 47 Part 15.225 &
	ISED RSS-210
Applicant:	Lyft, Inc
	185 Berry St #5000
NA- weife at warm	San Francisco California 94107 USA
Manufacturer:	Lyft, Inc
Laboratory performing the tests:	MICOM Labs, Inc.
	575 Boulder Court
Test report reference number	
Test report reference number.	
Date EUT received:	3 rd April 2023
Standard(s) applied:	FCC CFR 47 Part 15.225 & ISED RSS-210
Dates of test (from - to):	3 rd – 5 th April 2023
No of Units Tested:	1
Type Of Equipment:	E-Bicycle location and control module
Model(s):	BIT042N
Location for use:	Indoor / Outdoor
Declared Frequency Range(s):	13.56 MHz;
Type of Modulation:	ASK
EUT Modes of Operation:	NFC
Transmit/Receive Operation:	Transceiver
Rated Input Voltage and Current:	43-52.8V DC, Nominal 48V, 1 A
Operating Temperature Range:	-20°C to +50°C
ITU Emission Designator:	14KOK1D
Equipment Dimensions:	15.75cm x 8.8cm x 5.5cm
Weight:	360 grams
Hardware Rev:	88-0000807-A
Software Rev:	16b00bc1d102c

5.2. Scope Of Test Program

Lyft, Inc BIT042N

The scope of the test program was to test the Lyft, Inc BIT042N NFC operating in the frequency range 13.110 – 14.010 MHz; for compliance against the following specifications:

FCC CFR 47 Part 15.225

Radio Frequency Devices; Operating in the band 13.110 - 14.010 MHz

ISED RSS-210

License-Exempt Radio Apparatus

Section 7. Technical Specifications; B.6 Band 13.110-14.010 MHz

5.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description (Including Brand Name)	Mfr.	Model No.	Serial No.
EUT	E-Bicycle location and control module	Lyft Inc	BIT042N	FK2309CVCU6NC0388
Support	Laptop	Lenovo	N/A	N/A

5.4. Antenna Details

Туре	Manufacturer	Model	Gain (dBi)	Frequency Band (MHz)
Integral	Lyft	Transformer Coil	0.0	13.110-14.010

5.5. Cabling and I/O Ports

Port Type	Max Cable Length	Conn Type	Environment
Discrete I/O	<3m	Higo L810 CG	End-User
Analog	<3m	Higo L309 CM	End-User
Analog	<3m	Higo L609 CM	End-User
CAN+DC IN	<3m	Higo L409 CG	End-User
Power + Digital I/O	<3m	Higo L509 CM	End-User

5.6. Test Configurations

Results for the following configurations are provided in this report:

Operational Mode and	Data Rate with	Channel Frequen (MHz)		/	
configuration	MBit/s	Low	Mid	High	
13.110 – 14.010 MHz					
NFC	-		13.56		

5.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance: 1. NONE

5.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program: 1. NONE

6. TEST SUMMARY

List of Measurements		
Test Header	Result	Data Link
Frequency Tolerance	Complies	View Data
Emissions	Complies	-
Radiated Emissions	Complies	-
(i) TX Spurious & Restricted Band Emissions	Complies	View Data

7. TEST EQUIPMENT CONFIGURATION(S)

7.1. Conducted Test Setup

MiTest Automated Test System

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
127	Power Supply	HP	6674A	US36370530	Cal when used
248	Resistance Thermometer	Thermotronics	GR2105-02	9340 #1	30 Oct 2023
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	8 Oct 2023
398	MiTest RF Conducted Test Software	MiCOM	MiTest ATS	Version 4.2.3.0	Not Required
419	Laptop with Labview Software	Lenova	W520	TS02	Not Required
420	USB to GPIB Interface	National Instruments	GPIB-USB HS	1346738	Not Required
440	USB Wideband Power Sensor	Boonton	55006	9178	8 Oct 2023
445	PoE Injector	D-Link	DPE-101GL	QTAH1E2000625	Not Required
461	Spectrum Analyzer	Agilent	E4440A	MY46185537	27 Sep 2023
510	Barometer/Thermometer	Digi Sense	68000-49	170871375	4 Jan 2024
515	MiTest Cloud Solutions RF Test Box	MiCOM	2nd Gen with DFS	515	21 Sep 2023
516	USB Wideband Power Sensor	Boonton	RTP5006	10511	12 Oct 2023
517	USB Wideband Power Sensor	Boonton	RTP5006	10510	8 Oct 2023
555	Rhode & Schwarz Receiver (Firmware Version : 2.00 SP1)	Rhode & Schwarz	ESW 44	101893	28 Jun 2023
74	Environmental Chamber Chamber 3	Tenney	TTC	12808-1	Not Required
RF#2 GPIB#1	GPIB cable to Power Supply	HP	GPIB	None	Not Required
RF#2 SMA#1	EUT to Mitest box port 1	Flexco	SMA Cable port1	None	29 Jun 2023
RF#2 SMA#2	EUT to Mitest box port 2	Flexco	SMA Cable port2	None	29 Jun 2023
RF#2 SMA#3	EUT to Mitest box port 3	Flexco	SMA Cable port3	None	29 Jun 2023
RF#2 SMA#4	EUT to Mitest box port 4	Flexco	SMA Cable port4	None	29 Jun 2023
RF#2 SMA#SA	Mitest box to SA	Flexco	SMA Cable SA	None	29 Jun 2023
RF#2 USB#1	USB Cable to Mitest Box	Dynex	USB Cable	None	Not Required

7.2. Radiated Emissions - 3m Chamber

The following tests were performed using the radiated test set-up shown in the diagram below. Radiated emissions above and below 1GHz.

Radiated Emissions Above 1GHz Test Setup

Radiated Emissions Below 1GHz Test Setup

A full system calibration was performed on the test station and any resulting system losses (or gains) were considered in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CU101	04R08507	Not Required
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	8 Oct 2023
298	3M Radiated Emissions Chamber Maintenance Check	MiCOM	3M Chamber	298	24 May 2023
336	Active loop Ant 10kHz to 30 MHz	EMCO	EMCO 6502	00060498	29 Nov 2023
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	29 Sep 2023
342	2.4 GHz Notch Filter	EWT	EWT-14-0203	H1	6 Oct 2023
346	1.6 TO 10GHz High Pass Filter	EWT	EWT-57-0112	H1	6 Oct 2023
373	26III RMS Multimeter	Fluke	Fluke 26 series III	76080720	29 Sep 2023
396	2.4 GHz Notch Filter	Microtronics	BRM50701	001	6 Oct 2023
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	27 Oct 2023
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	30 Sep 2023
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	2 Nov 2023
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
414	DC Power Supply 0-60V	HP	6274	1029A01285	Cal when used
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
416	Gigabit ethernet filter	ETS-Lingren	Gigafoil 260366	None	Not Required
447	MiTest Rad Emissions Test Software	MiCOM	Rad Emissions Test Software Version 1.0	447	Not Required
462	Schwarzbeck cable from Antenna to Amplifier.	Schwarzbeck	AK 9513	462	27 Oct 2023
463	Schwarzbeck cable from Amplifier to Bulkhead.	Schwarzbeck	AK 9513	463	27 Oct 2023
464	Schwarzbeck cable from Bulkhead to Receiver	Schwarzbeck	AK 9513	464	27 Oct 2023
466	Low Pass Filter DC-1500 MHz	Mini-Circuits	NLP-1750+	VUU10401438	6 Oct 2023
480	Cable - Bulkhead to Amp	SRC Haverhill	157-3050360	480	6 Oct 2023

481	Cable - Bulkhead to Receiver	SRC Haverhill	151-3050787	481	6 Oct 2023
510	Barometer/Thermometer	Digi Sense	68000-49	170871375	4 Jan 2024
554	Precision SMA Cable	Fairview Microwave	SCE18060101- 400CM	554	6 Oct 2023
555	Rhode & Schwarz Receiver (Firmware Version : 2.00 SP1)	Rhode & Schwarz	ESW 44	101893	28 Jun 2023
557	LTE Filter 703 - 748 4 MHz	Warison	WFIL-N703-748F-04	557	27 Apr 2024
560	LTE Filter 1710-1785 MHz	Warison	WFIL-N1710-1785F- 05	560	26 Apr 2024
561	LTE Filter 1920-1980 MHz	Warison	WFIL-N1920-1980F- 02	561	26 Apr 2024
87	Uninterruptible Power Supply	Falcon Electric	ED2000-1/2LC	F3471 02/01	Cal when used
CC05	Confidence Check	MiCOM	CC05	None	27 May 2023

8. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using stateof-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "MiTest" Automated Test System" (Patent Pending)

9. TEST RESULTS

9.1. Frequency Tolerance

Conducted Test Conditions for Frequency Stability								
Standard:	FCC CFR 47:15.225 ISED RSS-210/Gen	Ambient Temp. (°C):	24.0 - 27.5					
Test Heading:	Frequency Stability	32 - 45						
Standard Section(s):	15.225(e) RSS-Gen 6.11	Pressure (mBars):	999 - 1001					
Reference Document(s):	See Normative References							

Test Procedure for Frequency Stability Measurement

The Frequency Error was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Testing was performed under ambient conditions at extreme voltages and over extreme temperatures at nominal voltages. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limit: 100 ppm

Equipment Configuration for Nominal Centre frequencies

Variant:	BIT042N	Duty Cycle (%):	Not Applicable
Data Rate:	Not Applicable	Antenna Gain (dBi):	Not Applicable
Modulation:	ASK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test frequency	13.56 MHz	Measured Frequency	Frequency Tolerance		Limit	Margin
Temperature	Voltage	Hz	kHz	ppm	ppm	ppm
-20 °C	48.0 Vdc	<u>13560175.00</u>	0.1750	12.91	±100	-87.09
-10 °C	48.0 Vdc	<u>13560175.00</u>	0.1750	12.91	±100	-87.09
0 °C	48.0 Vdc	<u>13560175.00</u>	0.1750	12.91	±100	-87.09
10 °C	48.0 Vdc	<u>13560175.00</u>	0.1750	12.91	±100	-87.09
20 °C	48.0 Vdc	<u>13560175.00</u>	0.1750	12.91	±100	-87.09
20 °C	43.2 Vdc	<u>13560175.00</u>	0.1750	12.91	±100	-87.09
20 °C	52.8 Vdc	<u>13560175.00</u>	0.1750	12.91	±100	-87.09
30 °C	48.0 Vdc	<u>13560175.00</u>	0.1750	12.91	±100	-87.09
40 °C	48.0 Vdc	<u>13560175.00</u>	0.1750	12.91	±100	-87.09
50 °C	48.0 Vdc	13560175.00	0.1750	12.91	±100	-87.09

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-02 MEASURING FREQUENCY				
Measurement Uncertainty:	±0.86 ppm				

9.2. Radiated Emissions

TX Spurious & Restricted Band Emissions

Restricted Bands of Operation (15.205)

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

Frequency Band								
MHz	MHz	MHz	GHz					
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15					
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46					
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75					
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5					
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2					
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5					
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7					
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4					
6.31175-6.31225	123-138	2200-2300	14.47-14.5					
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2					
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4					
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12					
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0					
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8					
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5					
12.57675-12.57725	322-335.4	3600-4400	Above 38.6					
13.36-13.41								

(b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

(c) Except as provided in paragraphs (d) and (e) of this section, regardless of the field strength limits specified elsewhere in this subpart, the provisions of this section apply to emissions from any intentional radiator.

(d) The following devices are exempt from the requirements of this section:

(1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a) of this section, the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section, more than 99% of the time the device is actively transmitting, without compensation for duty cycle.

(2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.

(3) Cable locating equipment operated pursuant to §15.213.

(4) Any equipment operated under the provisions of §15.253, 15.255, and 15.256 in the frequency band 75-85 GHz, or §15.257 of this part.

(5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.

(6) Transmitters operating under the provisions of subparts D or F of this part.

(7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.

(8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirements of this

section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in §15.245(b).

(9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in §15.249(a).

(e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of §15.245 shall not exceed the limits specified in §15.245(b).

Equipment Configuration for Below 30MHz Emissions (150kHz - 30Mhz)

2N
oplicable
2N

Test Measurement Results

There are no emissions found within 6dB of the limit line.

Equipment Configuration for 30 MHz To 1 GHz

Antenna:	Integral	Variant:	BIT042N
Antenna Gain (dBi):	Not Applicable	Modulation:	ASK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	13.56	Data Rate:	Not Applicable
Power Setting:	Max	Tested By:	SB

Test Measurement Results

	30.00 - 1000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	55.45	42.11	3.76	-17.13	28.75	MaxQP	Vertical	128	34	40.0	-11.3	Pass
2	87.07	47.13	4.01	-17.53	33.61	MaxQP	Vertical	98	224	40.0	-6.4	Pass
3	171.23	46.93	4.45	-13.61	37.76	MaxQP	Vertical	111	111	43.5	-5.7	Pass
4	230.18	54.81	4.71	-14.49	45.02	MaxQP	Horizontal	133	70	46.0	-1.0	Pass
5	247.95	52.23	4.79	-14.06	42.96	MaxQP	Horizontal	100	95	46.0	-3.0	Pass
6	304.05	52.64	5.02	-12.08	45.58	MaxQP	Horizontal	117	50	46.0	-0.4	Pass

Test Notes: Cellular, Wifi, NFC, and BT radios active.

 Issue Date:
 18th April 2023
 Page:
 27 of 40

 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Equipment Configuration for FCC Spurious 1 GHz -18 GHz

Antenna:	Integral	Variant:	BIT042N
Antenna Gain (dBi):	Not Applicable	Modulation:	ASK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	13.56	Data Rate:	Not Applicable
Power Setting:	Max	Tested By:	SB

Test Measurement Results

	1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	4961.00	62.36	2.90	34.26	53.19	MaxP	Horizontal	200	120	74.0	-20.8	Pass
2	4961.00	61.07	2.90	34.26	51.89	MaxP	Vertical	100	29	74.0	-22.1	Pass
3	4961.00	46.14	2.90	34.26	36.97	AVG	Horizontal	149	180	54.0	-17.0	Pass

Test Notes: Cellular, Wifi, NFC, and BT radios active.

A. Appendix A – Graphical Images

A.1. Frequency Stability

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = NORM	M1 : 13.560 MHz : 13.428 dBm	Result: Pass
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = WRIT		

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = NORM	M1 : 13.560 MHz : 13.449 dBm	Result: Pass
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = WRIT		

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = NORM	M1 : 13.560 MHz : 13.404 dBm	Result: Pass
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = WRIT		

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = NORM	M1 : 13.560 MHz : 13.406 dBm	Result: Pass
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = WRIT		

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = NORM	M1 : 13.560 MHz : 13.287 dBm	Result: Pass
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = WRIT		

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = NORM	M1 : 13.560 MHz : 13.349 dBm	Result: Pass
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = WRIT		

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = NORM	M1 : 13.560 MHz : 13.335 dBm	Result: Pass
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = WRIT		

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = NORM	M1 : 13.560 MHz : 13.318 dBm	Result: Pass
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = WRIT		

Back to Matrix

27 of 4

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = NORM	M1 : 13.560 MHz : 13.337 dBm	Result: Pass
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = WRIT		

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = NORM	M1 : 13.560 MHz : 13.231 dBm	Result: Pass
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = WRIT		

575 Boulder Court Pleasanton, California 94566, USA Tel: +1 (925) 462 0304 Fax: +1 (925) 462 0306 www.micomlabs.com