

TEST REPORT

FCC PART 15 SUBPART C 15.247

Test report
On Behalf of
Meizhou Qing Tang Industrial Co., Ltd.
For
Care Baby

Model No.: QF100

FCC ID: 2ASMFQF100

Prepared for: Meizhou Qing Tang Industrial Co., Ltd.

2/F Building C Gaodi Industrial Zone No. 1 Binjiang East Road She Jiang

Town Mei Xian District Mei Zhou Guangdong

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Feb. 26, 2019 ~ Mar. 04, 2019

Date of Report: Mar. 04, 2019
Report Number: HK1901240231E

Page 2 of 76 Report No.: HK1901240231E

TEST RESULT CERTIFICATION

Applicant's name:	Meizhou Qing	Tang Industrial	Co., Ltd.
-------------------	--------------	-----------------	-----------

2/F Building C Gaodi Industrial Zone No. 1 Binjiang East Road She Address....::

Jiang Town Mei Xian District Mei Zhou Guangdong

Manufacture's Name: Meizhou Qing Tang Industrial Co., Ltd.

2/F Building C Gaodi Industrial Zone No. 1 Binjiang East Road She

Jiang Town Mei Xian District Mei Zhou Guangdong

Factory's Name: Meizhou Qing Tang Industrial Co., Ltd.

2/F Building C Gaodi Industrial Zone No. 1 Binjiang East Road She

Jiang Town Mei Xian District Mei Zhou Guangdong

Product description

Trade Mark: Care Baby Product name.....: Care Baby Model and/or type reference ...: QF100

Standards 47 CFR FCC Part 15 Subpart C 15.247

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Date (s) of performance of tests...... Feb. 26, 2019 ~ Mar. 04, 2019

Date of Issue: Mar. 04, 2019

Test Result....: **Pass**

Testing Engineer

Technical Manager

Authorized Signatory:

(Jason Zhou)

TABLE OF CONTENTS

1.SUMMARY	5
1.1 TEST STANDARDS	5
1.2 TEST DESCRIPTION	5
1.3 TEST FACILITY	6
1.4 STATEMENT OF THE MEASUREMENT UNCERTAINTY	6
2.GENERAL INFORMATION	7
2.1 ENVIRONMENTAL CONDITIONS	7
2.2 GENERAL DESCRIPTION OF EUT	7
2.3 DESCRIPTION OF TEST MODES AND TEST FREQUENCY	7
2.4 RELATED SUBMITTAL(S) / GRANT (S)	8
2.5 MODIFICATIONS	
2.6. IEEE 802.11N MODULATION SCHEME	
2.7 EQUIPMENT USED	10
3. OUTPUT POWER	11
3.1. MEASUREMENT PROCEDURE	11
3.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	11
3.3. LIMITS AND MEASUREMENT RESULT	12
4. 6 DB BANDWIDTH	13
4.1. MEASUREMENT PROCEDURE	13
4.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	13
4.3. LIMITS AND MEASUREMENT RESULTS	14
5. CONDUCTED SPURIOUS EMISSION	20
5.1. MEASUREMENT PROCEDURE	20
5.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	20
5.3. LIMITS AND MEASUREMENT RESULT	20
6. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY	35
6.1 MEASUREMENT PROCEDURE	35
6.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	35
6.3 LIMITS AND MEASUREMENT RESULT	35
7. RADIATED EMISSION	42

Page 4 of 76

 7.1. MEASUREMENT PROCEDURE
 42

 7.2. TEST SETUP
 43

 7.3. LIMITS AND MEASUREMENT RESULT
 44

 7.4. TEST RESULT
 44

 8. BAND EDGE EMISSION
 50

 8.1. MEASUREMENT PROCEDURE
 50

 8.2. TEST SET-UP
 50

 8.3. TEST RESULT
 51

 9. LINE CONDUCTED EMISSION TEST
 63

 9.1. LIMITS OF LINE CONDUCTED EMISSION TEST
 63

 9.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST
 63

 9.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST
 64

 9.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST
 64

 9.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST
 64

 9.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST
 65

Page 5 of 76 Report No.: HK1901240231E

1.SUMMARY

1.1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

1.2 TEST DESCRIPTION

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.247	Output Power	Compliant
§15.247	6 dB Bandwidth	Compliant
§15.247	Conducted Spurious Emission	Compliant
§15.247	Maximum Conducted Output Power SPECTRAL Density	Compliant
§15.209	Radiated Emission	Compliant
§15.247	Band Edges	Compliant
§15.207	Line Conduction Emission	Compliant

Page 6 of 76 Report No.: HK1901240231E

1.3 TEST FACILITY

1.3.1 Address of the test laboratory

Shenzhen HUAK Testing Technology Co., Ltd.

Add.:1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 32/EN 55032 requirements.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 21210

The 3m alternate test site of Shenzhen HUAK Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 21210 on May 24, 2016.

FCC Registration No.: CN1229

Test Firm Registration Number: 616276

1.4 STATEMENT OF THE MEASUREMENT UNCERTAINTY

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen HUAK Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for HUAK laboratory is reported:

Test	Measurement Uncertainty	Notes
Transmitter power conducted	±0.57 dB	(1)
Transmitter power Radiated	±2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	±2.20 dB	(1)
Occupied Bandwidth	±0.01ppm	(1)
Radiated Emission 30~1000MHz	±4.10dB	(1)
Radiated Emission Above 1GHz	±4.32dB	(1)
Conducted Disturbance0.15~30MHz	±3.20dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 7 of 76 Report No.: HK1901240231E

2.GENERAL INFORMATION

2.1 ENVIRONMENTAL CONDITIONS

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2 GENERAL DESCRIPTION OF EUT

Product Name:	Care Baby
Model/Type reference:	QF100
Power supply:	Input: AC100-240V, 50/60Hz, 0.3A Output: DC 5.0V, 2000mA
Modulation	DSSS(DBPSK/DQPSK/CCK);OFDM(BPSK/QPSK/16-QAM/64-QAM)
Supported modes	802.11 b/g/n20
Operation Frequency	2.412 GHz~2.462GHz
Channel number:	11
Antenna type:	Chip Antenna
Antenna gain:	0dBi
Hardware Version:	QF100_MB_M0.2
Software Version:	V1.0

Note: For more details, refer to the user's manual of the EUT.

2.3 DESCRIPTION OF TEST MODES AND TEST FREQUENCY

Frequency Band	Channel Number	Frequency
	1	2412 MHZ
	2	2417 MHZ
	3	2422 MHZ
	4	2427 MHZ
	5	2432 MHZ
2400~2483.5MHZ	6	2437 MHZ
	7	2442 MHZ
	8	2447 MHZ
	9	2452 MHZ
	10	2457 MHZ
	11	2462 MHZ

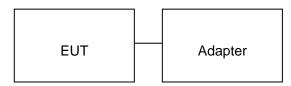
Note: For 20MHZ bandwidth system use Channel 1 to Channel 11

Page 8 of 76 Report No.: HK1901240231E

NO.	TEST MODE DESCRIPTION
1	Low channel TX
2	Middle channel TX
3	High channel TX
4	Normal operating

Note:

Transmit by 802.11b with Date rate (1/2/5.5/11)


Transmit by 802.11g with Date rate (6/9/12/18/24/36/48/54)

Transmit by 802.11n (20MHz) with Date rate (6.5/13/19.5/26/39/52/58.5/65)

Note:

- 1. The EUT has been set to operate continuously on the lowest, middle and highest operation frequency Individually, and the eut is operating at its maximum duty cycle>or equal 98%
- 2. All modes under which configure applicable have been tested and the worst mode test data recording in the test report, if no other mode data.
- 3. For Conducted Test method, a temporary antenna connector is provided by the manufacture.

Configure:

Item	m Equipment Model No.		Specification	Remark	
1	Adapter	WTA0502000USB1	DC 5V/2A	Marketed with EUT	

2.4 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.5 MODIFICATIONS

No modifications were implemented to meet testing criteria.

Page 9 of 76 Report No.: HK1901240231E

2.6. IEEE 802.11N MODULATION SCHEME

MCS Index	Nss	Modulation	R	NBPSC	NCBPS NDBPS			ata Mbps) nsGl		
					20MHz	40MHz	20MHz	40MHz	20MHz	40MHz
0	1	BPSK	1/2	1	52	108	26	54	6.5	13.5
1	1	QPSK	1/2	2	104	216	52	108	13.0	27.0
2	1	QPSK	3/4	2	104	216	78	162	19.5	40.5
3	1	16-QAM	1/2	4	208	432	104	216	26.0	54.0
4	1	16-QAM	3/4	4	208	432	156	324	39.0	81.0
5	1	64-QAM	2/3	6	312	648	208	432	52.0	108.0
6	1	64-QAM	3/4	6	312	648	234	489	58.5	121.5
7	1	64-QAM	5/6	6	312	648	260	540	65.0	135.0

Symbol	Explanation	
NSS	Number of spatial streams	
R	R Code rate	
NBPSC	Number of coded bits per single carrier	
NCBPS	Number of coded bits per symbol	
NDBPS	Number of data bits per symbol	
GI	Guard interval	

Page 10 of 76 Report No.: HK1901240231E

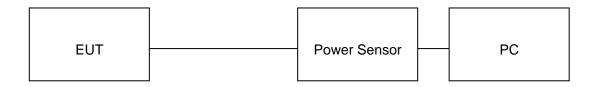
2.7 EQUIPMENT USED

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Dec. 27, 2018	1 Year
2.	Receiver	R&S	ESCI 7	HKE-010	Dec. 27, 2018	1 Year
3.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 27, 2018	1 Year
4.	Horn Antenna	Schewarzbeck	BBHA 9170	HKE-090	Dec. 27, 2018	1 Year
5.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 27, 2018	1 Year
6.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 27, 2018	1 Year
7.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Dec. 27, 2018	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Dec. 27, 2018	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 27, 2018	1 Year
10.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Dec. 27, 2018	1 Year
11.	Pre-amplifier	EMCI	EMC051845 SE	HKE-015	Dec. 27, 2018	1 Year
12.	Pre-amplifier	Agilent	83051A	HKE-016	Dec. 27, 2018	1 Year
13.	EMI Test Software EZ-EMC	Tonscend	JQF100120- B Version	HKE-083	Dec. 27, 2018	N/A
14.	Power Sensor	Agilent	E9300A	HKE-086	Dec. 27, 2018	1 Year
15.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 27, 2018	3 Year

The calibration interval was one year.

Page 11 of 76 Report No.: HK1901240231E

3. OUTPUT POWER


3.1. MEASUREMENT PROCEDURE

For average power test:

- 1. Connect EUT RF output port to power sensor through an RF attenuator.
- 2. Connect the power sensor to the PC.
- 3. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 4. Record the maximum power from the software.

Note: The EUT was tested according to ANSI C63.10 (2013) for compliance to FCC 47CFR 15.247 requirements.

3.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) AVERAGE POWER SETUP

Page 12 of 76 Report No.: HK1901240231E

3.3. LIMITS AND MEASUREMENT RESULT

TEST ITEM	OUTPUT POWER
TEST MODE	802.11b with data rate 1

Frequency (GHz)	Average Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.412	11.14	30	Pass
2.437	11.03	30	Pass
2.462	11.09	30	Pass

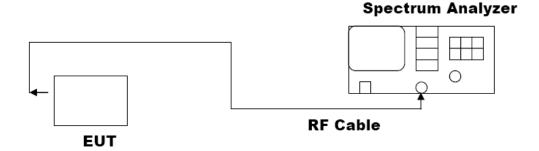
TEST ITEM	OUTPUT POWER
TEST MODE	802.11g with data rate 6

Frequency (GHz)	Average Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.412	9.84	30	Pass
2.437	9.66	30	Pass
2.462	9.71	30	Pass

TEST ITEM	OUTPUT POWER
TEST MODE	802.11n 20 with data rate 6.5

Frequency (GHz)	Average Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.412	9.73	30	Pass
2.437	9.67	30	Pass
2.462	9.60	30	Pass

Page 13 of 76 Report No.: HK1901240231E


4. 6 DB BANDWIDTH

4.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW ≥ 3×RBW.
- 4. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to ANSI C63.10 (2013) for compliance to FCC 47CFR 15.247 requirements.

4.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

Page 14 of 76 Report No.: HK1901240231E

4.3. LIMITS AND MEASUREMENT RESULTS

TEST ITEM	6DB BANDWIDTH
TEST MODE	802.11b with data rate 11

LIMITS AND MEASUREMENT RESULT				
Annliachta Limita	Applicable Limits			
Applicable Limits	Test Data (MHz)		Criteria	
	Low Channel	9.826	PASS	
>500KHZ	Middle Channel	9.096	PASS	
	High Channel	9.569	PASS	

TEST ITEM	6DB BANDWIDTH
TEST MODE	802.11g with data rate 54

LIMITS AND MEASUREMENT RESULT				
Amalia abla Limita	Applicable Limits			
Applicable Limits	Test Data (MHz)		Criteria	
>500KHZ	Low Channel	15.14	PASS	
	Middle Channel	15.47	PASS	
	High Channel	15.14	PASS	

TEST ITEM	6DB BANDWIDTH
TEST MODE	802.11n 20 with data rate 65

LIMITS AND MEASUREMENT RESULT			
Appliachle Limite	Applicable Limits		
Applicable Limits	Test Data (MHz)		Criteria
	Low Channel	15.14	PASS
>500KHZ	Middle Channel	15.14	PASS
	High Channel	15.33	PASS

802.11b TEST RESULT TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

Report No.: HK1901240231E

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

802.11g TEST RESULTTEST PLOT OF BANDWIDTH FOR LOW CHANNEL

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

Report No.: HK1901240231E

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

802.11n (20) TEST RESULTTEST PLOT OF BANDWIDTH FOR LOW CHANNEL

Report No.: HK1901240231E

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

Page 20 of 76 Report No.: HK1901240231E

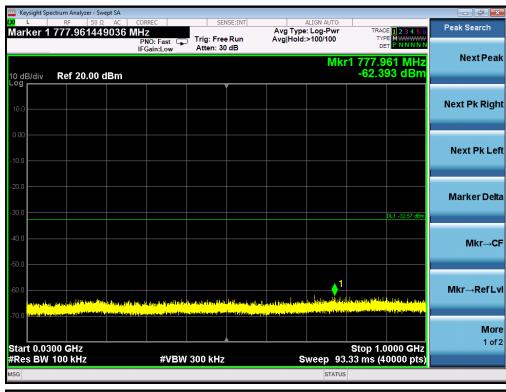
5. CONDUCTED SPURIOUS EMISSION

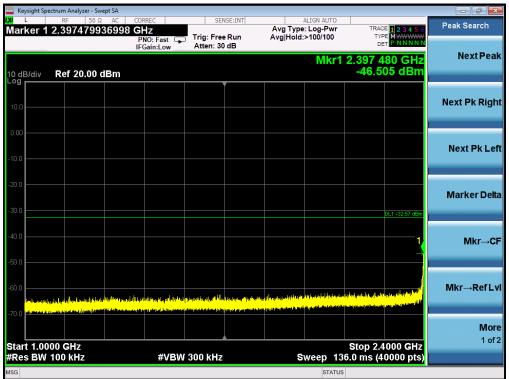
5.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Trace 1 Max hold, then View.

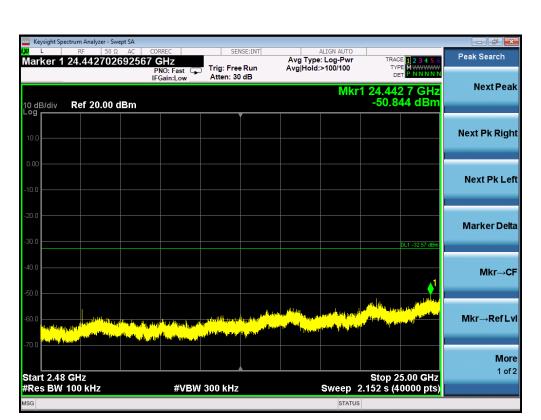
Note: The EUT was tested according to ANSI C63.10 (2013) for compliance to FCC 47CFR 15.247 requirements. Owing to satisfy the requirements of the number of measurement points, we set the RBW=1MHz, VBW>RBW, scan up through 10th harmonic, and consider the tested results as the worst case, if the tested results conform to the requirement, we can deem that the real tested results(set the RBW=100KHz, VBW>RBW) are conform to the requirement.

5.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

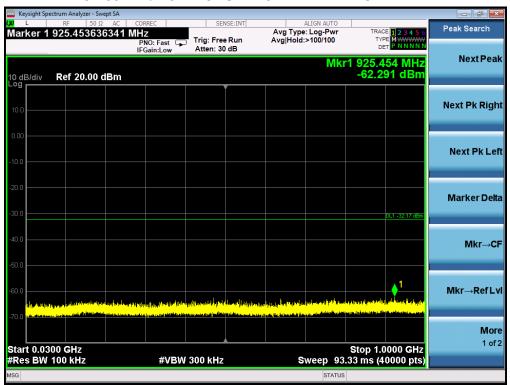

The same as described in section 4.2.


5.3. LIMITS AND MEASUREMENT RESULT

LIMITS AND MEASUREMENT RESULT			
Amplicable Limite	Measurement Result		
Applicable Limits	Test Data	Criteria	
In any 100 KHz Bandwidth Outside the	At least -30dBc than the limit		
frequency band in which the spread spectrum	Specified on the BOTTOM	PASS	
intentional radiator is operating, the radio frequency	Channel		
power that is produce by the intentional radiator			
shall be at least 30 dB below that in 100KHz			
bandwidth within the band that contains the highest			
level of the desired power.	At least -30dBc than the limit	DACC	
In addition, radiation emissions which fall in the	Specified on the TOP Channel	PASS	
restricted bands, as defined in §15.205(a), must also			
comply with the radiated emission limits specified			
in§15.209(a))			



TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF 802.11b FOR MODULATION IN LOW CHANNEL

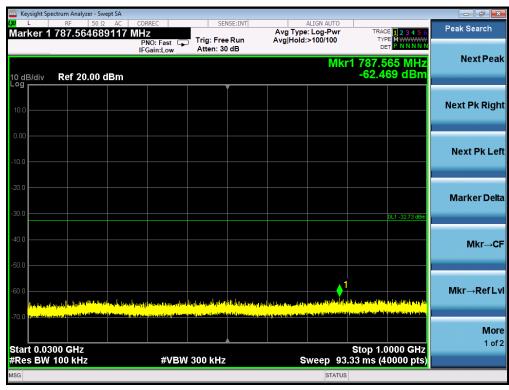


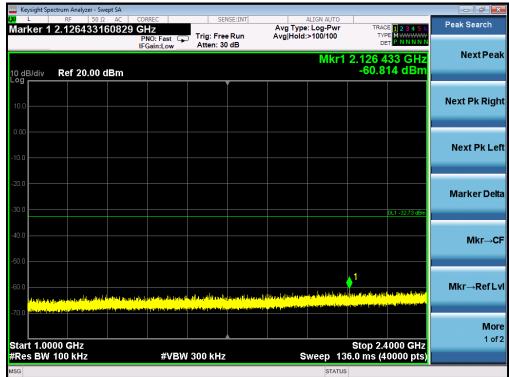
TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11b FOR MODULATION IN MIDDLE CHANNEL

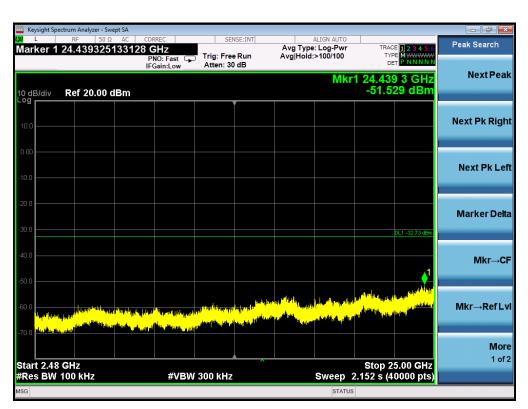
Start 1.0000 GHz #Res BW 100 kHz

| Keysight Spectrum Analyzer - Swept SA | Ref | So Ω AC | CORREC | SENSE:INT | Avg Type: Log-Pwr | Avg Hold:>100/100 | Correct | Correc

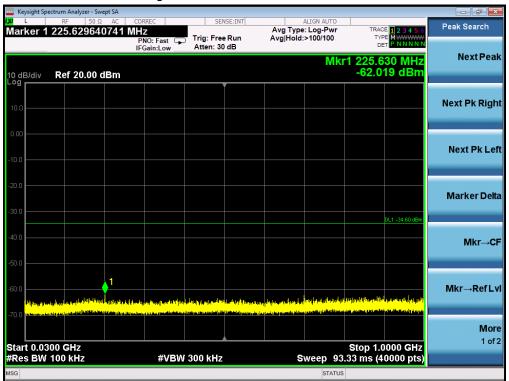
#VBW 300 kHz

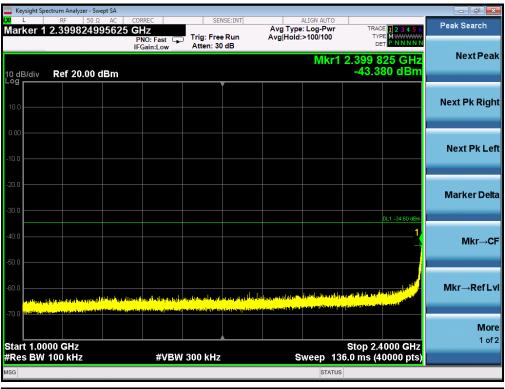

More 1 of 2


Stop 2.4000 GHz Sweep 136.0 ms (40000 pts)

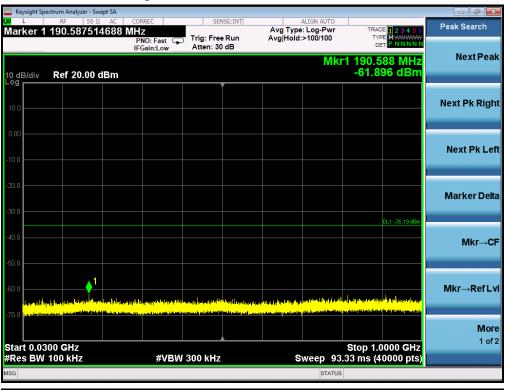


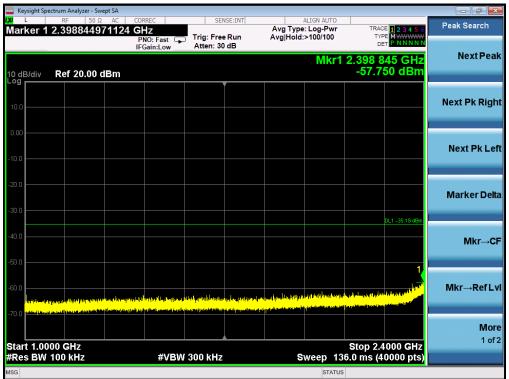
TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11b FOR MODULATION IN HIGH CHANNEL

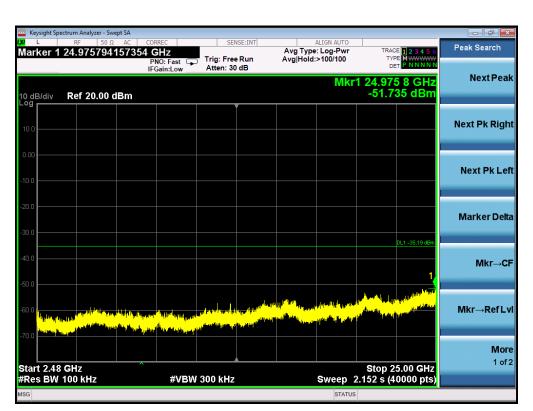




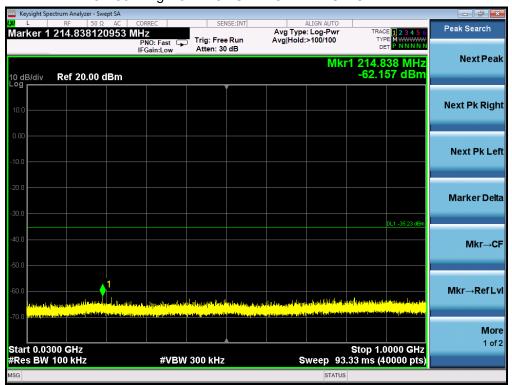
TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF 802.11g FOR MODULATION IN LOW CHANNEL

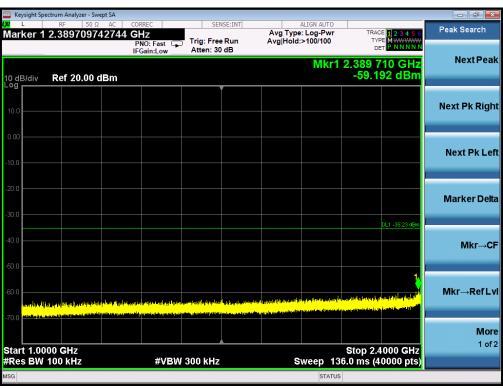




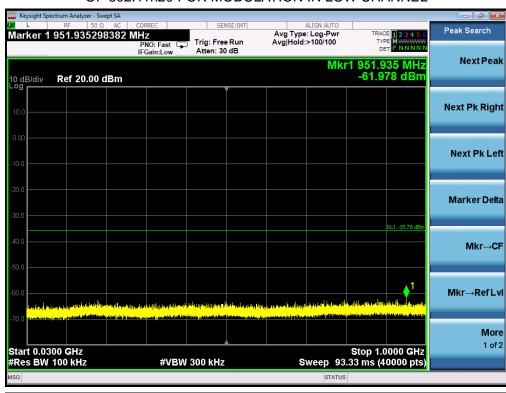


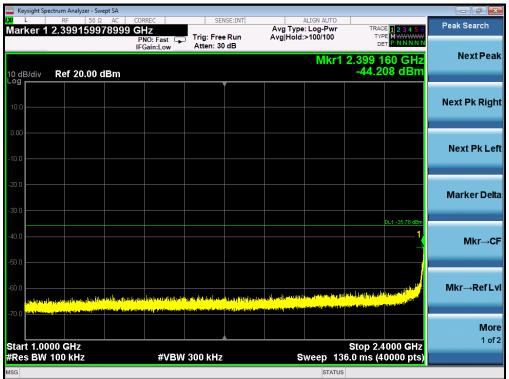
TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11g FOR MODULATION IN MIDDLE CHANNEL

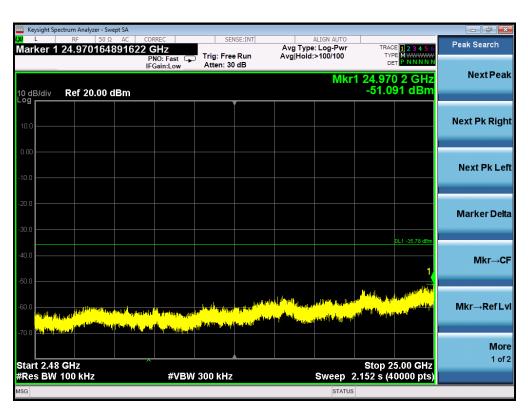




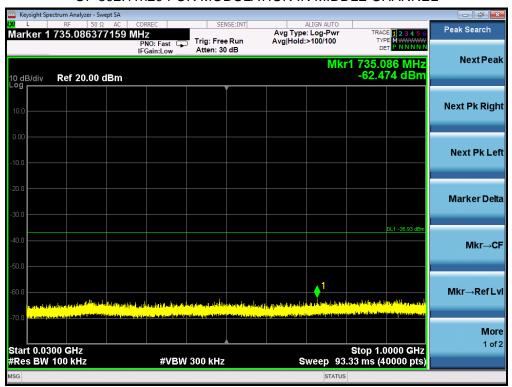
TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE
OF 802.11g FOR MODULATION IN HIGH CHANNEL

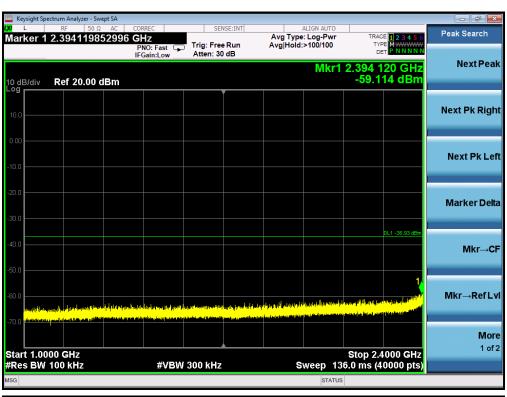




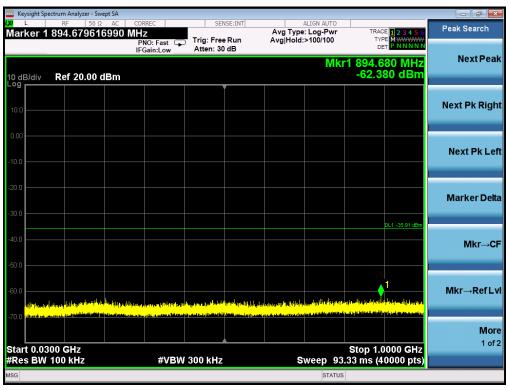


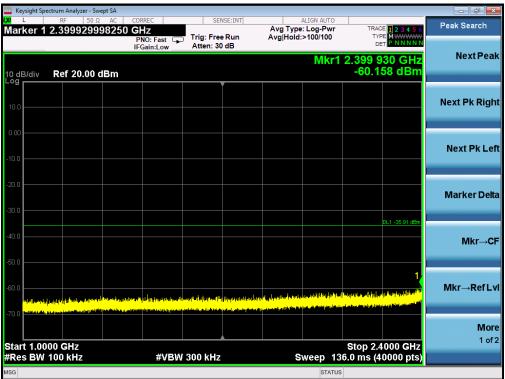
TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF 802.11n20 FOR MODULATION IN LOW CHANNEL

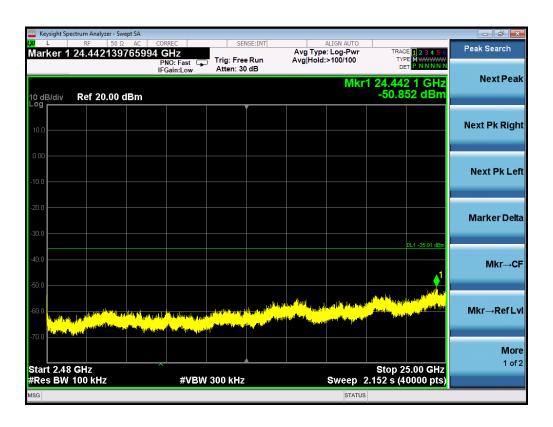




TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11n20 FOR MODULATION IN MIDDLE CHANNEL







TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11n20 FOR MODULATION IN HIGH CHANNEL

Page 35 of 76 Report No.: HK1901240231E

6. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY

6.1 MEASUREMENT PROCEDURE

- (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (3). Set SPA Trace 1 Max hold, then View.

Note: The method of AVGPSD-1 in the ANSI C63.10 (2013) item 11.10 was used in this testing.

6.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

Refer To Section 4.2.

6.3 LIMITS AND MEASUREMENT RESULT

TEST ITEM	POWER SPECTRAL DENSITY
TEST MODE	802.11b with data rate 1

Channel No.	Power density (dBm/20kHz)	Limit (dBm/3kHz)	Result
Low Channel	-8.210	8	Pass
Middle Channel	-5.361	8	Pass
High Channel	-3.236	8	Pass

TEST ITEM	POWER SPECTRAL DENSITY
TEST MODE	802.11g with data rate 6

Channel No.	Power density (dBm/20kHz)	Limit (dBm/3kHz)	Result
Low Channel	-10.339	8	Pass
Middle Channel	-7.650	8	Pass
High Channel	-10.109	8	Pass

Page 36 of 76 Report No.: HK1901240231E

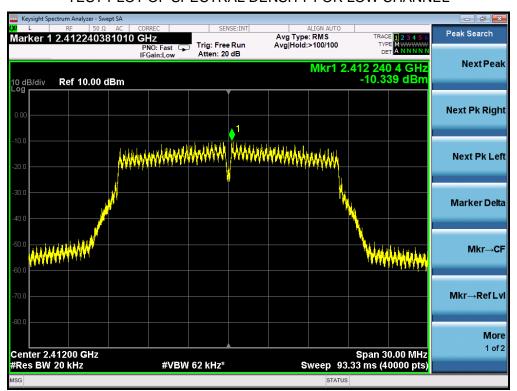
TEST ITEM	POWER SPECTRAL DENSITY
TEST MODE	802.11n 20 with data rate 6.5

Channel No.	Power density (dBm/20kHz)	Limit (dBm/3kHz)	Result
Low Channel	-11.407	8	Pass
Middle Channel	-10.893	8	Pass
High Channel	-10.419	8	Pass

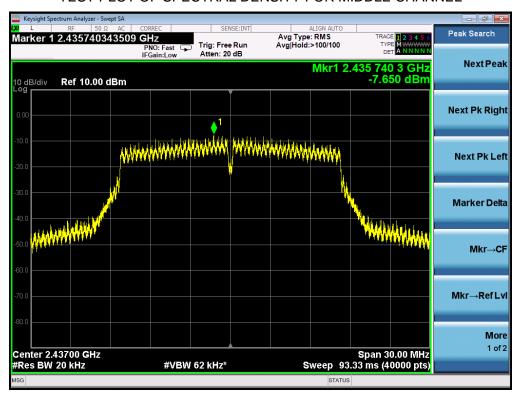
802.11b TEST RESULT TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL

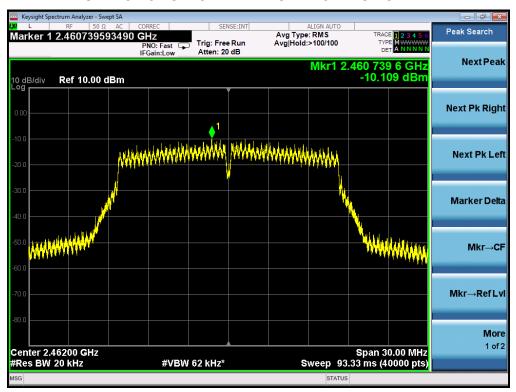
Report No.: HK1901240231E

TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL



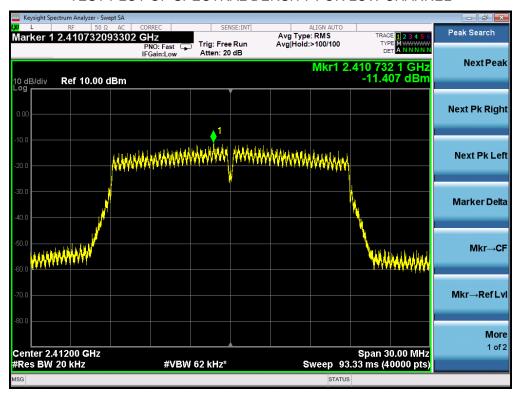
TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL

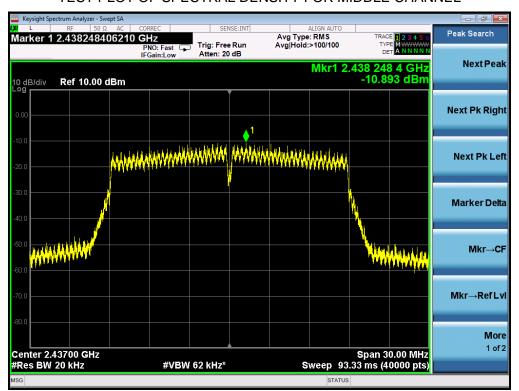

802.11g TEST RESULTTEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL



TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL

Report No.: HK1901240231E


TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL



802.11n 20 TEST RESULTTEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL

Report No.: HK1901240231E

TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL

